JP2919927B2 - Improved mechanical cleaning collision mixing type mixing module - Google Patents
Improved mechanical cleaning collision mixing type mixing moduleInfo
- Publication number
- JP2919927B2 JP2919927B2 JP2210182A JP21018290A JP2919927B2 JP 2919927 B2 JP2919927 B2 JP 2919927B2 JP 2210182 A JP2210182 A JP 2210182A JP 21018290 A JP21018290 A JP 21018290A JP 2919927 B2 JP2919927 B2 JP 2919927B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- mixing
- spray
- orifices
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/74—Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
- B29B7/76—Mixers with stream-impingement mixing head
- B29B7/7631—Parts; Accessories
- B29B7/7636—Construction of the feed orifices, bores, ports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/74—Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
- B29B7/76—Mixers with stream-impingement mixing head
- B29B7/7663—Mixers with stream-impingement mixing head the mixing head having an outlet tube with a reciprocating plunger, e.g. with the jets impinging in the tube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/74—Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
- B29B7/76—Mixers with stream-impingement mixing head
- B29B7/7631—Parts; Accessories
- B29B7/7647—Construction of the mixing conduit module or chamber part
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
- Nozzles (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ウレタン、エポキシ、不飽和ポリエステル
等の2液混合硬化型樹脂のA液及びB液を吐出口より吐
出し、衝突混合方式で混合しスプレーないしは注入成形
する際に使用する衝突混合型のミキシングモジュール
(A液及びB液用の吐出口〔オリフィス〕と該2液を衝
突混合させるミキシングチャンバーを一体成形した部
品)に関し、本改良により吐出開始時及び終了時にも2
成分の配合比率を常に設定値に維持した状態で混合する
ことが可能となり、スタート時及び終了時に配合比の合
っていない液を捨てる事(液切り)無しに成形すること
ができると共に安定した物性と、スプレー成形の場合は
スプレー状況も改善できる、スプレー及び注型用のミキ
シングモジュールに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention discharges a liquid A and a liquid B of a two-liquid mixed-curable resin such as urethane, epoxy and unsaturated polyester from a discharge port, and employs a collision mixing method. This improvement relates to a collision-mixing type mixing module (a part integrally formed with a discharge chamber (orifice) for liquid A and liquid B and a mixing chamber for collision-mixing the two liquids) used for mixing and spraying or injection molding. At the start and end of discharge
It is possible to mix the components while maintaining the mixing ratio of the components at the set value, and it is possible to mold without discarding the liquid that does not match the mixing ratio at the start and end (liquid drainage) and stable physical properties And a mixing module for spraying and casting, which can improve the spray condition in the case of spray molding.
なお、本明細書において、A液とは2液混合硬化型樹
脂の一方の液を示し、B液とは他の一方の液を示すもの
とする。In the present specification, the liquid A indicates one liquid of the two-liquid mixed-curable resin, and the liquid B indicates the other liquid.
反応速度の速い2成分速硬化型材料を成形する場合、
通常は衝突混合方式が用いられている。これは反応が速
いため機械式混合及び静的(スタティック)混合ではミ
キシングチャンバーの洗浄を行う時間が十分とれないこ
とに起因する。衝突混合方式は混合液の吐出後ミキシン
グチャンバーの洗浄を機械式にロッドの出し入れで行っ
たり、溶剤又はエアーで行う方法により洗浄が短時間に
行なえる特徴を有する。When molding a two-component fast-curing material with a high reaction rate,
Usually, a collision mixing method is used. This is because mechanical mixing and static mixing do not have sufficient time for cleaning the mixing chamber due to the rapid reaction. The collision mixing method has a feature that the cleaning of the mixing chamber can be performed in a short time by a method of mechanically cleaning the mixing chamber by taking in and out a rod after discharging the mixed liquid, or by using a solvent or air.
機械式にロッドを出し入れする機械洗浄方式の衝突混
合ヘッドの例としては、米国ガスマー社のスプレー及び
注入用ヘッドのDガン、GX−7ガン及びRIM(反応射出
成形)で使用されているヘッドの東邦機械、クラウスマ
ッファイ社、キャノン社等の例がある。Dガンの場合は
一体化したミキシングチャンバーの両側に長方形の穴が
角1個ずつミキシングチャンバーの上部と下部に開けて
あり、ミキシングチャンバー内に吐出した液は渦を巻き
ながら混合した後噴出され、スプレー又は注入に使用さ
れている。このガンの問題点は穴の数がそれぞれ1個ず
つであるため高粘度液等の場合、混合特性が低下する事
と、2液の混合が主として回転運動によるため、ヘッド
から噴出される混合液に回転運動が残り、特にスプレー
成形する場合は、スプレー状況(パターン)が変形し濃
度差が生じる。このためスプレー作業を行なう場合は成
形作業の度に設定条件に合わせバルビング・ロッドの後
退位置を変化させることによるミキシングチャンバーの
長さの調節が必要である。Examples of mechanically-cleaning collision mixing heads for mechanically moving rods in and out include D-Gun, GX-7 gun, and RIM (reaction injection molding) heads for spraying and injecting heads of Gasmer, USA. Examples include Toho Kikai, Klaus Muffei, and Canon. In the case of the D-gun, rectangular holes are opened at the top and bottom of the mixing chamber on both sides of the integrated mixing chamber, one at a time, and the liquid discharged into the mixing chamber is ejected after mixing while swirling, Used for spraying or pouring. The problem with this gun is that the number of holes is one each, and in the case of a highly viscous liquid, etc., the mixing characteristics deteriorate, and since the mixing of the two liquids is mainly due to rotational movement, the mixed liquid ejected from the head In particular, in the case of spray molding, the spray state (pattern) is deformed and a density difference occurs. For this reason, when performing the spraying operation, it is necessary to adjust the length of the mixing chamber by changing the retreat position of the valving rod in accordance with the set conditions each time the molding operation is performed.
GX−7のガンの場合は、一体化したミキシングモジュ
ールの構造を持ち、吐出は混合液の噴出方向に対してA
液は前部から、B液は後部から行われ、吐出角度は,ロ
ッドに対していずれも直角方向であるため直接衝突する
ことはない。このためロッドが後退し液が噴出される時
は、必ず前部のA液が最初にミキシングチャンバー内に
単独で吐出された後にB液が吐出されることになり、ス
タート時は配合比の狂った混合物が吐出されるため、液
切り操作が必要である。さらに終了時にも同様の事が発
生し液切りが必要となる。スプレー成形では成形に際し
てガンをまず対象物以外のところでスプレーを開始(液
切り)しその後、モールド等に吹き付ける事が必要であ
り、終了時も同様に成形物の表面から他にガンを移した
後、停止させるため作業性が低下し歩留りも悪い。注入
成形においてもスプレーと同様の液切り操作が必要であ
る。また確実に作業を行わなかった場合、配合比の変化
に起因する物性の低下がおこる。In the case of the GX-7 gun, it has an integrated mixing module structure, and discharge is A
The liquid is discharged from the front and the liquid B is discharged from the rear. Since the discharge angles are all perpendicular to the rod, there is no direct collision. Therefore, when the rod retreats and the liquid is ejected, the liquid A in the front part is always ejected independently into the mixing chamber first and then the liquid B is ejected. Since the mixed mixture is discharged, a draining operation is required. Further, the same occurs at the time of termination, and the liquid needs to be drained. In the case of spray molding, it is necessary to start spraying (draining) the gun at a place other than the object first at the time of molding, and then spray it onto a mold, etc. Similarly, at the end, after moving the gun from the surface of the molded article to another In addition, the workability is reduced due to the stoppage, and the yield is poor. In the case of injection molding, the same draining operation as in spraying is required. In addition, if the work is not performed reliably, the physical properties are reduced due to the change in the mixing ratio.
RIM成形に用いられているヘッドは、通常両側に各1
個のオリフィスを持った、2液が直接衝突混合するタイ
プが多く、混合特性に問題があるためモールド側に「ア
フターミキサー」、「フィルムゲート」等の再混合補助
装置を取り付けると同時に、最初及び最後の混合物は逃
がし部分としたり、アフターミキサー部分に残す設計と
し、上記の不適当な混合物が製品中には入らない様な工
夫をし、吐出開始時及び終了時に発生する配合比のバラ
ツキに対処している。The heads used for RIM molding are usually one on each side.
Many types have two orifices and directly collide and mix two liquids.There is a problem with the mixing characteristics. At the same time as installing a remixing auxiliary device such as an "after mixer" or "film gate" on the mold side, The last mixture is designed to be used as a relief part or left in the after-mixer part, and measures are taken to prevent the above-mentioned inappropriate mixture from entering the product, and to deal with variations in the mixing ratio that occurs at the start and end of discharge. doing.
ウレタン、エポキシ、不飽和ポリエステル等の2液混
合硬化型樹脂のA液及びB液を吐出口より吐出し、衝突
混合方式でスプレーないし注入成形するに際し、上記の
如く、従来の混合方式には種々の欠点があるので、本発
明者らは吐出スタート時及び終了時に液を捨てる事(液
切り)無しに成形することが出来ると同時に、安定した
物性と、スプレー成形の場合には良好なスプレー状況
(パターン)が得られるスプレー及び注型用のミキシン
グモジュールを決定することを検討した。When the liquid A and liquid B of a two-component mixed-curable resin such as urethane, epoxy, and unsaturated polyester are discharged from the discharge port and sprayed or injected by a collision mixing method, as described above, the conventional mixing methods are various. Of the present invention, the present inventors can perform molding without discarding the liquid at the start and end of discharge (liquid drainage), and at the same time, have stable physical properties and a good spray condition in the case of spray molding. It was studied to determine a mixing module for spraying and casting in which (pattern) was obtained.
衝突混合方式のヘッドのうち、クリーニング特性を考
えた場合、エアー洗浄方式や溶剤洗浄方式では完全にク
リーニング出来ず使用回数と共に混合物がミキシングチ
ャンバー及びノズル部に堆積するため混合特性に変化が
生じる。このためにスプレー成形ではスプレー状況(パ
ターン)が変化する。それ故、洗浄方式としては機械式
が確実であり混合効率の変化及び低下も少ない。スター
ト時及び終了時の配合比を機械洗浄方式で常時維持する
ためには、A液及びB液のオリフィスを同時に開ける事
が必要であり、両オリフィスを同一円周上に存在させて
おく事が必須要件である。このことにより吐出スタート
時及び終了時に液を捨てる事(液切り)無しに成形を行
う事が可能となる。衝突混合の場合、オリフィスのサイ
ズ精度と位置の正確さは重要な要素であり、混合特性に
影響を与える。それ故A液用とB液用のオリフィスを一
体成形品とすることで混合性のバラツキを防止すること
が出来る。また混合特性を向上させ安定した物性を得る
ために2液の接触機会を増加させることが極めて有効で
あり、具体的にはオリフィスを2個以上とし、オリフィ
スの数及び/又は面積が使用する原料の配合比の±50%
以内に設計する。混合比が異なる材料を使用する場合に
は混合特性を改良するためには面積よりオリフィスの数
を調整することが好ましい。又使用する原料の粘度が同
一の場合は、オリフィスの数及び面積は同一で良いが、
実際には2液の粘度が異なる場合が多く、粘度の高い原
料の吐出が遅れ勝ちとなる。2液の温度差をつける事で
粘度を調節することも可能であるが、オリフィスサイズ
を若干変化させての対応が成形時の作業幅を広げる事に
有効である。通常この変化幅は、±50%以内の増減で対
応する。さらにスプレー成形時に良好なスプレー状況を
得るため、2液の混合を回転のみによる混合から衝突を
主体とし、混合液に回転が残らない状態とすることが重
要な要素である。すなわち、2液を衝突させるミキシン
グチャンバー部分が、一体成形になるモジュールであ
り、 (1)A液とB液がそれぞれ2個以上の吐出口(オリフ
ィス)を有し、 (2)A液及びB液の吐出口の位置が同一円周上にあ
り、 (3)A液及びB液の両方又は、いずれか一方がミキシ
ングチャンバーの中心部に向け直線的に吐出され、 (4)A液及びB液の吐出口の合計開口面積の比がA液
及びB液の配合比の±50%以内とした設計とすることに
より、吐出開始時と終了時にも配合比率が変化せず液切
りを必要としないミキシングモジュールを作製する事が
出来る。又このモジュールは混合特性も改良されている
ので物性の安定化とスプレー成形の場合は良好なスプレ
ー状況を得る事が出来る。When the cleaning characteristics of the head of the collision mixing type are considered, the air cleaning type and the solvent cleaning type cannot be completely cleaned, and the mixture is deposited on the mixing chamber and the nozzle portion with the number of uses, so that the mixing characteristics change. For this reason, the spray condition (pattern) changes in spray molding. Therefore, a mechanical cleaning method is reliable, and there is little change and decrease in mixing efficiency. In order to always maintain the mixing ratio at the start and at the end with the machine washing method, it is necessary to open the orifices of the A liquid and the B liquid at the same time, and it is necessary to keep both orifices on the same circumference. This is a mandatory requirement. This makes it possible to perform molding without discarding the liquid at the start and end of discharge (liquid drainage). In the case of impingement mixing, orifice size accuracy and location accuracy are important factors and affect mixing characteristics. Therefore, by forming the orifices for the liquid A and the liquid B as an integrally molded product, it is possible to prevent the mixing property from varying. It is extremely effective to increase the chance of contact between the two liquids in order to improve the mixing characteristics and obtain stable physical properties. Specifically, the number of orifices and / or the number of orifices used in the raw material are increased to two or more. ± 50% of compounding ratio
To design within. When materials having different mixing ratios are used, it is preferable to adjust the number of orifices from the area in order to improve the mixing characteristics. When the viscosity of the raw materials used is the same, the number and area of the orifices may be the same,
In practice, the viscosities of the two liquids are often different, and the discharge of the high-viscosity raw material tends to be delayed. Although it is possible to adjust the viscosity by providing a temperature difference between the two liquids, it is effective to slightly change the orifice size to increase the working width during molding. Usually, this variation range corresponds to an increase or decrease within ± 50%. Furthermore, in order to obtain a favorable spraying state during spray molding, it is an important element that the mixing of the two liquids is mainly from collision by mixing only by rotation, and that no rotation remains in the mixed liquid. That is, the mixing chamber portion where the two liquids collide is a module that is integrally formed. (1) The liquid A and the liquid B each have two or more discharge ports (orifices). (2) The liquids A and B The positions of the liquid discharge ports are on the same circumference. (3) Both or one of the liquids A and B is discharged linearly toward the center of the mixing chamber. (4) The liquids A and B The design is such that the ratio of the total opening area of the liquid discharge ports is within ± 50% of the mixing ratio of the liquid A and the liquid B, so that the mixing ratio does not change at the start and the end of the discharge, and the liquid needs to be drained. A mixing module that does not need to be manufactured can be manufactured. In addition, since the mixing characteristics of this module are also improved, it is possible to stabilize the physical properties and obtain a good spray condition in the case of spray molding.
ここで、「A液及びB液の配合比の±50%以内」と
は、例えば、A液及びB液の配合比が1:2であるとする
と、この比の価は1/2、即ち、0.5であるから、その「±
50%以内」とは、0.25乃至0.75の範囲、即ち、1:4乃至
3:4の範囲と言うことである。Here, “within ± 50% of the mixing ratio of the liquid A and the liquid B” means, for example, when the mixing ratio of the liquid A and the liquid B is 1: 2, the value of this ratio is 1/2, that is, , 0.5, so "±
"Within 50%" means in the range of 0.25 to 0.75, that is, 1: 4 to
3: 4 range.
本設計による構造をもつ機械洗浄式衝突混合型混合装
置は、スプレーヘッド、注型のポアーヘッド及び注入用
としてヘッドの先端にノズルを接続したり、さらに反応
射出用にも使用することが出来る。但し、液のシール性
及びスプレーパターンのコントロールの意味からオリフ
ィスを円周上に均一に配置したガスマー社のGX−7型ミ
キシングモジュールは設計の自由度が高く、適してい
る。使用する液を循環式としワン・ウェイ式に変え、液
温度のコントロールを良好にした固定ヘッドの型式、及
びサイズを小型とした手持ちのガン形式とすることも可
能である。The mechanical cleaning type collision mixing type mixing apparatus having the structure according to the present design can be used for connecting a nozzle to the tip of the head for spray head, casting pore head and injection, and also for reaction injection. However, in view of the liquid sealing property and the control of the spray pattern, the gas module GX-7 type mixing module having orifices uniformly arranged on the circumference has a high degree of freedom in design and is suitable. The liquid used may be changed to a one-way type instead of a circulating type, and a fixed head type with good control of the liquid temperature and a hand-held gun type with a small size may be used.
本発明の成形に使用する高圧2液吐出マシンの例とし
ては、液圧を100kg/cm2程度に昇圧することの出来るタ
イプなら特に形式にこだわらず使用出来る。実際の例と
しては、ポンプとしてギアポンプを用いた東レエンジニ
アリング社製THD−2K、アクシャルピストンポンプを用
いた東邦機械工業社製NR−230型高圧ポリウレタン発泡
機、プランジャーポンプを使用したガスマー社(米国)
のH−2000型、グラスクラフト社(米国)のT−3H等で
ある。As an example of the high-pressure two-liquid discharge machine used for the molding of the present invention, any type can be used without particular limitation as long as it can raise the liquid pressure to about 100 kg / cm 2 . As actual examples, THD-2K manufactured by Toray Engineering Co., Ltd. using a gear pump as a pump, NR-230 high pressure polyurethane foaming machine manufactured by Toho Machinery Co., Ltd. using an axial piston pump, and Gasmer Co., Ltd. using a plunger pump ( USA)
H-2000 and T-3H of Glasscraft (USA).
下記に実施例を示し本発明を説明する。 Hereinafter, the present invention will be described with reference to examples.
ミキシングヘッドの混合性能及び吐出される液の状態
を調べるにはスプレー形式のヘッドが最も適しており、
以下の実施例はスプレーヘッドでの検討結果を示す。注
型及び注入用ヘッドも同様の設計で作製し使用すること
が出来る。The spray type head is most suitable for examining the mixing performance of the mixing head and the state of the discharged liquid,
The following examples show the results of studies with a spray head. Casting and pouring heads can be made and used with similar designs.
(語句の説明) (1)スプレー状況(パターン):下記の項目に関し目
視観察を行いその結果を示した。(Explanation of terms) (1) Spray condition (pattern): The following items were visually observed and the results were shown.
・濃度分布:ガンより噴出された粒子の濃度差、筋引き
等 ・粒子サイズ:ガンより噴出された粒子のサイズ、霧化
の状況確認 ・形状:対象物にスプレーされた噴出物の形状、変形等
の確認 (2)タックフリー・タイム:吹き付け又は注入した材
料の表面に軽く指で触れ、材料が指に移行しなくなる最
短時間。・ Concentration distribution: concentration difference of particles ejected from the gun, straining, etc. ・ Particle size: size of particles ejected from the gun, confirmation of atomization status ・ Shape: shape, deformation of ejected material sprayed on the target (2) Tack-free time: The shortest time during which the surface of the sprayed or injected material is lightly touched with a finger and the material does not transfer to the finger.
(3)表面の縞模様:2液の配合比又は混合特性が悪い場
合に混合不良部分が縞模様となって残る状況。(3) Stripe pattern on the surface: A situation in which a poorly mixed portion remains as a striped pattern when the mixing ratio or mixing characteristics of the two liquids is poor.
(3)表面性:ポリプロピレンの板上に厚さ約2mmにス
プレー成形し、表面の平滑性及びピンホールの有無を調
べた。(3) Surface properties: Spray-molded on a polypropylene plate to a thickness of about 2 mm, and the smoothness of the surface and the presence or absence of pinholes were examined.
(4)物性試験:JIS K−6301に準拠し、測定は23℃で、
湿度55%の状態に一週間養生後行った。(成形材料)リ
ムスプレー(三井東圧化学製の速硬化2液型ウレタンス
プレー材料)を使用した。配合比及び粘度の異なる次の
2銘柄を使用した。(4) Physical property test: Measured at 23 ° C according to JIS K-6301.
After curing for one week in a condition of 55% humidity. (Molding material) A rim spray (a quick-curing two-part urethane spray material manufactured by Mitsui Toatsu Chemicals) was used. The following two brands having different mixing ratios and viscosities were used.
いずれも速硬化の材料でスプレー後直ちに反応・硬化
するため混合に際しては、衝突混合ガンの使用が不可欠
である。 In each case, a quick-curing material reacts and cures immediately after spraying, so that an impingement mixing gun is indispensable for mixing.
A液:イソシアナート成分〔主剤はジフェニルメタンジ
イソシアナート(MDI−PH)の変成品、三井東圧化学製
品〕 B液:レジン成分 (高圧2液吐出マシン) 米国ガスマー社のH−2000型を使用した。本マシン
は、一軸のダブルアクション・プランジャーポンプを油
圧で駆動したワン・ウェイタイプで、注入及びスプレー
に使用できる。液圧は2000psi(約140kg/cm2)まで昇圧
出来、液温度もA液及びB液別々に設定できる構造とな
っている。Liquid A: Isocyanate component [The main ingredient is a modified product of diphenylmethane diisocyanate (MDI-PH), Mitsui Toatsu Chemicals] Liquid B: Resin component (High-pressure two-liquid discharge machine) US Gasmer H-2000 type did. This machine is a one-way type that hydraulically drives a single-shaft, double-action plunger pump, and can be used for injection and spraying. The liquid pressure can be raised to 2000 psi (about 140 kg / cm 2 ), and the liquid temperature can be set separately for Liquid A and Liquid B.
以下、図面と実施例により本発明の詳細を説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings and embodiments.
第1図及び第2図は、実施例−1で使用した改良GX−
7ガン用ミキシングモジュールの構成を示す断面図及び
正面図、第3図及び第4図は実施例−2で用いた改良GX
−ガン用ミキシングモジュールの構成を示す断面図及び
正面図、第5図及び第6図は更に実施例−3で使用した
別の改良GX−7ガン用ミキシングモジュールを示す断面
図及び正面図、第7図及び第8図は実施例−4に示し
た、Dガン用の改良ミキシングモジュールを示す側面及
び正面断面図である。FIGS. 1 and 2 show the modified GX- used in Example-1.
FIG. 3 is a sectional view and a front view showing the structure of a mixing module for 7 guns, and FIGS. 3 and 4 show an improved GX used in Example-2.
FIGS. 5 and 6 are sectional and front views showing another modified GX-7 gun mixing module used in Example-3, and FIG. 7 and 8 are side and front sectional views showing an improved mixing module for a D-gun shown in Example-4.
図中、1はミキシングモジュール、2はバルビング・
ロッドであり、1aはA液の流入孔、1bはB液の流入孔、
1cは混合液の噴出孔である。In the figure, 1 is a mixing module, 2 is a balving
1a is an inflow hole for liquid A, 1b is an inflow hole for liquid B,
Reference numeral 1c denotes an outlet for the mixed solution.
実施例−1 スプレーヘッドとしては、ガスマー社製機械式クリーニ
ング方法のGX−7ガンを使用し、ミキシングモジュール
を第1図、及び第2図に示した。表−2の略図はA液及
びB液のミキシングチャンバー内への吐出角度及びこれ
ら2液の衝突角度を示した。A液とB液のオリフィスの
数及び面積とも原材料の容積比と同一のA:B=1:2用に設
計した。A液(イソシアナート成分)用のオリフィスが
お互いの穴の位置を180度として2個、B液(レジン成
分)用のオリフィスがお互いの穴の位置を90度として4
個開け、それぞれの吐出角度は2液がミキシングチャン
バーの中心部に直線的に向う線上で、かつ吐出口の位置
は同一円周上に存在するようにした。すなわち2液は回
転運動を生じない状態で混合が行われる。オリフィスの
直径はすべて0.406mmとし、ミキシングチャンバーの直
径は3.175mmとした。材質は、繰り返しの使用による耐
摩耗性と液のシール性を考慮しポリアセタール樹脂(デ
ルリン,Du Pont社商標)とした。ガンの先端にはスプレ
ーチップ(#212:扇状パターン)を装着して成形を行っ
た。原材料は、リムスプレーPD−450(A液:B液=1:2容
積比)を用い、液温度をA液は50℃、B液は65℃、吐出
時の圧力をそれぞれ112kg/cm2及び120kg/cm2の条件とし
た。その結果は表−2にみる通りタックフリー・タイム
は9〜11秒と速硬化であり、タックは硬化が進むにつれ
急速に消失した。吐出スタート時からA液とB液が所定
の混合比で混合された状態で噴出されるため、配合比の
狂いまたは混合不良時に観察される縞模様は認められな
かった。さらに終了時にも液を捨てる事(液切り)無し
に成形を行うことが可能であり、物性測定用に2mm厚シ
ートを成形したところ歩留り率は90%と良好であった。
スプレー状況(パターン)を観察したところ、濃度分布
は均一であり、粒子サイズも細かく更に形状は扇型かつ
正常であり変形等は認られなかった。成形物の表面は平
滑であり凹凸も認められなかった。硬化性も十分あり、
作成したシートの物性試験結果は硬さ、モジュラス、引
張り強さ、伸び及び引裂き強さのいずれも優れており、
混合特性も良好である事を示していた。Example 1 As a spray head, a GX-7 gun of a mechanical cleaning method manufactured by Gasmer was used, and a mixing module was shown in FIGS. 1 and 2. The schematic diagram in Table 2 shows the discharge angles of the A liquid and the B liquid into the mixing chamber and the collision angles of these two liquids. Both the number and the area of the orifices of the liquid A and the liquid B were designed for A: B = 1: 2 which is the same as the volume ratio of the raw materials. The two orifices for liquid A (isocyanate component) are 180 degrees at each other and the orifices for liquid B (resin component) are 90 degrees at each other.
The two liquids were opened so that the two liquids were linearly directed to the center of the mixing chamber, and the positions of the discharge ports were on the same circumference. That is, the two liquids are mixed in a state where no rotational movement occurs. The diameter of all the orifices was 0.406 mm, and the diameter of the mixing chamber was 3.175 mm. The material was a polyacetal resin (Delrin, a trademark of Du Pont) in consideration of the abrasion resistance and liquid sealing properties due to repeated use. A spray tip (# 212: fan-shaped pattern) was attached to the tip of the gun for molding. The raw material used is Rim Spray PD-450 (Solution A: Solution B = 1: 2 volume ratio), the liquid temperature is 50 ° C for Liquid A, 65 ° C for Liquid B, and the discharge pressure is 112kg / cm 2 respectively. The condition was 120 kg / cm 2 . As a result, as shown in Table 2, the tack-free time was 9 to 11 seconds, and the setting was fast, and the tack disappeared rapidly as the setting progressed. Since the liquid A and the liquid B were ejected in a state of being mixed at a predetermined mixing ratio from the start of the discharge, no stripe pattern was observed when the mixing ratio was out of order or the mixing was poor. Further, at the end of the molding, it was possible to carry out molding without discarding the liquid (liquid drainage). When a 2 mm thick sheet was molded for measuring physical properties, the yield was as good as 90%.
Observation of the spray condition (pattern) revealed that the concentration distribution was uniform, the particle size was fine, the shape was fan-shaped and normal, and no deformation or the like was observed. The surface of the molded product was smooth and no irregularities were observed. There is enough curability,
The physical property test results of the created sheet are excellent in hardness, modulus, tensile strength, elongation and tear strength,
It also showed that the mixing characteristics were good.
実施例−2 実施例−1と同様GX−7ガンを使用し、第3図及び第
4図に示したミキシングモジュールの断面図及び正面図
の構造のものを使用した。又、A液及びB液の流れ方向
の略図を表−2に示した。オリフィスの数及び面積比は
原料の配合比と同一のA液:B液=1:1とした。A液(イ
ソシアナート成分)用のオリフィスはお互いの穴の位置
を90度として4個開け、ミキシングチャンバーへの中心
に向け直線的に吐出する角度とし、B液(レジン成分)
用のオリフィスはお互いの穴の位置を90度として4個開
け液の吐出角度はA液と同様とし2液は回転運動を生じ
ない設計とした。オリフィスの直径は全て0.406mmと
し、ミキシングチャンバーの直径は、3.175mmとした。
ガンの先端にはスプレーチップ(#212:扇状パターン)
を装着して成形を行った。Example 2 A GX-7 gun was used in the same manner as in Example 1, and the mixing module shown in the sectional view and the front view of FIG. 3 and FIG. 4 was used. In addition, Table 2 shows a schematic diagram of the flow direction of the liquid A and the liquid B. The number and area ratio of the orifices were the same as the mixing ratio of the raw materials, ie, liquid A: liquid B = 1: 1. The four orifices for liquid A (isocyanate component) are opened at an angle of 90 degrees to each other, and the liquid is ejected linearly toward the center of the mixing chamber. Liquid B (resin component)
The four orifices were designed such that the positions of the holes were 90 degrees with each other, and four holes were opened. The discharge angle of the liquid was the same as that of the liquid A, and the two liquids were designed so as not to cause rotational movement. The diameter of all the orifices was 0.406 mm, and the diameter of the mixing chamber was 3.175 mm.
Spray tip at tip of gun (# 212: fan-shaped pattern)
And molding was performed.
原材料は、リムスプレーPD−190(A液:B液=1:1の容
積比)を用い液温度をA液は65℃、B液は50℃、吐出時
の圧力をそれぞれ116kg/cm2及び108kg/cm2の条件とし
た。その結果は表−2にみる通り、タックフリー・タイ
ムは12〜14秒と速硬化であり、タックの消失も速く、実
施例−1と同様、スタート時からA液とB液が所定の混
合比で混合された状態で吐出され、配合比の狂いまたは
混合不良時に観察される縞模様は認められず、液切り無
しに成形を行うことが可能であった。スプレー状況(パ
ターン)を観察したところ、濃度分布は均一であり、粒
子サイズも細かく更に形状は扇型かつ正常であり変形等
は認められなかった。成形物の表面は平滑であり凹凸も
認められなかった。硬化性も十分であり、作成したシー
トの物性試験結果は硬さ、モジュラス、引張り強さ、伸
び及び引裂き強さのいずれも優れており、混合特性も良
好である事を示していた。The raw materials were rim spray PD-190 (A: B liquid = 1: 1 volume ratio). The liquid temperature was 65 ° C for Liquid A, 50 ° C for Liquid B, and the discharge pressure was 116kg / cm 2 respectively. The condition was 108 kg / cm 2 . As can be seen from Table 2, the tack-free time was 12 to 14 seconds, which was fast curing, the tack disappeared quickly, and the liquid A and the liquid B were mixed from the start at the same time as in Example 1. The mixture was discharged in a mixed state at a ratio, and no stripe pattern observed when the mixing ratio was out of order or when mixing was poor, and molding could be performed without drainage. Observation of the spray condition (pattern) revealed that the concentration distribution was uniform, the particle size was fine, the shape was fan-shaped and normal, and no deformation was observed. The surface of the molded product was smooth and no irregularities were observed. The curability was sufficient, and the physical property test results of the prepared sheet showed that all of the hardness, modulus, tensile strength, elongation, and tear strength were excellent, and that the mixing properties were also good.
実施例−3 実施例−1と同様のGX−7ガンを使用し、ミキシング
モジュールの断面図及び正面図が第5図及び第6図に示
された構造のものを使用した。オリフィスの数及び面積
比はA:B=1:1に設計し、表−2の略図に示すように、A
液(イソシアナート成分)用のオリフィスはお互いの穴
の位置を90度として4個開け、ミキシングチャンバーへ
の吐出角度は液が回転運動をする方向とし、B液(レジ
ン成分)用のオリフィスはお互いの位置を90度として4
個開け、液の吐出角度はミキシングチャンバーの中心部
に向う線上で回転運動は生じない状態とした。すなわち
A成分のみ回転し、B成分は回転しない状態で混合が行
われる設計とした。オリフィスの直径は全て0.406mmと
し、ミキシングチャンバーの直径は、3.175mmとした。
ガンの先端にはスプレーチップ(#212:扇状パターン)
を装着して成形を行った。Example 3 The same GX-7 gun as that of Example 1 was used, and the mixing module having the cross-sectional view and the front view shown in FIGS. 5 and 6 was used. The number and area ratio of the orifices were designed to be A: B = 1: 1, and as shown in the schematic diagram of Table-2,
The four orifices for the liquid (isocyanate component) are opened with the positions of the holes at 90 degrees to each other, the discharge angle to the mixing chamber is the direction in which the liquid rotates, and the orifices for the liquid B (resin component) are 4 with the position of 90 degrees
The liquid was ejected, and the discharge angle of the liquid was such that no rotational movement occurred on a line toward the center of the mixing chamber. That is, the design is such that mixing is performed in a state where only the A component rotates and the B component does not rotate. The diameter of all the orifices was 0.406 mm, and the diameter of the mixing chamber was 3.175 mm.
Spray tip at tip of gun (# 212: fan-shaped pattern)
And molding was performed.
原材料は、リムスプレーPD−190(A液:B液=1:1容積
比)を用い液温度をA液は65℃、B液50℃、吐出時の圧
力をそれぞれ112kg/cm2及び106kg/cm2の条件とした。そ
の結果は表−2にみる通り、タックフリー・タイムは12
〜14秒と速硬化であり、噴出スタート時及び終了時とも
縞模様は認められず、液切り無しに成形を行う事が可能
であった。スプレー状況(パターン)を観察したとこ
ろ、濃度分布は均一であり、粒子サイズも細かく更に形
状は扇型かつ正常であり変形等は認められなかった。成
形物の表面は平滑であり凹凸も認められなかった。硬化
性も十分であり、作成したシートの物性試験結果は硬
さ、モジュラス、引張り強さ、伸び及び引裂き強さのい
ずれも優れており、混合特性も良好である事を示してい
た。The raw materials used were rim spray PD-190 (liquid A: liquid B = 1: 1 volume ratio), the liquid temperature was 65 ° C for liquid A, 50 ° C for liquid B, and the discharge pressure was 112 kg / cm 2 and 106 kg /, respectively. cm 2 conditions. As shown in Table 2, the tack-free time was 12
The curing time was as fast as 1414 seconds, no stripe pattern was observed at the start and end of the jetting, and molding could be performed without draining. Observation of the spray condition (pattern) revealed that the concentration distribution was uniform, the particle size was fine, the shape was fan-shaped and normal, and no deformation was observed. The surface of the molded product was smooth and no irregularities were observed. The curability was sufficient, and the physical property test results of the prepared sheet showed that all of the hardness, modulus, tensile strength, elongation, and tear strength were excellent, and that the mixing properties were also good.
実施例−4 ガスマー社のDガンを使用し、ミキシングモジュール
は第7図(側面断面図)及び第8図(正面断面図)に示
した構造とし、オリフィスの数及び面積比はA液:B液=
1:1に設計したものを使用した。A液(イソシアナート
成分)用のオリフィスと、B液(レジン成分)用のオリ
フィスはそれぞれ側面に3個づつ開け、表−2に示すよ
うに、液の吐出角度は全てミキシングチャンバーの中心
部に向う線上とし、お互いの液が直接衝突し混合する状
態とした。Example-4 A D-Gun manufactured by Gasmer Co. was used, and the mixing module had the structure shown in FIG. 7 (side sectional view) and FIG. 8 (front sectional view), and the number and area ratio of the orifices were A liquid: B. Liquid =
The one designed at 1: 1 was used. The orifice for liquid A (isocyanate component) and the orifice for liquid B (resin component) are opened at three sides each, and as shown in Table-2, the discharge angles of the liquid are all at the center of the mixing chamber. The two liquids collided and collided with each other directly.
オリフィスのサイズは0.15mm×2mmとし、ミキシング
チャンバーの直径は、1.32mmとした。ガンの先端にはス
プレーチップを装着出来ない。原材料は、リムスプレー
PD−190(A液:B液=1:1容積比)を用い液温度をA液は
65℃、B液は50℃、噴出時の圧力をそれぞれ74kg/cm2及
び73kg/cm2の条件とした(本ガンの耐圧が70kg/cm2のた
め)。その結果は表−2にみる通り、タックフリー・タ
イムは13〜16秒と速硬化であり、噴出スタート時からA
成分とB成分が所定の混合比で混合された状態で吐出さ
れ、配合比の狂いまたは混合不良時に観察される縞模様
は認められず混合特性は良好であることが認められた。
又2液の混合が直接衝突によるため液に回転運動が残ら
ずスプレー状況も良好であった。成形物の表面はやや凹
凸であるが実用上は問題の無い優れたレベルであった。
硬化性も十分あり、作成したシートの物性試験結果は硬
さ、モジュラス、引張り強さ、伸び及び引裂き強さのい
ずれも問題無く、混合特性も良好である事を示してい
た。The size of the orifice was 0.15 mm × 2 mm, and the diameter of the mixing chamber was 1.32 mm. The spray tip cannot be mounted on the tip of the gun. Raw material is rim spray
Using PD-190 (Solution A: Solution B = 1: 1 volume ratio)
65 ° C., B solution was 50 ° C., and each condition of 74 kg / cm 2 and 73kg / cm 2 the pressure during jetting (for withstand voltage of the cancer of 70kg / cm 2). As shown in Table-2, the tack-free time was 13-16 seconds and the setting was fast, and A
The component and the B component were discharged in a state of being mixed at a predetermined mixing ratio, and there was no stripe pattern observed when the mixing ratio was out of order or when mixing was poor, and it was recognized that the mixing characteristics were good.
Further, since the mixing of the two liquids was caused by direct collision, no rotational movement was left in the liquids and the spraying condition was good. Although the surface of the molded product was slightly uneven, it was at an excellent level without any problem in practical use.
The curability was sufficient, and the physical property test results of the prepared sheet showed that there was no problem in any of hardness, modulus, tensile strength, elongation and tear strength, and that the mixing properties were good.
比較例−1 実施例−1と同様GX−7ガンを使用し、ミキシングモ
ジュールは同じガスマー社の#10タイプを使用した。A
液とB液の液流れ方向を示す略図は表−2の通りであ
る。主剤(イソシアナート成分)用のオリフィスは前方
に2個、レジン用のオリフィスは後方に2個開いており
それぞれの吐出角度はクリーニングロッドに対して直角
となっており、2液がミキシングチャンバーの中に平行
の流れで吐出する構造となっているため、いずれの液も
直接衝突することはなく又、回転も生じない。オリフィ
スの直径は全て0.194mmであった。成形試験の結果は表
−2にみる通り吐出量は5.1kg/分と実施例−1の約1.6
倍でありレイノズル数は高くなり実施例−1より有利で
ある。スプレー状況は粒子サイズも細かく、形状も扇型
で正常であったが、濃度分布は端部が濃くなっており、
さらに筋も入り不均一であった。タックフリー・タイム
は9〜11秒と実施例−1同等であったが、噴出スタート
時からA液とB液が所定の混合比で混合されておらず、
縞模様が認められると同時に表面のタックが強く時間が
経過しても解消しなかった。さらに終了時に噴出された
混合物もスタート時同様縞模様が発生し、タックも強く
何時まででもベタベタした状態であった。それ故、この
ミキシングモジュールでは液を捨てる事(液切り)無し
に成形を行うことは不可能であった。厚さ2mmシートの
成形に際し、液切りを実施したところ、歩留り率は45%
と実施例−1の約半分であった。Comparative Example-1 A GX-7 gun was used in the same manner as in Example-1, and the same mixing module # 10 type manufactured by Gasmer was used. A
Table 2 is a schematic diagram showing the liquid flow directions of the liquid and the B liquid. Two orifices for the main agent (isocyanate component) are open at the front, and two orifices for the resin are open at the back. The structure is such that the liquid is discharged in a flow parallel to the liquid, so that none of the liquids directly collides and no rotation occurs. All orifices had a diameter of 0.194 mm. As shown in Table 2, the discharge rate of the molding test was 5.1 kg / min.
The number is twice as high and the number of Reynolds nozzles is higher, which is more advantageous than Example-1. The spray condition was fine, the particle size was fine, the shape was fan-shaped and normal, but the concentration distribution was dark at the end,
In addition, the lines were uneven and uneven. The tack-free time was 9 to 11 seconds, which was equivalent to that of Example 1, but the liquid A and the liquid B were not mixed at a predetermined mixing ratio from the start of jetting.
At the same time that a striped pattern was observed, the tackiness on the surface was strong and it did not disappear even after a lapse of time. Further, the mixture ejected at the end also had a stripe pattern as in the start, and the tack was strong and sticky at any time. Therefore, in this mixing module, it was impossible to carry out molding without discarding the liquid (liquid drainage). When a 2mm-thick sheet was formed, the drainage rate was 45%.
And about half of Example-1.
物性試験結果は全ての項目が低めになっており、混合
効率も悪いと考えられる。In the physical property test results, all items were lower, and the mixing efficiency is considered to be poor.
比較例−2 ガスマー社のDガンにミキシングモジュール(52L)
を取り付け使用した。このミキシングモジュールのA液
とB液の液流れを示す略図は表−2に示す通りである。
又このミキシングモジュールは一体化した構造で両サイ
ドに長方形で同口径のオリフィスを各1個有している。
オリフィスサイズは、0.3×3mmで機械洗浄される円筒形
のミキシングチャンバーに同方向の回転が発生する向き
で吐出する。マシン本体及び原料は実施例−6と同様と
した。その結果は表−2にみる通り、噴出量は3.2kg/分
と中程度の噴出量であった。硬化・反応性はタックフリ
ー・タイムが14〜18秒とやや遅れ気味であった。スプレ
ー状況を観察したところ、粒子サイズが大きいためシー
トの平滑性は悪く表面の凹凸が大きかった。スプレー状
況は濃度分布に差があり端部に筋が入ると同時に形状が
変形した。このガンはロッドの位置を調節することによ
りミキシングチャンバーの長さを変化させ、スプレー状
況を変化させることが出来るので実施してみたが、変形
及び濃度分布はあまり改善されなかった。物性試験結果
は、硬さ、モジュラス、引張り強さ、伸び及び引裂き強
さのいずれの項目もかなり低く攪拌・混合が十分行われ
ていない結果であった。Comparative Example-2 Mixing module (52L) for D-Gun manufactured by Gasmer
Was used. The schematic diagram showing the liquid flows of the A liquid and the B liquid in this mixing module is as shown in Table-2.
The mixing module has an integrated structure and has one rectangular orifice on each side having the same diameter.
The orifice size is 0.3 × 3 mm, and discharge is performed in the direction that rotation in the same direction occurs in a cylindrical mixing chamber that is machine-cleaned. The machine body and raw materials were the same as in Example-6. As shown in Table 2, the ejection volume was 3.2 kg / min, which was a moderate ejection volume. The cure / reactivity was slightly delayed with a tack-free time of 14 to 18 seconds. Observation of the spraying state revealed that the sheet had poor smoothness and large surface irregularities due to the large particle size. The spray condition showed a difference in the concentration distribution, and the shape was deformed at the same time as the streaks entered the end. This gun was implemented because the position of the rod could be adjusted to change the length of the mixing chamber and change the spray conditions, but the deformation and concentration distribution were not significantly improved. The results of the physical property tests were such that all of the items of hardness, modulus, tensile strength, elongation and tear strength were considerably low and stirring and mixing were not sufficiently performed.
〔発明の効果〕 2成分型速硬化材料を機械洗浄式衝突混合で混合する
方法において、2液を衝突させるミキシングチャンバー
部分を一体成形品とした本発明の構造とすることで、吐
出のスタート時及び終了時にも所定配合比を確保するこ
とが可能となり、液切り操作が不要となることにより、
1)歩留り向上 2)製品の物性の安定化 3)作業性
の向上を達成することが出来る。またスプレー成形の場
合には、スプレー状況(パターン)が常に安定してお
り、作業条件の調節が不要である。 [Effect of the Invention] In the method of mixing the two-component type fast-curing material by the mechanical cleaning type collision mixing, the structure of the present invention, in which the mixing chamber portion where the two liquids collide with each other, is made into an integrally molded product, so that when the discharge starts And at the end, it is possible to secure a predetermined blending ratio, eliminating the need for draining operation,
1) Improvement in yield 2) Stabilization of physical properties of products 3) Improvement in workability can be achieved. In the case of spray molding, the spray condition (pattern) is always stable, and adjustment of working conditions is unnecessary.
第1図及び第2図は、実施例−1で使用した改良GX−7
ガン用ミキシングモジュールの構成を示す断面図及び正
面図、第3図及び第4図は実施例−2で用いた改良GX−
ガン用ミキシングモジュールの構成を示す断面図及び正
面図、第5図及び第6図は更に実施例−3で使用した別
の改良GX−7ガン用ミキシングモジュールを示す断面図
及び正面図、第7図及び第8図は実施例−4に示した、
Dガン用の改良ミキシングモジュールを示す側面及び正
面断面図である。1 and 2 show the modified GX-7 used in Example-1.
FIG. 3 is a cross-sectional view and a front view showing the structure of the gun mixing module, and FIGS. 3 and 4 show the modified GX- used in Example-2.
FIG. 5 and FIG. 6 are sectional and front views showing another modified GX-7 gun mixing module used in Example-3, and FIG. FIG. 8 and FIG. 8 show in Example-4.
It is the side and front sectional drawing which shows the improved mixing module for D guns.
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B29B 7/76 B05B 7/04,15/02 B01F 5/02 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) B29B 7/76 B05B 7 / 04,15 / 02 B01F 5/02
Claims (1)
口より吐出し、衝突混合方式により混合する装置におい
て、該2液を衝突させるミキシングチャンバー部分が、
一体成形になるモジュールであり、 (1)A液用とB液用にそれぞれ2個以上の吐出口(オ
リフィス)を有し、 (2)A液及びB液の吐出口の位置が同一円周上にあ
り、 (3)A液及びB液の両方又は、いずれか一方がミキシ
ングチャンバーの中心部方向に直線的に吐出され、 (4)A液及びB液の吐出口の合計開口面積比がA液及
びB液の配合比の±50%以内とすること を特徴とする改良された機械洗浄式衝突混合型ミキシン
グモジュール。1. An apparatus for discharging a liquid A and a liquid B of a two-liquid mixed-curable resin from a discharge port and mixing them by a collision mixing method, wherein a mixing chamber portion for causing the two liquids to collide is provided.
(1) It has two or more discharge ports (orifices) for liquid A and liquid B, respectively. (2) The positions of the liquid A and liquid B discharge ports are the same circumference. (3) Both or either solution A and solution B are discharged linearly toward the center of the mixing chamber. (4) The total opening area ratio of the discharge ports of solution A and solution B is An improved machine-cleaning collision mixing type mixing module, characterized in that the mixing ratio of the liquid A and the liquid B is within ± 50%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2210182A JP2919927B2 (en) | 1990-08-10 | 1990-08-10 | Improved mechanical cleaning collision mixing type mixing module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2210182A JP2919927B2 (en) | 1990-08-10 | 1990-08-10 | Improved mechanical cleaning collision mixing type mixing module |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0493205A JPH0493205A (en) | 1992-03-26 |
JP2919927B2 true JP2919927B2 (en) | 1999-07-19 |
Family
ID=16585143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2210182A Expired - Lifetime JP2919927B2 (en) | 1990-08-10 | 1990-08-10 | Improved mechanical cleaning collision mixing type mixing module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2919927B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4547207B2 (en) * | 2004-08-02 | 2010-09-22 | 新日本製鐵株式会社 | Collision mixing spray gun and coating method using the same |
JP2009154120A (en) * | 2007-12-27 | 2009-07-16 | Dyflex Corp | Mixing type spray apparatus for waterproof material |
US8777478B2 (en) * | 2008-11-27 | 2014-07-15 | Inoac Corporation | Mixing head apparatus for high agitation and smooth flow of liquid blend and molding method using the same |
US8889604B2 (en) * | 2010-07-30 | 2014-11-18 | Chevron U.S.A. Inc. | Method of preparing greases |
-
1990
- 1990-08-10 JP JP2210182A patent/JP2919927B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0493205A (en) | 1992-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4239732A (en) | High velocity mixing system | |
KR101450122B1 (en) | Pressure swirl atomizing nozzle for spraying a curable composition and associated method and use | |
US5299740A (en) | Plural component airless spray gun with mechanical purge | |
KR101771587B1 (en) | Ejecting angle adjustable two-component paint lane device and method for lane painting using thereof | |
US5829679A (en) | Plural component airless spray gun with mechanical purge | |
JP2009517214A (en) | Multi-component liquid spray system | |
JPH091594A (en) | Solvent cleaning type mixing head for reaction injection molding | |
EP1414584B1 (en) | Air-assisted, low pressure spray equipment having an improved spray nozzle | |
JP2003502182A (en) | Valve structure for discharging dye into manifold | |
JP2919927B2 (en) | Improved mechanical cleaning collision mixing type mixing module | |
US6764026B2 (en) | Process for spraying one-component compositions with air-assisted, low pressure equipment having an improved spray nozzle | |
US6572031B2 (en) | Air-assisted, low pressure spray equipment having an improved spray nozzle | |
WO2002085593A1 (en) | Spray nozzle for a two-component air-assisted, low pressure spray system | |
JPH10315226A (en) | Mixing module for spray gun with improved two-liquid mixing properties | |
JP2930392B2 (en) | Improved collision mixing type mixing module | |
US4452919A (en) | High velocity mixing method | |
US6616068B2 (en) | Spray nozzle for two-component air-assisted, low pressure spray systems | |
US5678764A (en) | Internal mix spraying system | |
JP3023399B2 (en) | Two-part mixing device | |
JP3927026B2 (en) | Paint feeder | |
JP3326493B2 (en) | Mixed color coating method and mixed color coating equipment | |
JPH11267554A (en) | Method and apparatus for two-pack mixing spray | |
US11389812B2 (en) | Measuring and mixing devices | |
KR20180106578A (en) | Painting method using paint for road surface mark and the painting apparatus thereof | |
JP4358585B2 (en) | Paint supply device and valve unit thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 12 |