JPH0493204A - Improved colliding and mixing type mixing module - Google Patents

Improved colliding and mixing type mixing module

Info

Publication number
JPH0493204A
JPH0493204A JP2210181A JP21018190A JPH0493204A JP H0493204 A JPH0493204 A JP H0493204A JP 2210181 A JP2210181 A JP 2210181A JP 21018190 A JP21018190 A JP 21018190A JP H0493204 A JPH0493204 A JP H0493204A
Authority
JP
Japan
Prior art keywords
liquid
mixing
liquids
mixing chamber
orifices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2210181A
Other languages
Japanese (ja)
Other versions
JP2930392B2 (en
Inventor
Hirohide Sakaguchi
博英 坂口
Kazuo Taniguchi
和生 谷口
Tetsuyoshi Ogura
小倉 哲義
Yukio Masuzumi
幸夫 増住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2210181A priority Critical patent/JP2930392B2/en
Publication of JPH0493204A publication Critical patent/JPH0493204A/en
Application granted granted Critical
Publication of JP2930392B2 publication Critical patent/JP2930392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/76Mixers with stream-impingement mixing head
    • B29B7/7663Mixers with stream-impingement mixing head the mixing head having an outlet tube with a reciprocating plunger, e.g. with the jets impinging in the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/76Mixers with stream-impingement mixing head
    • B29B7/7631Parts; Accessories
    • B29B7/7636Construction of the feed orifices, bores, ports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/76Mixers with stream-impingement mixing head
    • B29B7/7631Parts; Accessories
    • B29B7/7647Construction of the mixing conduit module or chamber part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To obtain a fixed spraying situation always without controlling size of a mixing chamber, by a method wherein the title module possesses structure where a liquid A and liquid B possess respectively at least two discharge parts, both of the liquid A and liquid B or either of them is discharged linearly toward the center of the mixing chamber and a discharge angle is made into a colliding direction. CONSTITUTION:Orifices 1a for a liquid A are bored in two positions by making the positions into 180 degrees ahead and orifices 1b for a liquid B are bored in four positions by making the positions into 90 degrees backward. Respective apexes of discharge angles are on a line where the two liquids A, B move toward the central part and a direction is made into an angle to be formed by both the liquids A, B colliding directly with each other. That is, the two liquids A, B are designed so that they are mixed up with each other under a state where they collide directly with each other and a turning motion is not generated. A volume ratio of liquid A: liquid B=1:2 is used for raw materials. Since mixture characteristics of the two liquids are improved extraordinarily, expansion of a mixture allowable range becomes possible at the time of (1) difference between mixture ratios of the two liquids, (2) lowering of the high-viscosity liquid and a liquid temperature and (3) lowering of colliding pressure. Dispersion in surface properties and physical properties of a molded sheet can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はウレタン、エポキシ、不飽和ポリエステル等の
樹脂原料のA液及びB液を吐出口より吐8し、衝突混合
方式で混合しスプレーないしは注入成形する際に使用す
る衝突混合型のミキシングモジュール(A液及びB液の
吐出口〔オリフィス〕と該2液を衝突混合させるミキシ
ングチャンバーを、一体成形した部品)に関し、本改良
により混合特性を改良し物性の安定化、及びスプレー成
形の場合はスプレー状況(パターン)の改善を行うもの
である。
Detailed Description of the Invention [Industrial Application Field] The present invention discharges liquids A and B of resin raw materials such as urethane, epoxy, and unsaturated polyester from a discharge port and mixes them using an impingement mixing method to spray or spray. This improvement improves the mixing characteristics of the collision-mixing type mixing module (a component in which the discharge ports [orifice] for liquids A and B and the mixing chamber for collision-mixing the two liquids are integrally molded) used during injection molding. This is to stabilize the physical properties and, in the case of spray molding, to improve the spray conditions (pattern).

[従来の技術〕 反応速度の速い2液分速硬化盟材料を成形する場合、通
常は衝突混合方式が用いられている。これは反応が速い
ため機械式混合及び静的(スタティック)混合ではミキ
シングチャンバーの洗浄を行う時間が十分とれないこと
に起因する。衝突混合方式は混合液の噴出後ミキシング
チャンバーの洗浄を機械式にロッドの出し入れで行った
り、溶剤又はエアーで行う方法により洗浄か短時間に行
える特徴を有する一方、2液の混合か不完全になり、製
品の物性にバラツキを生じる場合かある。
[Prior Art] When molding a two-component quick-curing material with a high reaction rate, an impingement mixing method is usually used. This is because mechanical mixing and static mixing do not allow enough time to clean the mixing chamber because the reaction is fast. The collision mixing method has the feature that cleaning the mixing chamber after the mixed liquid is ejected can be done in a short time by mechanically moving a rod in and out, or by using a solvent or air. This may cause variations in the physical properties of the product.

これは本方式による混合か主として衝突時の圧力や液の
吐出角度の調節による液の回転運動に依存しているため
、液粘度か高い材料の場合や衝突圧が低い時には2液の
混合か十分に行われず、製品の物性にバラツキ等か発生
するものと考えられる。
This method mainly depends on the rotational movement of the liquid by adjusting the pressure at the time of collision and the liquid discharge angle, so when the material has a high liquid viscosity or the collision pressure is low, mixing of the two liquids is sufficient. It is thought that this may result in variations in the physical properties of the product.

またA液とB液の配合比が異なる場合、ミキシングチャ
ンバー内に吐出される量が異なるため配合比の差が大き
くなる程混合効率が低下する。さらに注入成形の場合は
それ程問題は生じ無いが、スプレー成形の場合、スプレ
ー状況(ミストの濃度分布、ミストの粒子サイズ及びパ
ターンの形状等)が重要であり、作業性及び製品の表面
状態に大きな影響を及ぼす。
Furthermore, when the blending ratios of liquid A and liquid B are different, the amounts discharged into the mixing chamber are different, so the larger the difference in the mixing ratio, the lower the mixing efficiency. Furthermore, in the case of injection molding, there are not so many problems, but in the case of spray molding, the spray conditions (mist concentration distribution, mist particle size, pattern shape, etc.) are important, and have a large effect on workability and the surface condition of the product. affect.

従来のミキシングヘッドは、クリーニング方法により分
類する、二とか出来る。溶剤洗浄方式の例として、米国
ビンクス社製#43Pガンがある。このガンはA液及び
B液のオリフィスとして円形の穴を1個開けた別々の部
品を両側に180度の位置で取り付け、比較的大口径の
ミキシングチャンバー内に吐出し、衝突混合する方式で
ある。この方法の問題点は、穴の数かそれぞれ1個ずつ
しか無いことに加え、液のオリフィスを別々の部品とし
たことにより、ミキシングチャンバーの径か太くなり混
合効率か低下する。このため主として溶剤を高率で含む
低粘度塗料用に使用される。
Conventional mixing heads can be classified into two categories based on cleaning methods. An example of a solvent cleaning method is the #43P gun manufactured by Binks in the United States. This gun uses separate parts with one circular hole as an orifice for liquids A and B, which are attached at 180 degrees on both sides, and are discharged into a relatively large-diameter mixing chamber, where they collide and mix. . The problem with this method is that there is only one hole for each hole, and because the liquid orifices are separate parts, the diameter of the mixing chamber becomes thicker, reducing mixing efficiency. For this reason, it is mainly used for low viscosity paints containing a high percentage of solvent.

高粘度液では混合か十分行われないため、#43Pガン
では先端にスタティックミキサーを付は再度混合する必
要かあるが、硬化時間の短い材料では洗浄時間が取れな
いため使用することか出来ない。
High viscosity liquids do not mix well, so if you use a #43P gun with a static mixer at the tip, you will need to mix it again, but this cannot be used with materials that take a short curing time because there is no cleaning time.

エアー洗浄方式の例としては、米国グラスクラフト社製
のプロブラーガンがある。このガンは、ミキシングチャ
ンバーとノズルを一体構造としたモジュールとなってお
り両側にA液とB液用にそれぞれ1個のオリフィスを存
し、ミキシングチャンバーの穴の上部と下部から直線的
に吐出する構造となっている。このガンの問題点は前記
ピンクスガンと同様180度の位置にオリフィスか各1
個しか無いことに加え、液のオリフィスかミキシングチ
ャンバーの上部と下部にあるため、液は渦巻き状となり
、そのままのノズル部を通り噴出されることになる。こ
のため噴出時にも液に回転か残り、スプレーを行う場合
はスプレー状況(パターン)か変形すると同時に濃度分
布に差か生じる。
An example of an air cleaning method is a Problur gun manufactured by Glass Craft, Inc. in the United States. This gun is a module with a mixing chamber and a nozzle integrated, and has one orifice on each side for liquid A and liquid B, and discharges linearly from the top and bottom of the hole in the mixing chamber. It has a structure. The problem with this gun is that there are orifices at 180 degrees, or one each.
In addition to the fact that there are only two orifices, the liquid orifices are located at the top and bottom of the mixing chamber, so the liquid swirls and is ejected through the same nozzle. For this reason, rotation remains in the liquid even when it is ejected, and when spraying, the spray condition (pattern) changes and at the same time a difference in concentration distribution occurs.

このことによりスプレー状況を適正に保つためにはミキ
シングチャンバーを後退させる位置を微妙に変化させる
作業が必要である。
As a result, in order to maintain proper spray conditions, it is necessary to subtly change the position at which the mixing chamber is retreated.

機械式にロッドを出し入れする洗浄方式としては、米国
ガスマー社のDガン、GX−7ガン、及びRIM(反応
射出成形)で使用されている東邦機械、クラウスマツフ
ァイ社、キャノン社等の例がある。Dガンの場合は一体
化したミキシングチャンバーの両側に長方形の穴が各1
個ずつあり、2液がミキシングチャンバーの上部と下部
に直線的に吐出される構造となっており、ミキシングチ
ャンバー内に吐出された液は渦を巻きながら混合・噴出
され、スプレー又は注入に利用されている。
Examples of cleaning methods that mechanically move rods in and out include Toho Kikai, Krauss Matsfaye, and Canon, which are used in Gasmer's D-gun, GX-7 gun, and RIM (reaction injection molding). be. In the case of the D gun, there is one rectangular hole on each side of the integrated mixing chamber.
The structure is such that two liquids are discharged linearly into the upper and lower parts of the mixing chamber, and the liquid discharged into the mixing chamber is mixed and ejected while swirling, and is used for spraying or injection. ing.

このガンの問題点は穴の数かそれぞれ1個ずつであり、
プロブラーガンと同様の問題点を有する。
The problem with this gun is the number of holes, one each.
It has the same problems as the Problur gun.

すなわちスプレーパターンに濃度差か生し易く、スプレ
ー作業を行う度にクリーニングロットの後退位置を変化
させミキシングチャンバーの長さの変更か必要である。
That is, concentration differences tend to occur in the spray pattern, and it is necessary to change the retreat position of the cleaning lot and change the length of the mixing chamber each time a spray operation is performed.

GX−7ガンの場合は、一体化したミキシングモジュー
ルの構造を持ち液の吐出位置は正確に決められ、2液の
吐出位置も前部及び後部となっているが、問題点は液の
吐出角度か平行でかつ噴出方向に直角となっている。こ
のため2液が直接衝突することか無く混合特性に問題が
生じるのか最大の欠点であり、使用する原料の粘度か上
昇するのに伴い混合性か非常に悪くなり、成形物の物性
が低下する傾向がある。
In the case of the GX-7 gun, it has an integrated mixing module structure, and the liquid discharge position is precisely determined, and the two liquid discharge positions are also at the front and rear, but the problem is the liquid discharge angle. The jets are parallel to each other and perpendicular to the jetting direction. For this reason, the biggest drawback is that the two liquids do not directly collide and problems occur in the mixing properties.As the viscosity of the raw materials used increases, the mixing properties become very poor and the physical properties of the molded product deteriorate. Tend.

tM成形に用いられているヘッドは、通常機械洗浄式で
あり両側に各1個のオリフィスを持ったタイプで混合特
性を改良するためにモールド側に「アフターミキサー」
、「フィルムゲート」等の再混合補助装置を取り付は使
用されている。
The head used in tM molding is usually machine-washable and has one orifice on each side, with an "after mixer" on the mold side to improve mixing characteristics.
, remixing aids such as "film gates" are used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ウレタン、エポキシ、不飽和ポリエステル等の樹脂原料
のA液及びB液を吐出口より吐出し、衝突混合方式でス
プレーないしは注入成形するに際し、上記の如〈従来の
混合方式には種々の欠点かあるのて、本発明者らは材料
の配合比への対応性か広く、又高粘度材料でも使用出来
、さらに衝突圧力か低い場合でも2液の混合特性が良好
で、硬化物の物性にバラツキが無く、かつスプレー成形
時にはスプレー状況(ミストの濃度分布、ミストの粒子
サイズ及びパターンの形状等霧化の状態)が良好なミキ
シングモジュールの構造設計を行う事を検討した。
When discharging liquids A and B of resin raw materials such as urethane, epoxy, and unsaturated polyester from the discharge port and performing spray or injection molding using the collision mixing method, as described above, conventional mixing methods have various drawbacks. The inventors of the present invention have found that it is compatible with a wide range of material compounding ratios, can be used with high viscosity materials, has good mixing characteristics of the two liquids even at low collision pressures, and has no variation in the physical properties of the cured product. We investigated the structural design of a mixing module that is free from the air and has good spray conditions (atomization conditions such as mist concentration distribution, mist particle size, and pattern shape) during spray molding.

〔課題を解決するための手段〕[Means to solve the problem]

衝突混合方式で2液を混合する際、混合効率に影響を及
ぼす要因は (1)レイノルズ数(装置のサイズ/液の
動粘度/流体速度/液の密度で決定される無次元項)(
2)衝突する2液が吐出される距離(ミキシングチャン
バーの径’)  (3)2液の回転が主なものであると
考えられている。しかし材料(液粘度)及び吐出量か変
更出来ない場合は、混合効率を向上させることは大幅に
制限を受ける。
When mixing two liquids using the collisional mixing method, the factors that affect the mixing efficiency are: (1) Reynolds number (a dimensionless term determined by the size of the device/kinematic viscosity of the liquid/fluid velocity/density of the liquid) (
2) Distance over which the two colliding liquids are discharged (diameter of the mixing chamber) (3) Rotation of the two liquids is considered to be the main factor. However, if the material (liquid viscosity) or the discharge rate cannot be changed, improving the mixing efficiency is severely limited.

衝突混合方式で混合特性を向上させる方法を鋭意検討し
た結果、ミキシングモジュールを下記の設計に変更する
ことによって上記の欠点が大幅に改善されることか判明
した。すなわち 原料のA液とB液を衝突させるミキシングチャンバー部
分が一体成形体のモジュールであり、(1)A液とB液
がそれぞれ2個以上の吐出口(オリフィス)を有し、 (2)吐出口の数及び/又は面積の比がA液及びB液の
配合比の±50%以内であり、 (3)A液及びB液の両方又はいずれか〒方かミキシン
グチャンバーの中心に向け直線的に吐出され、更に (4)A液及びB液をミキシングチャンバー内に吐出す
る角度を2液が直接衝突する方向とした構造を有する衝
突混合型ミキシングモジュールとすることである。
As a result of intensive investigation into a method for improving the mixing characteristics using the impingement mixing method, it was found that the above-mentioned drawbacks could be significantly improved by changing the design of the mixing module to the one shown below. That is, the mixing chamber part where the raw materials A and B collide is an integrally molded module, (1) A and B each have two or more discharge ports (orifices), and (2) discharge. The number and/or area ratio of the outlets is within ±50% of the blending ratio of liquids A and B, and (3) both or either of liquids A and B are directed straight toward the center of the mixing chamber. (4) A collision mixing type mixing module having a structure in which the angle at which liquids A and B are discharged into the mixing chamber is set in a direction in which the two liquids directly collide.

混合特性か向上した理由は下記の項目の複合効果である
と考えられる。(1)2液が直接衝突する可能性を上げ
ることて衝突のエネルギーか利用出来る。(2)小口径
の吐出口を2個以上とすることで吐出圧力の確保と共に
液を細分化し2液の接触機会を増加させる。(3)2液
が吐出され混合されるミキシングチャンバー部分を一体
構造とすることで吐出口の位置及び角度か厳密に決定さ
れ常に一定の条件でミキシングか行われる。(4)スプ
レー成形の場合は、良好なスプレーパターンを確保する
ために、2液を直接衝突させたり、片側のみ回転させ混
合することにより液の回転運動を抑制することか可能で
あり、ミキシングチャンバーのサイズを調節せずに常に
一定のスプレー状況を得ることか可能となった。
The reason for the improvement in mixing characteristics is thought to be the combined effect of the following items. (1) By increasing the possibility that the two liquids will directly collide, the energy of the collision can be utilized. (2) By providing two or more small-diameter discharge ports, the discharge pressure is ensured, the liquid is divided into small pieces, and the chances of contact between the two liquids are increased. (3) By making the mixing chamber portion into which the two liquids are discharged and mixed into an integral structure, the position and angle of the discharge port are precisely determined, and mixing is always performed under constant conditions. (4) In the case of spray molding, in order to ensure a good spray pattern, it is possible to suppress the rotational movement of the liquids by causing the two liquids to collide directly or mixing by rotating only one side. It is now possible to always obtain a constant spray condition without adjusting the size of the spray.

本設計による構造をもつ衡突混合式攪拌装置は、スプレ
ー・ヘッド、注型用のボアー・ヘッド及び注入用に先端
にノズルを接続さらにRIM用にも使用することか出来
る。クリーニング方式は、ロッドによる機械式洗浄、エ
アー洗浄及び溶剤洗浄のいずれの方法でも可能である。
The equilibrium mixing type stirring device having the structure according to the present design can be used as a spray head, a bore head for casting, a nozzle connected to the tip for injection, and also for RIM. The cleaning method may be mechanical cleaning using a rod, air cleaning, or solvent cleaning.

但し液のシール性及びスプレーパターンのコントロール
の意味からウッドの出し入れによる機械式の設計は自由
度か高く最も適している。使用する液を循環式からワン
・ウェイ式に変えサイズを手堅とした手持ちのガン形式
とすることも可能である。
However, from the viewpoint of liquid sealability and spray pattern control, a mechanical design that allows wood to be inserted and removed is most suitable as it has a high degree of freedom. It is also possible to change the liquid used from a circulating type to a one-way type and use a hand-held gun type with a reasonable size.

各社のスプレー・ヘッド、ミキシングチャンバーのまと
めを表−1に示す。
Table 1 shows a summary of spray heads and mixing chambers from each company.

表−1 ,各社のスプレー・ヘッド、ミキシングチャンバー本発
明の成形に使用する高圧2液吐出マシンの例としては、
液圧を100kg/an程度の高圧に昇圧することの8
来るタイプなら特に形式にこだわらず使用出来る。実際
の例としてはポンプとしてギアポンプを用いた東しエン
ジニアリング社製THD−2K、アクシャルビストンポ
ンプを用いた東邦機械工業社製NR−230ffi高圧
ポリウレタン発泡機、プランジャーポンプを使用したが
スマー社(米国)のH−2000型、グラスクラフト社
(米国)のT−3H等である。
Table 1: Spray heads and mixing chambers from various companies Examples of high-pressure two-liquid dispensing machines used for molding of the present invention include:
8 of increasing the liquid pressure to a high pressure of about 100 kg/an
If it is the type that comes, you can use it without worrying about the format. Actual examples include the THD-2K made by Toshi Engineering Co., Ltd. using a gear pump as the pump, the NR-230ffi high-pressure polyurethane foaming machine made by Toho Kikai Kogyo Co., Ltd. using an axial piston pump, and the plunger pump used. These include the H-2000 model from USA) and the T-3H from Glasscraft (USA).

〔実施例〕〔Example〕

以下に実施例を示し本発明を説明する。 The present invention will be explained below with reference to Examples.

(語句の説明) (1)タックフリー・タイム:吹き付は又は注入した材
料の表面に軽く指で触れ、材料か指に移行しなくなる最
短時間。
(Explanation of terms) (1) Tack-free time: The shortest time when the surface of the sprayed or injected material is lightly touched with a finger and the material does not transfer to the finger.

(2)スプレー状況(パターン):下記の項目に関し目
視観察を行いその結果を示した。
(2) Spray situation (pattern): The following items were visually observed and the results were shown.

・濃度分布:ガンより噴出された粒子の濃度差、筋引き
等 ・粒子サイズ:ガンより噴量された粒子のサイズ、霧化
の状況確認 ・形状、対象物にスプレーされた噴出物の形状、変形等
の確認 (3)表面性、ポリプロピレンの板上に厚さ約2嘘にス
プレー成形し、表面の平滑性及びピンホールの有無を調
べた。
・Concentration distribution: The difference in concentration of particles ejected from the gun, streaking, etc. ・Particle size: Check the size and atomization status of the particles ejected from the gun, the shape, the shape of the ejected material sprayed on the target, Confirmation of deformation, etc. (3) Surface quality: Spray molding was performed on a polypropylene plate to a thickness of approximately 2 cm, and the smoothness of the surface and the presence of pinholes were examined.

(4)物性試験: J I S  K−6301に準拠
し、測定は23°C1湿度55%の状態に一週間養生後
行った。
(4) Physical property test: According to JIS K-6301, measurements were performed after curing for one week at 23° C. and 55% humidity.

(成形材料)リムスプレー(三井東圧化学製の速硬化2
液型ウレタンスプレー材料)を使用した。
(Molding material) Rim spray (Mitsui Toatsu Chemical quick curing 2
(liquid type urethane spray material) was used.

配合比及び粘度の異なる次の2銘柄を使用した。The following two brands with different blending ratios and viscosities were used.

表−2使用材料の性状(カタログ値) 注)キュアー・タイム:ゴム弾性か発現する時間いずれ
も速硬化の材料でスプレー後直ちに反応硬化するため混
合に際しては、衝突混合ガンの使用か不可欠である。
Table 2: Properties of materials used (catalog values) Note: Cure time: The time it takes for rubber elasticity to develop. Both are fast-curing materials and react and cure immediately after spraying, so it is essential to use an impact mixing gun when mixing. .

A液:イソシアナート成分〔主剤はジフェニルメタンジ
イソシアナート(MDI−PH)の変成品、三井東圧化
学製品〕 B液ニレジン成分 (高圧2液吐出マシン) 米国ガスマー社のH−2000型を使用。本マシンは、
−軸のダブルアクション・プランジャーポンプを油圧で
駆動したワン・ウェイタイブで、注入及びスプレーに使
用てきる。液圧は2000psi  (約140kg/
cl)まて昇圧出来、液温度もA液及びB液別々に設定
できる構造となっている。
Liquid A: Isocyanate component [The main ingredient is a modified product of diphenylmethane diisocyanate (MDI-PH), manufactured by Mitsui Toatsu Chemicals] Liquid B nyresin component (high-pressure two-component discharge machine) H-2000 model manufactured by Gasmer Co., USA was used. This machine is
-A one-way type hydraulically driven double-action plunger pump that can be used for injection and spraying. The hydraulic pressure is 2000psi (approximately 140kg/
cl) The structure allows the pressure to be increased and the liquid temperature to be set separately for liquid A and liquid B.

以下、図面と実施例により本発明の詳細な説明する。第
1図及び第2図は実施例−1で使用した改良GX−7ガ
ン用ミキシングモジュールの構成を示す断面図及び正面
図、第3−1図〜第3−3図は実施例−4、第4−1図
〜第4−3図は実施例−5、第5−1図〜第5−3図は
比較例−4、第6−1図〜第6−3図は比較例−5にお
けるそれぞれの正面及び側面よりみたA液及びB液の流
れ方向を示す略図、第7図及び第8図は実施例−6にお
いて使用したプロブラーガン用の改良ミキシングモジュ
ールの斜視図及び正面断面図である。
Hereinafter, the present invention will be explained in detail with reference to drawings and examples. 1 and 2 are cross-sectional views and front views showing the configuration of the improved GX-7 gun mixing module used in Example-1, and FIGS. 3-1 to 3-3 are Example-4, Figures 4-1 to 4-3 are Example-5, Figures 5-1 to 5-3 are Comparative Example-4, and Figures 6-1 to 6-3 are Comparative Example-5. 7 and 8 are perspective views and front sectional views of the improved mixing module for the trouble gun used in Example-6, respectively. It is.

図中、lはミキシングモジュール、2はパルピング・ロ
フトであり、1aはA液の流入孔、1bはB液の流入孔
、lcは混合液の噴量孔である。
In the figure, l is a mixing module, 2 is a pulping loft, 1a is an inflow hole for liquid A, 1b is an inflow hole for liquid B, and lc is an injection hole for mixed liquid.

実施例−1 スプレーヘッドとしてはガスマー社製機械式クリーニン
グ方法のGX−7ガンを、ミキシングモジュールは本発
明者らか新規に設計したものを使用した。構造を第1図
、及び第2図に示した。表−3〜表−5の略図はA液及
びB液のミキシングチャンバー内への吐出角度及びこれ
ら2液の衝突角度を示した。第1図及び第2図にみるよ
うにA液(イソシアナート成分)用のオリフィスを、前
方に穴の位置を180度として2個開け、B液(レジン
成分)用のオリフィスを後方に穴の位置を90度として
4個開け、それぞれの吐出角度は2液がミキシングチャ
ンバーの中心部に向かう線上とし、方向け2液が直接衝
突する角度とした。すなわち2液は直接衝突し回転運動
は生じない状態で混合か行われる設計とした。オリフィ
スの直径はすべて0.406mmとし、ミキシングチャ
ンバーの直径は3.175mとした。材質は、繰り返し
の使用による耐摩耗性と液のシール性を考慮しポリアセ
タール樹脂(デルリン、 Du Pant社商標)とし
た。ガンの先端にはスプレーチップ(J212:扇状パ
ターン)を装着して成形を行った。原材料は、リムスプ
レーPD−450CA液、B液=1;2容積比)を用い
液温度をA液は50°C,B液は65°C1吐出時の圧
力はそれぞれ112kg/cd及び120kg/cdの
条件とした。その結果は表−3にみる通りタックフリー
・タイムは9〜11秒と速硬化であり、スプレー状況(
パターン)を観察したところ、濃度分布は均一てあり、
粒子サイズも細かく、更に形状は扇型かつ正常であり変
形等は認められなかった。成形物の表面は平滑でありピ
ンホールも認められなかった。硬化性も十分てあり2作
成したシートの物性試験結果は硬さ、モジュラス、引張
り強さ、伸び及び引裂き強さのいずれも優れており、混
合特性か良好である事を示していた。
Example 1 A GX-7 gun with a mechanical cleaning method manufactured by Gasmer was used as a spray head, and a mixing module newly designed by the present inventors was used. The structure is shown in FIGS. 1 and 2. The schematic diagrams in Tables 3 to 5 show the discharge angles of liquids A and B into the mixing chamber and the collision angles of these two liquids. As shown in Figures 1 and 2, two orifices for liquid A (isocyanate component) are drilled in the front with the holes positioned at 180 degrees, and orifices for liquid B (resin component) are drilled in the rear. Four chambers were opened at a position of 90 degrees, and the discharge angle of each chamber was set so that the two liquids were on a line toward the center of the mixing chamber, and the direction was such that the two liquids collided directly. In other words, the design was such that the two liquids collide directly and are mixed without any rotational movement. The diameter of all orifices was 0.406 mm and the diameter of the mixing chamber was 3.175 m. The material was polyacetal resin (Delrin, trademark of Du Pant) in consideration of wear resistance due to repeated use and liquid sealing properties. A spray tip (J212: fan-shaped pattern) was attached to the tip of the gun to perform molding. The raw materials are Rim Spray PD-450CA liquid, B liquid = 1; 2 volume ratio), the liquid temperature is 50°C for liquid A, and 65°C for liquid B. The pressure at discharge is 112 kg/cd and 120 kg/cd, respectively. The conditions were set as follows. As shown in Table 3, the results showed that the tack-free time was 9 to 11 seconds, indicating fast curing, and the spray conditions (
When I observed the pattern), I found that the concentration distribution was uniform.
The particle size was fine, the shape was fan-shaped and normal, and no deformation was observed. The surface of the molded product was smooth and no pinholes were observed. The curability was sufficient, and the physical property test results of the sheet 2 produced were excellent in hardness, modulus, tensile strength, elongation, and tear strength, indicating good mixing properties.

比較例−l スプレーヘッドは、実施例−1同様ガスマー社のGX−
7ガンを使用しミキシングモジュールは同社の#lOタ
イプを使用した。構造は表−3に略示したもので、実施
例−1と同様の略図法に従ったものを表−3中に示した
。又、液の流れを表−3に示した。主剤(イソシアナー
ト成分)用のオリフィスは前方に2個、レジン成分用の
オリフィスは後方に2個開いておりそれぞれの吐出角度
はパルピング・ロフトに対して直角となっており、2液
がミキシングチャンバーの中に平行の流れて吐出される
構造である。液の吐出方向けミキシングチャンバーの中
心を通過する線上にあるため、いずれの液にも回転は生
じない構造となっている。
Comparative Example-l The spray head was GX-
7 gun was used, and the company's #1O type mixing module was used. The structure is shown schematically in Table 3, and the structure is shown in Table 3 using the same schematic method as in Example 1. In addition, the flow of the liquid is shown in Table 3. There are two orifices for the main agent (isocyanate component) at the front and two orifices for the resin component at the rear, and the discharge angle of each is perpendicular to the pulping loft, and the two liquids are fed into the mixing chamber. It has a structure in which the liquid is discharged in a parallel flow. Since it is on a line passing through the center of the mixing chamber in the liquid discharge direction, the structure is such that no rotation occurs in any of the liquids.

オリフィスの直径は全て0.914mmである。成形試
験の結果は表−3にみる通り混合液の噴出量は5.2k
g/分と実施例−1の約1.6倍である。スプレー状況
は粒子サイズも細かく、形状も扇型て正常であったが、
濃度分布は端部か濃くなっておりさらに筋も入り不均一
であった。タックフリー・タイムは9〜10秒と実施例
−1同等であったが、物性試験結果は全ての項目が低め
になっており、又成形した2枚のシートに物性差があり
混合特性の変動か認められた。オリフィスの直径は実施
例−1で試作したミキシングモジュールより大きいため
レイノズル数的な見地からの混合効率は良好と考えられ
るが、わずかの条件の変化で物性値か変わった。
All orifices have a diameter of 0.914 mm. As shown in Table 3, the molding test result shows that the amount of mixed liquid ejected was 5.2k.
g/min, which is about 1.6 times that of Example-1. The spray conditions were normal, with fine particle size and fan-shaped shape.
The concentration distribution was uneven, thicker at the edges, and streaky. The tack-free time was 9 to 10 seconds, which was the same as in Example-1, but the physical property test results were lower in all items, and the two molded sheets had different physical properties, resulting in fluctuations in the mixing properties. was recognized. Since the diameter of the orifice was larger than that of the mixing module prototyped in Example 1, the mixing efficiency from the point of view of the Raynozzle number was considered to be good, but the physical properties changed with a slight change in conditions.

欠点があることが判明した。特に吐出圧力を約70kg
/alとした場合は、シート全体にタックか残り部分的
に硬化不良か発生し物性測定はてきなかった。
It turns out that there are shortcomings. Especially the discharge pressure is about 70kg.
/al, tackiness occurred throughout the sheet or poor curing occurred in the remaining portions, making it impossible to measure physical properties.

実施例−2、−3 実施例−1と同様のスプレーヘッド及び原料を使用し、
成形条件のうち「吐出圧力」のみを下げた状態とした。
Examples-2,-3 Using the same spray head and raw materials as Example-1,
Among the molding conditions, only the "discharge pressure" was lowered.

その結果は表−3にみる通り吐出圧力が低下しても実施
例−1同様のスプレー状況、表面性を維持し、物性もほ
ぼ同等ないしは極めてわずかの低下しか示しておらず、
混合特性の圧力依存性は少なく、圧力低下に対しての安
定性か有り、実用上のメリットが大きい。
As shown in Table 3, the spray condition and surface properties similar to Example 1 were maintained even when the discharge pressure was reduced, and the physical properties were almost the same or showed only a very slight decrease.
The mixing characteristics have little pressure dependence and are stable against pressure drops, which has great practical advantages.

比較例−2、−3 比較例−1と同様のスプレーヘッド及び原料を使用し、
成形条件のうち「吐出圧力」のみを下げ、混合特性か低
下した状態とした。その結果は表−3にみる通り吐出圧
力か低下することによりスプレー状況がさらに悪化し、
物性も低下し、混合に実施例−4 ガスマー社のGX−7ガンを用い、ミキシングチャンバ
ーに吐出される液に回転を与えた場合の混合性を調べた
。第3−1図〜第3−3図にGX−7ガン用改良ミキシ
ングモジユールにおけるA液及びB液の流れ方向の#!
図を示しであるが、前部より吐出するA液(イソシアナ
ート成分)を穴の位置を180度として2個開けた穴よ
りミキシングチャンバーの中心に向け直線的に導入し、
後部よりB液(レジン成分)を穴の位置を90度として
開けた4個のオリフィスより導入し、液が回転するよう
な角度でA液が吐出する方向に向け角度を付けた状態で
吐出した。すなわち吐出する液は、後部から吐出するB
液のみが回転し、前部から吐出するA液は回転しない状
況で混合か行われる設計とした。オリフィスの数及び面
積は実施例−1と同様、いずれも材料の配合比に合わせ
ている。
Comparative Examples-2 and -3 Using the same spray head and raw materials as Comparative Example-1,
Among the molding conditions, only the "discharge pressure" was lowered to reduce the mixing characteristics. As shown in Table 3, the spray condition worsened as the discharge pressure decreased.
The physical properties also deteriorated, and the mixing properties were investigated using a GX-7 gun manufactured by Gasmar Co., Ltd. for mixing and applying rotation to the liquid discharged into the mixing chamber. Figures 3-1 to 3-3 show # of the flow direction of liquid A and liquid B in the improved mixing module for GX-7 gun.
As shown in the figure, liquid A (isocyanate component) discharged from the front is introduced linearly toward the center of the mixing chamber through two holes made with the hole position set at 180 degrees.
Liquid B (resin component) was introduced from the rear through four orifices with the hole positions set at 90 degrees, and the liquid was discharged at an angle that caused the liquid to rotate in the direction in which liquid A was discharged. . In other words, the liquid to be discharged is B, which is discharged from the rear.
The design was such that only the liquid rotates, and the A liquid discharged from the front is mixed without rotating. The number and area of orifices are the same as in Example-1, and both are adjusted to the blending ratio of the materials.

原液はリムスプレーPD−450を実施例−1と同様の
設定条件(液温、吐出圧力)で使用した。この結果は表
−4にみる通り吐出量は3.3kg/分と中程度の吐出
量であり硬化・反応性はタックフリー・タイムか9〜1
1秒と速硬化で良好な硬化性を示した。スプレー状況を
観察したところ、(1)1度分布は全体に均一てあり 
(2)粒子サイズは細かく(3)形状は扇型て変形は認
められなかった。物性試験結果は、硬さ、モジュラス、
引張り強さ、伸び及び引裂き強さのいずれの項目も優れ
ており良好な結果であった。
As the stock solution, Rim Spray PD-450 was used under the same setting conditions (liquid temperature, discharge pressure) as in Example-1. As shown in Table 4, this result shows that the discharge rate is 3.3 kg/min, which is a medium discharge rate, and the curing/reactivity is 9 to 1 in tack-free time.
It showed good curability with fast curing of 1 second. When I observed the spray situation, I found that (1) the 1 degree distribution was uniform throughout;
(2) The particle size was fine. (3) The shape was fan-shaped and no deformation was observed. Physical property test results include hardness, modulus,
All of the items of tensile strength, elongation, and tear strength were excellent, and the results were good.

実施例−5 ガスマー社のGX−7ガンを用い、設定条件は実施例−
4と同様とし、第4−1図〜第4−3図にミキシングモ
ジュールにおけるA液及びB液の流れ方向の略図を示し
である。前部より吐出するA液(イソシアナート成分)
を3個のオリフィスより液が回転するような角度で導入
し、後部よりB液(レジン成分)を6個のすリフイスよ
りミキシングチャンバーの中心に向け直線的に導入した
Example-5 Using Gasmar's GX-7 gun, the setting conditions are as in Example-
4, and FIGS. 4-1 to 4-3 are schematic diagrams of the flow directions of liquid A and liquid B in the mixing module. Liquid A (isocyanate component) discharged from the front part
was introduced through three orifices at an angle that caused the liquid to rotate, and from the rear, liquid B (resin component) was introduced linearly toward the center of the mixing chamber through six slotted chairs.

すなわち吐出する液は、前部から吐出するA液のみか回
転し、後部から吐出するB液は回転しない状況で混合か
行われる設計とした。オリフィスの数及び面積は、実施
例−4同様とした。その結果は表−4にみる通り、硬化
・反応性はタックフリー・タイムが9〜11秒と速硬化
で良好な硬化性を示した。スプレー状況を観察したとこ
ろ、(1)1度分布は全体に均一であり (2)粒子サ
イズは細かく(3)形状は扇型て変形は認められなかっ
た。物性試験結果は、硬さ、モジュラス、引張り強さ、
伸び及び引裂き強さのいずれの項目も優れており良好な
結果であった。
That is, the design was such that only the liquid A, which is discharged from the front part, rotates, and the liquid B, which is discharged from the rear part, is mixed without rotating. The number and area of orifices were the same as in Example-4. As shown in Table 4, the results showed good curing and reactivity, with a tack-free time of 9 to 11 seconds and fast curing. When the spray conditions were observed, (1) the 1 degree distribution was uniform throughout, (2) the particle size was fine, and (3) the shape was fan-shaped and no deformation was observed. Physical property test results include hardness, modulus, tensile strength,
Both the elongation and tear strength items were excellent and the results were good.

比較例−4 使用した機器及び設定条件は実施例−4と同様とし、第
5−1図〜第5−3図にミキシングモジュールにおける
A液及びB液の流れ方向の略図を示しである。前部より
吐8するA液(イソシアナート成分)を2個のオリフィ
スより、後部よりB液(レジン成分)を4個のオリフィ
スよりいずれの液も吐出した液が回転するような角度で
導入した。回転の方向け同方向とし2液がミキシングチ
ャンバー内で回転運動か行われる状態て混合か行われる
。オリフィスの数及び面積は、実施例−4同様とした。
Comparative Example-4 The equipment and setting conditions used were the same as in Example-4, and Figures 5-1 to 5-3 are schematic diagrams of the flow directions of liquid A and liquid B in the mixing module. Liquid A (isocyanate component) was discharged from the front through two orifices, and liquid B (resin component) was discharged from the rear through four orifices at an angle such that both liquids rotated. . The directions of rotation are the same, and the two liquids are mixed in a state where rotational movement is performed in the mixing chamber. The number and area of orifices were the same as in Example-4.

その結果は表−4にみる通り硬化・反応性はタックフリ
ー・タイムは9〜11秒と実施例−4同様速硬化で良好
な硬化性を示した。しかし、スプレー状況を観察したと
ころ、(1)濃度分布は端部に濃い部分かあり不均一で
あり成形を行う場合厚みが変化した。 (2)粒子サイ
ズは細かく良好であったか (3)スプレー形状はネジ
レ(変形)だ状況であり吹き付は作業は非常に難しく成
形体の厚み管理及び歩留まりに問題かあった。物性試験
結果は、硬さは発現しているが、モジュラス、引張り強
さ、伸び及び引裂き強さはいずれの項目も実施例−4及
び−5と比較し低目であった。
As shown in Table 4, the results showed good curing and reactivity, with a tack-free time of 9 to 11 seconds, similar to Example 4. However, when the spraying conditions were observed, (1) the concentration distribution was non-uniform with dark areas at the edges, and the thickness changed during molding. (2) Were the particle sizes fine and good? (3) The shape of the spray was twisted (deformed), making spraying very difficult and causing problems in controlling the thickness of the molded product and in terms of yield. The physical property test results showed that although hardness was exhibited, the modulus, tensile strength, elongation, and tear strength were all lower than those of Examples-4 and -5.

比較例−5 使用した機器及び設定条件は実施例−4と同様とし、第
6−1図〜第6−3図にミキシングモジュールにおける
A液及びB液の流れ方向の略図を示しである。前部より
吐出するA液(イソシアナート成分)−を2個のオリフ
ィスより、後部よりB液(レジン成分)を4個のオリフ
ィスよりいずれの液も吐出した液が回転するような角度
て導入した。回転の方向け逆方向とし2液がミキシング
チャンバー内で回転運動を抑制する状態で混合か行われ
る。オリフィスの数及び面積も、実施例−4同様とした
。試験結果は表−4にみる通り硬化・反応性はタックフ
リー・タイムは9〜11秒であり実施例−4同様速硬化
で良好な硬化性を示した。
Comparative Example-5 The equipment and setting conditions used were the same as in Example-4, and FIGS. 6-1 to 6-3 are schematic diagrams of the flow directions of liquid A and liquid B in the mixing module. Liquid A (isocyanate component) was discharged from the front through two orifices, and liquid B (resin component) was introduced from the rear through four orifices at an angle such that both liquids rotated. . The directions of rotation are opposite, and the two liquids are mixed in the mixing chamber in a state where rotational movement is suppressed. The number and area of orifices were also the same as in Example-4. As shown in Table 4, the test results showed a tack-free time of 9 to 11 seconds for curing and reactivity, indicating fast curing and good curability as in Example 4.

しかし、スプレー状況を観察したところ、(1)濃度分
布は端部に濃い部分があり不均一であり成形を行う場合
厚みが変化した。 (2)粒子サイズは細かく良好であ
ったか (3)スプレー形状はネジレ(変化)だ状況で
あり吹き付は作業は非常に難しく成形体の厚み管理及び
歩留まりに問題かあった。物性試験結果は、硬さは発現
しているが、モジュラス、引張り強さ、伸び及び引裂き
強さはいずれの項目も実施例−4及び−5と比較し低目
てあった。
However, when the spraying conditions were observed, (1) the concentration distribution was non-uniform with dark areas at the edges, and the thickness changed during molding. (2) Were the particle sizes fine and good? (3) The shape of the spray was twisted (changed) and the spraying process was extremely difficult, causing problems in controlling the thickness of the molded product and in terms of yield. The physical property test results showed that although hardness was exhibited, the modulus, tensile strength, elongation, and tear strength were all lower than those of Examples-4 and -5.

実施例−6 空気洗浄(クリーニング)方式のガンとしてグラスクラ
フト社のプロブラーガンを使用しミキシングモジュール
を試作した。本ガンは、液の吐出及び停止を、オリフィ
スを有する一体構造のミキシングチャンバーを前後にス
ライドして行っているが、この両サイドに開ける穴をそ
れぞれ3個ととし、液の吐出角度は全てミキシングチャ
ンバーの中心に向け直線的とした。構造を第7図及び第
8図に示した。すなわち吐出する液は、両サイドより直
接衝突混合か行われる状況で混合か行われる。オリフィ
スの数及び面積は、いずれも材料の配合比に合わせて同
数で同面積とし、口径は0,45日で合計面積は0.4
47mm’とした。この結果は表−4にみる通り吐出量
は3.9kg/分と中程度の吐出量であり硬化・反応性
はタックフリー・タイムか12〜14秒と速硬化で良好
な硬化性を示した。スプレー状況を観察したところ、(
1)11度分布は全体に均一であり (2)粒子サイズ
は中〜細てスプレーチップを使用していないため粒子サ
イズはやや大きいものの実際の使用には十分耐える。(
3)形状は丸型で変形は認められなかった。物性試験結
果は、硬さ、モジュラス、引張り強さ、伸び及び引裂き
のいずれの項目も優れており、良好な結果であった。
Example 6 A mixing module was prototyped using a Probler gun manufactured by Glass Craft Co. as an air cleaning gun. This gun discharges and stops liquid by sliding an integrated mixing chamber with an orifice back and forth, but there are three holes on each side of the mixing chamber, and the liquid is discharged at all angles from the mixing chamber. It was straight toward the center of the chamber. The structure is shown in FIGS. 7 and 8. That is, the liquid to be discharged is mixed in a situation where direct collision mixing is performed from both sides. The number and area of orifices are the same in accordance with the material blending ratio, and the diameter is 0.45 days and the total area is 0.4.
It was set to 47mm'. As shown in Table 4, the discharge rate was a medium discharge rate of 3.9 kg/min, and the curing and reactivity showed good curing properties with a tack-free time of 12 to 14 seconds. . When I observed the spray situation, (
1) The 11 degree distribution is uniform throughout. (2) The particle size is medium to fine and no spray tip is used, so although the particle size is somewhat large, it is sufficient for actual use. (
3) The shape was round and no deformation was observed. The physical property test results were excellent in all items of hardness, modulus, tensile strength, elongation, and tear.

比較例−6 グラスクラフト社のミキシングモジュール(魔R#トラ
ウンドタイプでチップを使用しない)を使用し、実施例
−6と同様のマシン、原料及び設定条件とした。R#1
チャンバーにおける液の流れ方向け、表−4に略示した
ように、両サイドにオリフィスをそれぞれ1個有し、液
の吐出角度はミキシングチャンバー内でA液及びB液が
回転する方向で導入する形式となっており、実施例−6
同様吐出する液は、両サイドより直接衝突混合が行なわ
れる状況で攪拌・混合か行われる。オリフィスの数及び
面積は、1:1であり、口径は0.80−であった。こ
の結果は表−4にみる通り、吐出量は4.4kg/分と
やや多口の吐出量であり硬化・反応性はタックフリー・
タイムか12〜14秒と速硬化で良好な硬化性を示して
いた。スプレー状況を観察したところ、(1)濃度分布
は全体に均一てあり(2)粒子サイズは大きくシートを
成形した場合表面の平滑性が悪く凸凹があり、又ピンホ
ールも存在しており意匠を重視する用途には不向きであ
る。
Comparative Example 6 A mixing module manufactured by Glass Craft Co., Ltd. (Magic R# Round type without a tip) was used, and the same machine, raw materials, and setting conditions as in Example 6 were used. R#1
For the flow direction of the liquid in the chamber, as shown schematically in Table 4, there is one orifice on each side, and the liquid discharge angle is introduced in the direction in which liquid A and liquid B rotate in the mixing chamber. The format is Example-6
Similarly, the discharged liquid is stirred and mixed in a situation where direct collision mixing is performed from both sides. The number and area of orifices were 1:1 and the diameter was 0.80-. As shown in Table 4, the discharge rate is 4.4 kg/min, which is a rather large discharge rate, and the curing/reactivity is tack-free.
It exhibited good curing properties with fast curing time of 12 to 14 seconds. When we observed the spray conditions, we found that (1) the concentration distribution was uniform throughout, (2) the particle size was large, and when the sheet was formed, the surface was not smooth and uneven, and there were pinholes, which made the design difficult. It is unsuitable for important uses.

(3)形状は丸型で変形は認められなかった。物性試験
結果は、硬さ、モジュラス、引張り強さ、伸び及び引裂
き強さのいずれの項目も低目の結果であった。
(3) The shape was round and no deformation was observed. The physical property test results showed low results in all items of hardness, modulus, tensile strength, elongation, and tear strength.

比較例−7 ビンクス社の43Pガンを使用した。本ガンは、ミキシ
ングモジュールではなく、ミキシングチャンバーに直接
オリフィスを取り付は使用するタイプである。マシン、
原料及び設定条件は実施例−6と同様とした。本ガンの
構造は、表−4に略本した様にミキシングチャンバーの
両サイドにオリフィスをそれぞれ1個有しており、液の
吐出角度は全てミキシングチャンバーの中心に向け直線
的に導入する形式となっている。オリフィスの口径は別
々に任意設定が可能であるが数は1個に限られている。
Comparative Example-7 A 43P gun manufactured by Binks was used. This gun uses an orifice attached directly to the mixing chamber rather than a mixing module. machine,
The raw materials and setting conditions were the same as in Example-6. The structure of this gun has one orifice on each side of the mixing chamber, as outlined in Table 4, and the liquid discharge angle is such that the liquid is introduced straight toward the center of the mixing chamber. It has become. The apertures of the orifices can be individually set arbitrarily, but the number is limited to one.

今回は材料の配合比は実施例−6と同じとし、口径は0
.89mmとした。ガンの先端にはスプレーチップ(0
30−450径か0.030インチて扇嬰に広がる角度
が45度)を取り付けて試験を行った。その結果は表−
4にみる通り、吐出量は2.4kg/分とやや少な目の
吐出量であり硬化・反応性はタックフリー・タイムが1
6〜22秒と硬化性かやや低下していた。スプレー状況
を観察したところ、(1)濃度分布は全体に均一であり
、(2)粒子サイズは細かくシートの表面は平滑で良好
、 (3)形状は扇型て変形は認められなかった。しか
し物性試験結果は、硬さ、モジュラス、引張り強さ、伸
び及び引裂き強さのいずれの項目もかなり低く、攪拌・
混合か十分行われていない結果であった。
This time, the blending ratio of materials is the same as in Example-6, and the diameter is 0.
.. It was set to 89 mm. There is a spray tip (0) at the tip of the gun.
The test was carried out with a 30-450 diameter (0.030 inch fan opening angle of 45 degrees) installed. The results are shown in the table-
As shown in 4, the discharge rate is 2.4 kg/min, which is a rather small discharge rate, and the curing/reactivity is tack-free time of 1.
The curing time was 6 to 22 seconds, which was slightly lower. When the spray conditions were observed, (1) the concentration distribution was uniform throughout, (2) the particle size was fine and the surface of the sheet was smooth and good, and (3) the shape was fan-shaped with no deformation observed. However, physical property test results showed that hardness, modulus, tensile strength, elongation, and tear strength were all quite low.
The result was that the mixture was not sufficiently mixed.

比較例−8 ガスマー社のDガンにミキシングモジュール(52L)
を取り付は使用した。このミキシングモジュールの吐出
液の流れ方向を表−4に略本した。
Comparative Example-8 Mixing module (52L) for Gasmer's D gun
was used for installation. Table 4 outlines the flow direction of the liquid discharged from this mixing module.

この構造は一体化した構造で両サイドに長方形で同口径
のすリフイスを各−個存している。オリフィスサイズは
、0.3X3mmて機械洗浄される円筒形のミキシング
チャンバーに同方向の回転か発生する向きて吐出する。
This structure is an integrated structure with rectangular slotted chairs of the same diameter on both sides. The orifice size is 0.3 x 3 mm, and discharge is directed to generate rotation in the same direction into a cylindrical mixing chamber that is machine cleaned.

ガンの先端にはスプレーチップを取り付ける事か8来な
い。マシン本体及び原料は実施例−6と同様としたが、
設定条件は本ガンの耐圧か70kg/alのため低くし
、耐圧の上限で設定した。その結果表−4にみる通り吐
出量は3.2kg/分と中程度の吐出量てあり硬化・反
応性はタックフリータイムか11〜13秒と硬化性には
特に問題は無かった。スプレー状況を観察したところ、
(1)濃度分布は部分的に濃度差かあり不均一であった
。 (2)粒子サイズは非常に大きくシートの平滑性は
悪くさらにピンホールも多く、比較例−6のプロブラー
ガンを使用した場合より悪く実用にならない状況であっ
た。 (3)形状は丸型で変形か認められた。このガン
はロッドの位置を調節することによりミキシングチャン
バーの長さを変形することか出来るので実施してみたが
、変形及び濃度分布は改善されなかった。物性試験結果
は、硬さ、モジュラス、引張り強さ、伸び及び引裂き強
さ、のいずれの項目もかなり低く攪拌・混合が十分行わ
れていない結果てあった。
There is no way to attach a spray tip to the tip of the gun. The machine body and raw materials were the same as in Example-6, but
The setting conditions were low because the gun's withstand pressure was 70 kg/al, and the setting was set at the upper limit of the withstand pressure. As shown in Table 4, the discharge rate was 3.2 kg/min, which was a medium rate, and the curing/reactivity was tack-free time of 11 to 13 seconds, so there were no particular problems with the curing properties. When I observed the spray situation,
(1) The concentration distribution was non-uniform with partial concentration differences. (2) The particle size was very large, the smoothness of the sheet was poor, and there were many pinholes, and the situation was worse than when using the problur gun of Comparative Example 6, making it impossible to put it into practical use. (3) The shape was round and deformed. With this gun, the length of the mixing chamber can be changed by adjusting the position of the rod, so we tried this, but the deformation and concentration distribution were not improved. The physical property test results showed that the hardness, modulus, tensile strength, elongation, and tear strength were all quite low, indicating that stirring and mixing were not performed sufficiently.

実施例−7 ガスマー社のGX−7ガンを用い、スプレーの設定条件
は液温を低下させ原液の粘度か高い場合のスプレー状態
及び物性の検討を行った。ミキシングモジュールの設計
は表−5の中に示した通り、前部よりA液(イソシアナ
ート成分)を2個の円形のオリフィスより吐出し、液は
ミキシングチャンバーの中心に向け直線的に導入され、
後部よりレジン成分を2個の円形のオリフィスを通じて
A液と同様の形式で導入した。すなわち吐出する液は前
部、後部とも回転しない状況で混合か行われる設計とな
っている。オリフィスの数及び面積は、実施例−4と同
様とした。硬化・反応性はタックフリー・タイムか13
〜15秒と速硬化で良好な硬化性を示していた。スプレ
ー状況を観察したところ、(1)濃度分布は全体に均一
であり、(2)粒子サイズは細かり(3)形状は扇型て
変形は認められなかった。
Example 7 Using a GX-7 gun manufactured by Gasmar Co., Ltd., the spray conditions and physical properties were investigated when the spray setting conditions were to lower the liquid temperature and the viscosity of the stock solution was high. As shown in Table 5, the design of the mixing module is as follows: Liquid A (isocyanate component) is discharged from the front through two circular orifices, and the liquid is introduced linearly toward the center of the mixing chamber.
The resin component was introduced from the rear through two circular orifices in the same manner as Liquid A. In other words, the design is such that the discharged liquid is mixed in a situation where neither the front nor the rear rotate. The number and area of orifices were the same as in Example-4. Curing/reactivity is tack free time or 13
It exhibited good curability with fast curing of ~15 seconds. When the spray conditions were observed, (1) the concentration distribution was uniform throughout, (2) the particle size was fine, and (3) the shape was fan-shaped, with no deformation observed.

物性試験結果は表−5にみる通り硬さ、モジュラス、引
張り強さ、伸び及び引裂き強さのいずれの項目も優れ良
好な結果であり、原液の温度か上昇しても成形体の表面
性及び物性には全く影響か無く混合特性か良好であるこ
とを示していた。
As shown in Table 5, the physical property test results showed excellent results in all items of hardness, modulus, tensile strength, elongation, and tear strength, and even when the temperature of the stock solution increased, the surface properties of the molded product and It showed that there was no effect on the physical properties at all, and the mixing characteristics were good.

〔発明の効果〕〔Effect of the invention〕

2液分型速硬化材料を衝突混合で混合する方法において
、2液を衝突させるミキシングチャンバー部分を一体成
形とした本発明の構造とすることて、2液の混合特性か
格段に向上することにより、(1)2液の配合比の違い
 (2)高粘度液及び液温低下時 (3)衝突圧力か低
下した際の混合許容範囲を拡大することか可能となり、
成形したシートの表面性及び物性のバラツキを少なくす
ることができる。
In the method of mixing two-component fast-curing materials by collision mixing, by using the structure of the present invention in which the mixing chamber portion where the two components collide is integrally molded, the mixing characteristics of the two components are significantly improved. , (1) Differences in the blending ratio of the two liquids, (2) High viscosity liquids and when the liquid temperature drops, and (3) It is possible to expand the mixing tolerance range when the collision pressure drops.
Variations in the surface properties and physical properties of the molded sheet can be reduced.

また、ガンのクリーニング方法も各種方式に対応し、ス
プレー、法皇等に使用することか出来る。
In addition, the gun can be cleaned in various ways, such as by spraying or cleaning.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は実施例−1で使用した改良GX−7
ガン用ミキシングモジュールの構成を示す断面図及び正
面図、第3−1図〜第3−3図は実施例−4、第4−1
図〜第4−3図は実施例−5、第5−1図〜第5−3図
は比較例−4、第6−1図〜第6−3図は比較例−5に
おけるそれぞれの正面及び側面よりみたA液及びB液の
流れ方向を示す略図、第7図及び第8図は実施例−6に
おいて使用したプロブラーガン用の改良ミキシングモジ
ュールの斜視図及び正面断面図である。図中、■はミキ
シングモジュール、2はパルピング・ロッドてあり、l
aはA液の流入孔、ibはB液の流入孔、lcは混合液
の噴量孔である。
Figures 1 and 2 show the improved GX-7 used in Example-1.
A sectional view and a front view showing the configuration of a mixing module for a gun, Figures 3-1 to 3-3 are Example-4 and Figure 4-1.
Figures 4-3 are front views of Example-5, Figures 5-1-5-3 are Comparative Example-4, and Figures 6-1-6-3 are front views of Comparative Example-5. 7 and 8 are a perspective view and a front sectional view of an improved mixing module for a troubler gun used in Example-6. In the figure, ■ is the mixing module, 2 is the pulping rod, and l
a is an inflow hole for liquid A, ib is an inflow hole for liquid B, and lc is an injection hole for mixed liquid.

Claims (1)

【特許請求の範囲】 ウレタン、エポキシ、不飽和ポリエステル等の樹脂原料
のA液及びB液を吐出口より吐出し、衝突混合方式によ
り混合する装置において、該2液を衝突させるミキシン
グチャンバー部分が、一体成形になるモジュールであり
、 (1)A液用とB液用にそれぞれ2個以上の吐出口(オ
リフィス)を有し、 (2)吐出口の数及び/又は面積の比がA液及びB液の
配合比の±50%以内であり、 (3)A液及びB液の両方又はいずれか一方がミキシン
グチャンバーの中心に向け直線的に吐出され、更に (4)A液及びB液をミキシングチャンバー内に吐出す
る角度を2液が直接衝突する方向 としたことを特徴とする改良された衝突混合型ミキシン
グモジュール。
[Scope of Claims] In an apparatus that discharges liquids A and B of resin raw materials such as urethane, epoxy, and unsaturated polyester from a discharge port and mixes them using a collisional mixing method, a mixing chamber portion that causes the two liquids to collide, It is a module that is integrally molded, and (1) has two or more discharge ports (orifices) for liquid A and liquid B, and (2) has a ratio of the number and/or area of the discharge ports for liquid A and liquid B. Within ±50% of the blending ratio of liquid B, (3) both or one of liquid A and B are discharged linearly toward the center of the mixing chamber, and (4) liquid A and liquid B are discharged linearly toward the center of the mixing chamber. An improved collision mixing type mixing module characterized in that the angle at which two liquids are discharged into a mixing chamber is set in a direction in which two liquids directly collide.
JP2210181A 1990-08-10 1990-08-10 Improved collision mixing type mixing module Expired - Lifetime JP2930392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2210181A JP2930392B2 (en) 1990-08-10 1990-08-10 Improved collision mixing type mixing module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2210181A JP2930392B2 (en) 1990-08-10 1990-08-10 Improved collision mixing type mixing module

Publications (2)

Publication Number Publication Date
JPH0493204A true JPH0493204A (en) 1992-03-26
JP2930392B2 JP2930392B2 (en) 1999-08-03

Family

ID=16585124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2210181A Expired - Lifetime JP2930392B2 (en) 1990-08-10 1990-08-10 Improved collision mixing type mixing module

Country Status (1)

Country Link
JP (1) JP2930392B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043524A (en) * 2004-08-02 2006-02-16 Nippon Steel Corp Impingement mixing spray gun and coating method and steel material using the gun
JP2008307721A (en) * 2007-06-12 2008-12-25 Inoac Corp Mixing head device and molding method using it
WO2010061464A1 (en) 2008-11-27 2010-06-03 株式会社イノアックコーポレーション Mixing head apparatus and molding method using the apparatus
JP2014131876A (en) * 2014-03-10 2014-07-17 Inoac Corp Mixing head apparatus and molding method using the same
JP2014141096A (en) * 2014-03-10 2014-08-07 Inoac Corp Mixing head apparatus and molding method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102182425B1 (en) * 2019-05-22 2020-11-25 한국교통대학교 산학협력단 Mixing head for in-mold coating based on two-component polyurethane with a high difference in mixing ratio

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043524A (en) * 2004-08-02 2006-02-16 Nippon Steel Corp Impingement mixing spray gun and coating method and steel material using the gun
JP4547207B2 (en) * 2004-08-02 2010-09-22 新日本製鐵株式会社 Collision mixing spray gun and coating method using the same
JP2008307721A (en) * 2007-06-12 2008-12-25 Inoac Corp Mixing head device and molding method using it
WO2010061464A1 (en) 2008-11-27 2010-06-03 株式会社イノアックコーポレーション Mixing head apparatus and molding method using the apparatus
US8777478B2 (en) 2008-11-27 2014-07-15 Inoac Corporation Mixing head apparatus for high agitation and smooth flow of liquid blend and molding method using the same
JP5643108B2 (en) * 2008-11-27 2014-12-17 株式会社イノアックコーポレーション Mixing head device and molding method using the same
JP2014131876A (en) * 2014-03-10 2014-07-17 Inoac Corp Mixing head apparatus and molding method using the same
JP2014141096A (en) * 2014-03-10 2014-08-07 Inoac Corp Mixing head apparatus and molding method using the same

Also Published As

Publication number Publication date
JP2930392B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
US8262002B2 (en) Pressure swirl atomizing nozzle for spraying a curable composition and associated method and use
AU2012281026B2 (en) Solvent-free plural component spraying system and method
US20120178895A1 (en) Method and device for the production of a spray application consisting of reactive plastic
CA2529025C (en) Method for producing a moulded article comprising a sprayed polyurethane layer
JPH0493204A (en) Improved colliding and mixing type mixing module
JPH10315226A (en) Mixing module for spray gun with improved two-liquid mixing properties
US8905329B2 (en) Method and device for spraying mixtures obtained from the reaction of polymer materials
JP2919927B2 (en) Improved mechanical cleaning collision mixing type mixing module
US7007711B1 (en) Dispersion nozzle with variable throughput
JP3023399B2 (en) Two-part mixing device
US20200254469A1 (en) Measuring and mixing devices
JP3326493B2 (en) Mixed color coating method and mixed color coating equipment
RU2426601C1 (en) Pressure swirl nozzle to spray hardenable composition on surface (versions) and method of producing polymer layer on surface thereby
US11389812B2 (en) Measuring and mixing devices
JPH10315225A (en) Mixing module for spray gun with improved two-liquid mixing properties
CN115106216A (en) Spraying device
JPS6227856B2 (en)
JPH01224064A (en) Liquid composition discharge device and molding method using said discharge device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12