JP3927026B2 - Paint feeder - Google Patents

Paint feeder Download PDF

Info

Publication number
JP3927026B2
JP3927026B2 JP2001390179A JP2001390179A JP3927026B2 JP 3927026 B2 JP3927026 B2 JP 3927026B2 JP 2001390179 A JP2001390179 A JP 2001390179A JP 2001390179 A JP2001390179 A JP 2001390179A JP 3927026 B2 JP3927026 B2 JP 3927026B2
Authority
JP
Japan
Prior art keywords
paint
cylinder
component
pressure
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001390179A
Other languages
Japanese (ja)
Other versions
JP2003190847A (en
Inventor
村 孝 夫 野
盛 昌 人 山
村 誠 市
野 隆 夫 上
川 勝 浩 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinity Industrial Corp
Original Assignee
Trinity Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinity Industrial Corp filed Critical Trinity Industrial Corp
Priority to JP2001390179A priority Critical patent/JP3927026B2/en
Publication of JP2003190847A publication Critical patent/JP2003190847A/en
Application granted granted Critical
Publication of JP3927026B2 publication Critical patent/JP3927026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Nozzles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二種以上の塗料成分を所定の比率で混合して調整した塗料、特に主剤と硬化剤からなる水性二液混合型塗料を、塗装機や、これに装備もしくは脱着自在に装着される塗料タンクに送給する塗料送給装置に関する。
【0002】
【従来の技術】
近年では地球的規模における環境保護の観点から、塗装工程における排出有機溶剤規制や塗料のVOC規制が高まり、塗装業界においてもこのような要請にこたえるべく、有機溶剤を使用しない水性塗料が開発され、その市場規模も拡大している。
【0003】
自動車ボディの塗装においては、下塗り、中塗り、上塗りのうち、下塗りはもともと水性塗料を電着塗装により塗装しており、従来有機溶剤系塗料を使用していた中塗りでも、今ではそのほとんどが水性塗料や粉体塗装に切り替わりつつある。
【0004】
また、上塗りも、一部の特殊な色を除きベースコートはそのほとんどが水性塗料や粉体塗料に替わりつつあるが、高級品質が要求されるクリアコートだけは、外観性、耐候性、耐水性、耐化学薬品性、耐酸性雨性、耐スリキズ性等において高度な塗膜品質を満たす水性塗料がなく、有機溶剤系の一液型又は二液混合型塗料を使用せざるを得ないのが現状であった。
【0005】
しかし最近になって、有機溶剤系二液混合型塗料に劣らない物性を有する強固な塗膜の水性クリアコートとして、主剤と硬化剤を混合して使用する水性二液混合型塗料が開発された。
この水性二液混合型塗料は、水酸基を持った水溶性もしくは水分散型ポリオールを基体樹脂とする主剤に、水分散可能なポリイソシアネートを主成分とする硬化剤を混合して架橋・硬化させるものである。
【0006】
【発明が解決しようとする課題】
しかしながら、この種の水性二液混合型塗料は、主剤となる水分散型ポリオールが親水性であるのに対し、硬化剤となるポリイソシアネートが疎水性であるため、水と油のように分離し易く、均一に混合させることが困難であるという問題があった。
【0007】
このため、ブレンダー等で予め機械的に攪拌混合したものを塗装機に供給するようにしているが、攪拌混合すると同時に主剤と硬化剤が硬化反応を開始してしまうので、自動車塗装のように連続して長時間塗装する場合は、供給している間に徐々に塗料が硬化していき、塗料粘度が変化して塗装品質が一定でなくなったり、塗料供給配管内に残存する塗料が硬化して目詰まりを起したり、塗装機から吐出されて塗膜面に付着してブツと称する塗装不良を生ずるおそれがあった。
【0008】
一方、有機溶剤系二液混合型塗料は、塗料供給流路中にスタティックミキサを介装しておけば均一に混合可能であるため、予め混合しておかなくても、使用する直前に混合しながら塗料供給することが可能であったが、水性二液混合型塗料は上述のように混ざり難いため、塗料供給流路中にスタティックミキサを介装しても、塗料を均一に混合させて十分な塗膜性能を得ることができなかった。
【0009】
また、二液混合型塗料は主剤と硬化剤の混合比が変化すると、混合された塗料の物性も変化するので、塗装品質を均一に維持するためには、混合比を正確にコントロールする必要があり、その一方で、制御が極めて簡単で、塗装ラインに設置したときに邪魔にならず、しかも、設備費やランニングコストが安価であることが望ましい。
【0010】
そこで本発明は、水性二液混合型塗料のように主剤と硬化剤が混ざり難い塗料でも、これらを均一に混合しながら塗装機や塗料タンクなどに送給することができ、しかも、制御が極めて簡単で、小型、安価な塗料送給装置を提供することを技術的課題としている。
【0011】
【課題を解決するための手段】
この課題を解決するために、請求項1の発明は、二種以上の塗料成分を所定の比率で混合して調整された塗料を塗装機やこれに装備されもしくは脱着自在に装着される塗料タンクに送給する塗料送給装置において、前記塗料成分を各々その混合比率に応じた分量ずつ個別に且つ同時に圧し出す計量シリンダと、当該シリンダから圧し出された前記塗料成分を通過させることによって予備混合させる管路攪拌型予備混合器と、当該予備混合器で前記塗料成分を予備混合した塗料を前記塗装機又は塗料タンクへ圧送する圧送用シリンダと、当該シリンダから圧送される塗料の流体圧により当該塗料を噴流化させて各塗料成分を均一に拡散させる噴射型拡散混合器を備えたことを特徴とする。
【0012】
この請求項1の発明を用いて、水性二液混合型塗料の塗料成分となる主剤及び硬化剤を混合して送給する場合について説明すると、計量シリンダから主剤及び硬化剤がその混合比率に応じた分量ずつ個別に且つ同時に圧し出され、各塗料成分がその混合比率に応じた一定流量比で予備混合器に送給されて予備混合され、これによって各塗料成分が均一に分散される。
【0013】
したがって、予備混合器で混合された塗料は、各塗料成分を均一に分散させた状態で圧送用シリンダに充填され、その混合比率も常に一定に維持されることになる。
【0014】
そして、このようにして塗料成分を均一に分散させた塗料が圧送用シリンダ内に一時的に蓄えられるので、その時間を利用して各塗料成分の境界面では分子拡散が進み、各塗料成分同士が馴染んでくる。
【0015】
ただし、この時点では均一に分散しているといっても各塗料成分の液滴の粒径が、まだ比較的大きく、このまま塗装しても十分な塗膜性能が得られない。
【0016】
そこで、圧送用シリンダから塗装機や塗料タンクに対して塗料を圧送すると、その塗料が噴射型拡散混合器で噴流化され、粒径の大きな各塗料成分同士が微粒化して拡散するので、親水性主剤と疎水性硬化剤などの混ざり難い塗料成分でも均一に混合される。
【0017】
このように予備混合−噴射拡散混合の2段階で各塗料成分同士が均一に混合されて送給されるので、塗料タンクに塗料を充填する場合はもちろんのこと、塗装機に塗料を直接送給して長時間に連続して塗装する場合にも、各塗料成分を塗装機の直前で均一に混合しながら送給することができ、予めブレンダなどにより機械的に混合したものを蓄えておく必要がない。
【0018】
請求項2の発明は、計量シリンダが、前記塗料成分を各々その混合比率に応じた分量ずつ個別に充填する二以上のバレルを具備し、これら各バレルに充填された塗料成分を圧し出す各ピストンが、同一のストローク長を有すると共に、同期的に起動及び停止せられるように成されている。
【0019】
この請求項2の発明によれば、主剤及び硬化剤等の塗料成分をその混合比率に応じた分量ずつ各バレルに個別に充填し、各ピストンを同一のストロークで同期的に起動及び停止させるだけで、塗料成分が各バレルから混合比率に応じた流量で圧し出されるので、面倒な制御は一切不要となる。
【0020】
請求項3の発明は、圧送用シリンダへの塗料の充填及び当該シリンダからの塗料の圧送に同期させて、前記各計量シリンダからの塗料成分の圧し出し及び当該シリンダへの塗料成分の充填を交互に行うようになっている。
【0021】
この請求項3の発明によれば、圧送用シリンダから塗料が圧送されている間に各計量シリンダに塗料成分が充填され、圧送用シリンダが空になると同時に、各計量シリンダから塗料成分が圧し出されて圧送用シリンダに塗料が充填されるので、圧送用シリンダは塗料の充填と圧送を連続してインターバルを設けることなく交互に行うことができ、したがって、タクトタイムに無駄がない。
【0022】
また、請求項4の発明のように、各シリンダを一つのシリンダユニットに配設し、シリンダユニットにスタティックミキサ及び噴射型拡散混合器を搭載すれば、これらが一体に設けたオールインワンに形成されるので、装置全体の小型化・軽量化が図られ、全体としてよりコンパクトになる。
【0023】
請求項5の発明は、各塗料成分を混合した塗料が流れる予備混合器、圧送用シリンダ、噴射型拡散混合器及びこれらを接続する配管からなる一連の流路がその上流から下流に至るまで複数に分断されると共に、分断された夫々の流路に洗浄流体を個別に導入してその流路内を洗浄する洗浄系を備えている。
【0024】
この請求項5の発明によれば、分断された夫々の流路を同時に洗浄できるので、計量シリンダから水性二液混合型塗料の主剤及び硬化剤を供給する場合でも、スタティックミキサから塗料タンクに至る流路内に残存する二液混合型塗料が硬化する前に、これを短時間で簡単に洗浄除去することができる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて具体的に説明する。
図1は本発明に係る塗料送給装置の一例を示す流体回路図、図2はその外観図、図3はその動作を示す説明図、図4は洗浄系を示す説明図である。
【0026】
図1〜図4に示す塗料送給装置1は、主剤と硬化剤を塗料成分とする水性二液混合型塗料を所定の比率で混合し、塗装機に脱着自在に装着されるカートリッジ式の塗料タンク2に送給して充填するタイプのものである。
【0027】
この塗料送給装置1は、シリンダユニット3に、主剤供給源S及び硬化剤供給源Sから送給される主剤及び硬化剤を各々その混合比率に応じた分量ずつ個別に且つ同時に圧し出す計量シリンダ4と、当該計量シリンダ4から圧し出された主剤及び硬化剤を通過させることによって予備混合させるスタティックミキサ(管路攪拌型予備混合器)5と、当該スタティックミキサ5で主剤及び硬化剤を予備混合した塗料を塗料タンク2へ送給する圧送用シリンダ6と、当該シリンダ6から塗料タンク2へ圧送される塗料の流体圧により当該塗料を噴流化させて各塗料成分を均一に拡散させるジェットディスパージョンと称する噴射型拡散混合器7が設けられている。
【0028】
シリンダユニット3は略直方体のブロック状に形成されており、計量シリンダ4のバレルB及びBが、圧送用シリンダ6のバレルBを挟んでその両側に配されるように互いに平行に形成されている。
また、各シリンダ4及び6は塗料成分及び塗料を圧し出すときに油圧駆動されるピストンP、P及びPを備えている。
【0029】
そして、計量シリンダ4は、ピストンP及びPを境にシリンダユニット3のヘッド3H側が作動油室8、ボトム3B側が塗料成分室9に形成されている。
また、圧送用シリンダ6は、ピストンPを境にシリンダユニット3のヘッド3H側が塗料室10、ボトム3B側が作動油室11に形成されている。
【0030】
計量シリンダ4の各バレルB及びBは、主剤及び硬化剤を各々その混合比率に応じた分量ずつ個別に充填し得る容量に形成され、各バレルB及びBに充填された主剤及び硬化剤を圧し出す各ピストンP及びPが、同一のストローク長を有すると共に、同期的に起動及び停止せられるように成されている。
【0031】
すなわち、各ピストンP及びPのストローク長に対する夫々の圧出容量が、混合比率に応じて設定されており、ストローク長が同一なことから、各バレルB及びBから押し出される主剤及び硬化剤の流量比は、混合比率に等しくなる。
【0032】
これら各ピストンP及びPは、ピストンロッド12を介してビーム13に一体に取り付けられ、バレルB及びBの作動油室8に供給される作動油の供給圧及び塗料成分室9への塗料成分供給圧により、互いに同期して同一のストロークで往復駆動される。
【0033】
また、作動油室8には作動油の流入出口8aが形成され、塗料成分室9には塗料成分の流入口9in及び流出口9outが形成されている。
そして、各塗料成分室9の流入口9inは、主剤(硬化剤)、洗浄エア、洗浄液を選択的に供給するバルブ装置VA(VA)の主剤バルブ14(硬化剤バルブ15)を介して主剤供給源S(硬化剤供給源S)に接続されており、流出口9outは、バルブ装置VAの主剤バルブ16(硬化剤バルブ17)を介してスタティックミキサ5のシリンダボトム3B側に形成された流入口5inに接続されている。
【0034】
バルブ装置VAは、スタティックミキサ5へ通ずる流路を切り換えるもので、計量シリンダ4から圧し出された主剤及び硬化剤と、洗浄エアと、洗浄液とを選択的にスタティックミキサ5内に供給すると共に、計量シリンダ4から排出された洗浄液をドレンに排出できるようになっている。
また、スタティックミキサ5のシリンダヘッド3H側に形成された流出口5outが、オンオフバルブ18を介して圧送用シリンダ6に接続されている。
【0035】
スタティックミキサ5は、主剤及び硬化剤が合流して流れる流路内に、その流れを繰返し分割し、置換し、重合せて混合する多数のエレメントが流れの方向に沿って配されてなる。
【0036】
圧送用シリンダ6は、前記各ピストンP及びPが1ストロークしたときに送給される主剤及び硬化剤の総供給量に等しい容量に形成されると共に、バレルBに充填された塗料を圧し出す各ピストンPが、前記各ピストンP及びPと同一のストローク長で往復されるようになっている。
そして、このピストンPは、バレルBの塗料室10に供給される塗料供給圧及び作動油室11に供給される作動油供給圧により往復駆動される。
【0037】
なお、主剤及び硬化剤の混合比が例えば5:2であるときに、各シリンダ4及び6の各ピストンP〜Pを単位長さ動かしたときに圧し出される主剤:硬化剤:塗料の流量比が5:2:7になるように各バレルB〜Bが設計されている。
【0038】
また、バレルBの容量は任意であるが、本例では,ピストンPを3往復させたときに塗料タンク2への混合塗料の充填が完了されるように、塗料タンク2の約1/3程度と小型に形成されている。
【0039】
この圧送用シリンダ6の塗料室10には塗料流入口10in及び流出口10outが形成され、作動油室11には作動油の流入出口11aが形成されている。塗料室10の流出口10outは、バルブ装置VAの塗料バルブ19を介して噴射型拡散混合器7に接続されている。
【0040】
このバルブ装置VAは、圧送用シリンダ6の流出口10outを噴射型拡散混合器7側とドレン側に切換接続すると共に、洗浄エア及び洗浄液を選択的に噴射型拡散混合器7に供給するようになっている。
【0041】
噴射型拡散混合器7は、流入口7inと流出口7outの間に小径オリフィス7aが形成されている。本例では、直径0.2〜0.5mm程度に形成された同軸の対向型小径オリフィス7aが形成されてなり、圧送用シリンダ6から1〜10MPaで供給される二液混合型塗料がオリフィス7aを通過するときに噴流化される。
【0042】
これにより、塗料中に含まれる主剤及び硬化剤は微粒化状態となって拡散されるので、二液混合型塗料がより均一に混合されることとなり、このように十二分に混合された塗料が塗料吐出ポート20に接続された塗料タンク2へ送給される。
【0043】
また、前記各シリンダ4及び6に作動油を切換供給すると共に、各シリンダ4及び6から排出される作動油を回収する作動油供給系Dは、作動油タンク21からポンプ22により1〜10MPaの供給圧で作動油を供給する作動油供給管23と、作動油タンク21に作動油を戻すドレン24の夫々が、切換弁25を介して、計量シリンダ4の各作動油室8に接続された低圧配管26と、圧送用シリンダ6の作動流体室11に連通された高圧配管27に切換可能に接続されている。
【0044】
なお、低圧配管26には、設定圧1MPa以下の減圧弁28が介装され、計量シリンダ4から圧し出される主剤及び硬化剤の供給圧を低圧に維持するように成されている。
【0045】
そして、各シリンダ4及び6に対して作動油供給系Dにより作動油の供給/排出を所定のタイミングで行うと同時に、各バルブ装置VA〜VA、オンオフバルブ18の開閉制御を行うことにより、主剤及び硬化剤の充填/圧出、塗料の充填/圧出を行う。
【0046】
以上が本発明の一例であって、次にその作用について図3を伴って説明する。
まず、図3(a)に示すように、計量シリンダ4の作動油室8をドレン24に接続し、バルブ装置VA及びVAの主剤バルブ14及び硬化剤バルブ15を開き、夫々の塗料成分室9に親水性主剤及び疎水性硬化剤を充填する(図3(b))。
【0047】
そして、バルブ装置VA及びVAの各バルブを閉じ、スタティックミキサ5の流入口5inに形成されたバルブ装置VAの主剤バルブ16及び硬化剤バルブ17を開き、作動油供給系Dの切換弁25を操作して作動油供給管23を低圧配管26に接続し、圧送用シリンダ6の高圧配管27をドレン24に接続する。
【0048】
これにより、計量シリンダ4に1MPa以下の低圧で作動油が供給され、ピストンP及びPが同期して一体的にシリンダボトム3b側に摺動し、親水性主剤及び疎水性硬化剤がスタティックミキサ5に圧し出されて予備混合され、圧送用シリンダ6のバレルB内に流入されていく(図3(c))。
【0049】
このとき、ピストンP及びPが同期しているので、押出速度が変化しても、計量シリンダ4から供給される主剤及び硬化剤の流量比は常に混合比に等しい。
そして、主剤及び硬化剤がその混合比率に応じた一定流量比でスタティックミキサ5に送給されると、主剤及び硬化剤は均一に分散された状態で圧送用シリンダ6に流入することとなる。
【0050】
したがって、圧送用シリンダ6内には、予め設定された混合比率に維持されて混合された主剤及び硬化剤が、均一に分散された状態で充填される。しかも、主剤及び硬化剤は低圧で供給されているので、主剤及び硬化剤がスタティックミキサ5内を通過する際や、混合塗料が圧送用シリンダ6に流入される際に、気泡が生じることもない。
【0051】
そして、このようにして主剤及び硬化剤を均一に分散させた塗料が圧送用シリンダ内に一時的に蓄えられるので、その時間を利用して主剤及び硬化剤の境界面では分子拡散が進み、主剤及び硬化剤が各塗料成分同士が馴染んでくる。
【0052】
ただし、主剤及び硬化剤が夫々親水性及び疎水性であるため、スタティックミキサ5で呼び混合させただけでは、個々の液滴の直径が最大0.5mm程度と大きく、このまま塗装しても十分な塗膜性能が得られない。
そこで、圧送用シリンダ6への充填が完了する(図3(d))と、作動油供給系Dの切換弁25を操作して、作動油供給管23を高圧配管27に接続すると共に、各計量シリンダ4の作動油室8をドレン24に接続する。
【0053】
同時に、オンオフバルブ18を閉じて圧送用シリンダ6からの逆流を阻止し、噴射型拡散混合器7に連通されるバルブ装置VAの塗料バルブ19を開く。
さらに、各計量シリンダ4に主剤及び硬化剤を供給するバルブ装置VA及びVAの主剤バルブ14及び硬化剤バルブ15を開く。
【0054】
これにより、まず、圧送用シリンダ6の作動油室9に1〜10MPaの高圧で作動油が供給され、塗料室10から噴射型拡散混合器7に対して作動油の供給圧と等しい圧力で二液混合型塗料が送り出される(図3(e))。
【0055】
噴射型拡散混合器7の流入口7inから1〜10MPaの高圧で流入された二液混合型塗料は、直径0.2〜0.5mm程度に形成された同軸の対向型小径オリフィス7aに向かって徐々に高圧となり、小径オリフィス7aを通過する際に噴流化される。
これにより、塗料中に含まれる主剤及び硬化剤は微粒化状態となって拡散されるので、混ざり難い親水性主剤及び疎水性硬化剤でも均一に拡散混合されて、これが塗料充填ポート20に接続された塗料タンク2へ供給される。
【0056】
このように予備混合−噴射拡散混合の2段階で各塗料成分同士が均一に混合されて送給されるので、塗料タンク2に塗料を充填する場合はもちろんのこと、塗装機に塗料を直接送給して長時間連続して塗装する場合にも、各塗料成分を塗装機の直前で均一に混合しながら送給することができ、予めブレンダなどにより機械的に混合したものを蓄えておく必要がない。
【0057】
なお、圧送用シリンダ6から二液混合型塗料を圧し出して塗料タンク2に充填している間に、計量シリンダ4に対し主剤及び硬化剤が供給され、夫々の塗料成分室9に主剤及び硬化剤が充填されていく(図3(e))。
このとき、各計量シリンダ4への主剤及び硬化剤の供給圧が低くても、夫々の作動油はドレン24に逃がされるので、圧送用シリンダ6からの塗料の圧しだしが完了するまでに短時間で充填することができる。
【0058】
また、圧送用シリンダ6の容量は塗料タンク21/3であるから、圧送用シリンダ6内の混合塗料の押出が完了すると、直ちに、各計量シリンダ4から主剤及び硬化剤を圧し出して、混合塗料を圧送用シリンダ6に充填し、これを再び圧し出して塗料タンク2に供給する手順を3回繰返して、ピストンPを合計3往復させれば、塗料タンク2への混合塗料の充填が完了する(図3(b)〜(e))。
【0059】
このように、圧送用シリンダ6から混合塗料が圧し出されている間に、各計量シリンダ4に主剤及び硬化剤が充填されるので、圧送用シリンダ6からの塗料の押出が完了すると同時に、圧送用シリンダ6に塗料を充填開始することができる。
【0060】
したがって、圧送用シリンダ6から、塗料の充填と圧送との間にインターバルを設けることなく、これらを連続して交互に行うことができ、したがって、タクトタイムに無駄がない。
また、一の塗料タンク2について混合塗料の充填が完了した後、次に待機している空の塗料タンク2を塗料吐出ポート20にセットしながら、混合塗料を圧送用シリンダに充填することができるので、塗料タンク2を交換して充填開始するまでのタクトタイムも短縮することができる。
【0061】
次いで、この塗料送給装置1を洗浄する場合はバルブ装置VA〜VAを操作することにより、図4に示すように、流路を上流側から下流側へ4つの洗浄系F〜Fに分断する。
各洗浄系F〜Fには、夫々の上流側に配された各バルブ装置VA〜VAから洗浄液・洗浄エアが導入され、その洗浄廃液が、洗浄系F〜Fでは下流側のバルブ装置VA、VAからドレンへ排出され、洗浄系Fでは塗料タンク2が接続されていない充填ポート20から外部に排出される。
【0062】
具体的には、洗浄系F及びFは、バルブ装置VA及びVAから各計量シリンダ4内を通ってバルブ装置VAのドレンへ至る流路を洗浄し、洗浄系Fは、バルブ装置VAからスタティックミキサ5及び圧送用シリンダ6内を通ってバルブ装置VAのドレンへ至る流路を洗浄し、洗浄系Fは、バルブ装置VAから噴射型拡散混合器7内を通って塗料充填ポート6に至る流路を洗浄する。
【0063】
このように、流路を複数の洗浄系F〜Fに分断して、夫々を同時に洗浄することができるので、塗料送給装置1全体を、迅速且つ確実に洗浄することができ、必要に応じて任意のタイミングで洗浄を行うことにより、二液混合型塗料がスタティックミキサ5、圧送用シリンダ6、噴射型拡散混合器7やこれらを接続する配管内などに残留して硬化することを未然に防止することができる。
【0064】
なお、作動油供給系Dは、一つのポンプ22で各シリンダ4、6に対し作動油を供給する場合に限らず、計量シリンダ4に低圧で作動油を供給するポンプを設けた系と、圧送用シリンダ6に高圧の作動油を供給するポンプを設けた系を並設してもよい。
さらに、計量シリンダ4から塗料成分を低圧で圧し出し、圧送用シリンダ6から二液混合型塗料を高圧で圧し出す場合に限らず、1MPa程度の一定圧力で供給する場合でもよい。
【0065】
また、圧送用シリンダ6のピストンロッド(図示せず)を、計量シリンダ4のピストンロッドR及びRと共にビーム13に一体的に取り付けておけば、全てのピストンP〜Pを同期させて同じストロークで摺動させることもできる。
【0066】
これによれば、各ピストンP〜Pが同期して後退するときに、各計量シリンダ4から主剤及び硬化剤が混合比に応じた所定流量比で送り出される同時に、圧送用シリンダ6に混合塗料が充填される。
また、各ピストンP〜Pが同期して前進するときに、圧送用シリンダ6から塗料タンク2に混合塗料が圧し出されると同時に、各計量シリンダ4に主剤及び硬化剤が送給される。
このように、各ピストンP〜Pを同期させて同じストロークで進退させるだけで、主剤及び硬化剤が所定の混合比で混合されるので、その流量制御及びタイミング制御がより簡単になる。
【0067】
さらに、上述の説明では、主剤と硬化剤からなる二液混合型塗料について説明したが、複数の主剤と硬化剤、主剤と添加剤など、二種以上の塗料成分を混合する任意の多成分混合型塗料に適用し得る。
【0068】
さらにまた、本発明の塗料送給装置1は、塗装機内に装備または装着される塗料タンク2に塗料を充填させる場合に限らず、塗料の供給を受けながら塗装を行う塗装機へ直接塗料を供給する塗料供給装置として使用することもできる。
【0069】
【発明の効果】
以上述べたように、本発明によれば、主剤及び硬化剤等の塗料成分が、計量シリンダからその混合比率に応じた分量ずつ個別に且つ同時に圧し出されるので、各塗料成分がその混合比率に応じた一定流量比で予備混合器に送給されて均一に分散され、その塗料を圧送用シリンダに充填した後、塗装機や塗料タンクに対して圧送すると、その塗料が噴射型拡散混合器で噴流化され、粒径の大きな各塗料成分同士が微粒化して拡散するので、親水性主剤と疎水性硬化剤などの混ざり難い塗料成分でも均一に混合した状態で塗料タンクに充填することができるという大変優れた効果を奏する。
【0070】
このように予備混合−噴射拡散混合の2段階で各塗料成分同士が均一に混合されて送給されるので、塗料タンクに塗料を充填する場合はもちろんのこと、塗装機に塗料を直接送給して長時間に連続して塗装する場合にも、予めブレンダなどにより機械的に混合したものを蓄えておくまでもなく、各塗料成分を塗装機や塗料タンクの直前で均一に混合しながら送給することができるという効果がある。
【0071】
また、計量シリンダから主剤及び硬化剤等の塗料成分が、その混合比率に応じた分量ずつ圧し出されるので、面倒な流量制御は一切不要になるという効果もある。
このとき、例えば、計量シリンダとして、同一のストロークで同期的に起動及び停止されるピストンを備えると共に、主剤及び硬化剤等の塗料成分をその混合比率に応じた分量ずつ個別に充填可能な容積のバレルを用いれば、ピストンを同期させて動かすだけで各塗料成分をその混合比率に応じた流量比で圧し出すことができ、ピストンの駆動制御も極めて簡単になるという効果がある。
【0072】
さらに、圧送用シリンダへの塗料の充填及び当該シリンダからの塗料の圧送に同期させて、各計量シリンダからの塗料成分の圧し出し及び当該シリンダへの塗料成分の充填を交互に行えば、圧送用シリンダから塗料を圧送している間に各計量シリンダに塗料成分が充填され、圧送用シリンダが空になると同時に、各計量シリンダから塗料成分が圧し出されて圧送用シリンダに塗料が充填されるので、圧送用シリンダは塗料の充填と圧送との間にインターバルを設けることなまでもなく、充填と圧送を連続して交互に行うことができ、したがって、タクトタイムに無駄がなく、作業効率に優れる。
【0073】
そして、各シリンダを一つのシリンダユニットに配設し、シリンダユニットに予備混合器及び拡散混合器を搭載すれば、これらが一体に配されたオールインワンタイプに形成されるので、装置全体の小型化・軽量化が図られ、全体としてよりコンパクトにすることができるという利点もある。
【0074】
また、予備混合器、圧送用シリンダ、噴射型拡散混合器及びこれらを接続する配管からなる一連の流路をその上流から下流に至るまで複数に分断し、分断された夫々の流路に洗浄流体を個別に導入すれば、夫々の流路を同時に洗浄できるので、計量シリンダから水性二液混合型塗料の主剤及び硬化剤を供給する場合でも、予備混合器から塗料タンクに至る流路内に残存する二液混合型塗料が硬化する前に、これを短時間で簡単且つ確実に洗浄除去することができるという効果もある。
【図面の簡単な説明】
【図1】本発明に係る塗料送給装置を示す流体回路図。
【図2】その外観図。
【図3】その動作を示す説明図。
【図4】その洗浄系を示す説明図。
【符号の説明】
1………塗料送給装置
2………塗料タンク
3………シリンダユニット
4………計量シリンダ
5………管路攪拌型予備混合器
6………圧送用シリンダ
7………噴射型拡散混合器
〜B………バレル
〜P………ピストン
〜F………洗浄系
[0001]
BACKGROUND OF THE INVENTION
The present invention is a paint machine prepared by mixing two or more kinds of paint components at a predetermined ratio, in particular, an aqueous two-component mixed paint comprising a main agent and a curing agent. The present invention relates to a paint feeding device that feeds a paint tank.
[0002]
[Prior art]
In recent years, from the viewpoint of environmental protection on a global scale, the regulations for organic solvents discharged in the painting process and the VOC regulations for paints have increased, and the paint industry has developed water-based paints that do not use organic solvents in order to meet such demands. The market size is also expanding.
[0003]
In the painting of automobile bodies, among the undercoat, intermediate coat, and topcoat, the undercoat was originally applied by electrodeposition coating with water-based paint. Most of the intermediate coats that conventionally used organic solvent-based paints are now used. Switching to water-based paint and powder coating.
[0004]
In addition, most of the base coats are being replaced by water-based paints and powder paints, except for some special colors, but only clear coats that require high-quality quality have the appearance, weather resistance, water resistance, There is no water-based paint that satisfies advanced coating quality in terms of chemical resistance, acid rain resistance, scratch resistance, etc., and there is no choice but to use organic solvent-based one-pack or two-pack paints Met.
[0005]
Recently, however, an aqueous two-component paint that uses a mixture of the main agent and a curing agent has been developed as a water-based clear coat with a strong coating that has the same physical properties as organic solvent-based two-component paints. .
This water-based two-component paint is a mixture of a water-soluble or water-dispersible polyol having a hydroxyl group as a base resin and a curing agent mainly composed of a water-dispersible polyisocyanate to crosslink and cure. It is.
[0006]
[Problems to be solved by the invention]
However, this type of aqueous two-component paint is water-dispersible polyol, which is the main component, and hydrophilic, whereas polyisocyanate, which is the curing agent, is hydrophobic, so it separates like water and oil. There was a problem that it was easy and it was difficult to mix uniformly.
[0007]
For this reason, it is designed to supply the machine with mechanical stirring and mixing in advance with a blender, etc., but since the main agent and the curing agent start the curing reaction at the same time as stirring and mixing, it is continuous as in automobile coating. When painting for a long time, the paint gradually hardens while it is being supplied, the paint viscosity changes and the paint quality becomes unstable, or the paint remaining in the paint supply piping hardens. There was a risk of clogging, or being discharged from a coating machine and adhering to the surface of the coating film, resulting in a coating failure referred to as blisters.
[0008]
On the other hand, organic solvent-based two-component mixed paints can be mixed uniformly if a static mixer is installed in the paint supply flow path. Although it was possible to supply paint while water-based two-component paint was difficult to mix as described above, even if a static mixer was installed in the paint supply flow path, the paint could be mixed evenly. Film performance could not be obtained.
[0009]
In addition, when the mixing ratio of the main agent and the curing agent changes, the physical properties of the mixed paint also change. Therefore, to maintain uniform coating quality, it is necessary to accurately control the mixing ratio. On the other hand, it is desirable that the control is extremely simple, it does not get in the way when installed on the painting line, and the equipment cost and running cost are low.
[0010]
Therefore, the present invention is capable of feeding even a paint in which the main agent and the curing agent are difficult to mix, such as an aqueous two-component mixed paint, to a coating machine, a paint tank, etc. while uniformly mixing them, and is extremely controlled. It is a technical problem to provide a simple, small and inexpensive paint feeding device.
[0011]
[Means for Solving the Problems]
In order to solve this problem, the invention of claim 1 is directed to a coating machine or a paint tank that is mounted on or removable from a coating machine by applying a paint prepared by mixing two or more kinds of paint components at a predetermined ratio. In the paint feeding device that feeds the paint components, a pre-mixing is performed by passing the paint components that are individually and simultaneously compressed in an amount corresponding to the mixing ratio of the paint components and the paint components that are discharged from the cylinders. A line agitating type premixer, a pressure feeding cylinder for pressure-feeding the paint premixed with the paint component in the premixer to the paint machine or a paint tank, and fluid pressure of the paint pressure fed from the cylinder An injection type diffusion mixer is provided that sprays the paint to uniformly diffuse each paint component.
[0012]
The case where the main agent and the curing agent that are the paint components of the aqueous two-component mixed paint are mixed and fed using the invention of claim 1 will be described. The main agent and the curing agent are supplied from the measuring cylinder according to the mixing ratio. The respective paint components are pumped out individually and simultaneously, and each paint component is fed to the premixer at a constant flow rate according to the mixing ratio and premixed, whereby each paint component is uniformly dispersed.
[0013]
Therefore, the paint mixed by the premixer is filled in the cylinder for pressure feeding in a state where each paint component is uniformly dispersed, and the mixing ratio is always maintained constant.
[0014]
Since the paint in which the paint components are uniformly dispersed in this manner is temporarily stored in the cylinder for pumping, molecular diffusion proceeds at the boundary surface between the paint components using the time, and the paint components Will become familiar.
[0015]
However, even though it is said that it is uniformly dispersed at this point, the particle size of the droplets of each paint component is still relatively large, and sufficient coating performance cannot be obtained even if it is applied as it is.
[0016]
Therefore, when the paint is pumped from the cylinder for pumping to the coating machine or paint tank, the paint is jetted by the injection-type diffusion mixer, and each paint component having a large particle size is atomized and diffused. Even difficult-to-mix paint components such as the main agent and hydrophobic curing agent are mixed uniformly.
[0017]
In this way, each paint component is uniformly mixed and fed in the two stages of premixing-spray diffusion mixing, so of course when filling the paint tank, the paint is fed directly to the coating machine. Even when painting continuously for a long time, it is possible to feed each paint component while mixing evenly just before the coating machine, and it is necessary to store what was mechanically mixed with a blender in advance. There is no.
[0018]
According to a second aspect of the present invention, each measuring cylinder includes two or more barrels that individually fill the paint component in an amount corresponding to the mixing ratio, and each piston that presses out the paint component filled in each barrel. Have the same stroke length and can be started and stopped synchronously.
[0019]
According to the second aspect of the present invention, paint components such as the main agent and the curing agent are individually filled in the barrels in an amount corresponding to the mixing ratio, and each piston is started and stopped synchronously with the same stroke. Thus, since the paint component is discharged from each barrel at a flow rate corresponding to the mixing ratio, no troublesome control is required.
[0020]
In the invention of claim 3, in synchronism with the filling of the paint into the pumping cylinder and the feeding of the paint from the cylinder, the discharge of the paint component from each measuring cylinder and the filling of the paint component into the cylinder are alternately performed. To do.
[0021]
According to the third aspect of the present invention, the paint component is filled in each measuring cylinder while the paint is being pumped from the pressure feeding cylinder, and at the same time the paint cylinder is emptied, the paint component is pressed out from each metering cylinder. Since the paint is filled in the pressure feeding cylinder, the pressure feeding cylinder can alternately perform the filling and pressure feeding of paint without alternately providing an interval, and therefore there is no waste in tact time.
[0022]
Further, as in the invention of claim 4, if each cylinder is arranged in one cylinder unit and a static mixer and an injection type diffusion mixer are mounted on the cylinder unit, they are formed in an all-in-one united together. As a result, the entire apparatus can be reduced in size and weight, and the overall apparatus becomes more compact.
[0023]
In the invention of claim 5, a plurality of series of flow paths including a premixer in which paints mixed with each paint component flow, a cylinder for pressure feeding, an injection type diffusion mixer, and a pipe connecting them are provided from upstream to downstream. And a cleaning system that individually introduces a cleaning fluid into each of the divided flow paths and cleans the flow paths.
[0024]
According to the fifth aspect of the present invention, since the divided flow paths can be simultaneously cleaned, even when the main agent and the curing agent of the aqueous two-component mixed paint are supplied from the measuring cylinder, the static mixer leads to the paint tank. Before the two-component mixed paint remaining in the flow path is cured, it can be easily washed and removed in a short time.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings.
FIG. 1 is a fluid circuit diagram showing an example of a paint feeding device according to the present invention, FIG. 2 is an external view thereof, FIG. 3 is an explanatory diagram showing its operation, and FIG. 4 is an explanatory diagram showing a cleaning system.
[0026]
1 to 4 is a cartridge-type paint that mixes a water-based two-component paint having a main component and a curing agent as paint components at a predetermined ratio, and is detachably mounted on a coating machine. It is of a type that is fed to the tank 2 and filled.
[0027]
This paint feeding device 1 is connected to the cylinder unit 3 with a main agent supply source S. 1 And curing agent source S 2 A main cylinder and a curing agent fed from the metering cylinder 4 that individually and simultaneously pressurize each amount corresponding to the mixing ratio thereof, and a premixing by passing the main agent and the curing agent extruded from the metering cylinder 4 A static mixer (pipe agitation type premixer) 5, a pressure feeding cylinder 6 for feeding the paint preliminarily mixed with the main agent and the curing agent to the paint tank 2, and the cylinder 6 to the paint tank 2. There is provided an injection type diffusion mixer 7 called a jet dispersion for uniformly diffusing each paint component by jetting the paint by the fluid pressure of the paint sent to the surface.
[0028]
The cylinder unit 3 is formed in a substantially rectangular parallelepiped block shape, and the barrel B of the measuring cylinder 4 1 And B 2 Is the barrel B of the cylinder 6 for pressure feeding 3 Are formed in parallel to each other so as to be arranged on both sides of the sheet.
Also, each cylinder 4 and 6 has a piston P that is hydraulically driven when pressure is applied to the paint component and paint. 1 , P 2 And P 3 It has.
[0029]
The measuring cylinder 4 has a piston P 1 And P 2 The cylinder unit 3 is formed with a hydraulic oil chamber 8 on the head 3H side and a paint component chamber 9 on the bottom 3B side.
Moreover, the cylinder 6 for pressure feeding is piston P 3 The cylinder unit 3 is formed in the paint chamber 10 on the head 3H side and the hydraulic oil chamber 11 on the bottom 3B side.
[0030]
Each barrel B of the measuring cylinder 4 1 And B 2 Is formed in a capacity capable of individually filling the main agent and the curing agent in an amount corresponding to the mixing ratio, and each barrel B 1 And B 2 Each piston P that presses out the main agent and curing agent filled in 1 And P 2 Have the same stroke length and can be started and stopped synchronously.
[0031]
That is, each piston P 1 And P 2 Since each extruding capacity with respect to the stroke length is set according to the mixing ratio and the stroke length is the same, each barrel B 1 And B 2 The flow rate ratio of the main agent and the curing agent extruded from is equal to the mixing ratio.
[0032]
Each of these pistons P 1 And P 2 Is integrally attached to the beam 13 via the piston rod 12 and the barrel B 1 And B 2 The hydraulic oil supply pressure supplied to the hydraulic oil chamber 8 and the paint component supply pressure to the paint component chamber 9 are reciprocally driven in the same stroke in synchronization with each other.
[0033]
The hydraulic oil chamber 8 has a hydraulic oil inflow / outlet 8a, and the paint component chamber 9 has a paint component inlet 9in and an outlet 9out.
The inlet 9in of each paint component chamber 9 is a valve device VA that selectively supplies a main agent (curing agent), cleaning air, and cleaning liquid. 1 (VA 2 ) Main agent supply source S through main agent valve 14 (curing agent valve 15). 1 (Hardener supply source S 2 The outlet 9out is connected to the valve device VA. 3 The main agent valve 16 (hardener valve 17) is connected to an inflow port 5in formed on the cylinder bottom 3B side of the static mixer 5.
[0034]
Valve device VA 3 Switches the flow path leading to the static mixer 5 and selectively supplies the main agent and the curing agent, the cleaning air, and the cleaning liquid pressed out from the measuring cylinder 4 into the static mixer 5, and the measuring cylinder 4 The cleaning liquid discharged from the tank can be discharged to the drain.
An outflow port 5out formed on the cylinder head 3H side of the static mixer 5 is connected to the pressure feeding cylinder 6 via an on / off valve 18.
[0035]
The static mixer 5 is formed by arranging a number of elements along the flow direction in the flow path where the main agent and the curing agent are joined and repeatedly dividing, replacing, and superposing and mixing the flow.
[0036]
The cylinder 6 for pressure feeding is the piston P 1 And P 2 Is formed in a capacity equal to the total supply amount of the main agent and the curing agent fed when one stroke is made, and the barrel B 3 Each piston P that presses out the paint filled in 3 Each piston P 1 And P 2 It is designed to reciprocate with the same stroke length.
And this piston P 3 Barrel B 3 Are reciprocally driven by the paint supply pressure supplied to the paint chamber 10 and the hydraulic oil supply pressure supplied to the hydraulic oil chamber 11.
[0037]
In addition, when the mixing ratio of the main agent and the curing agent is, for example, 5: 2, each piston P of each cylinder 4 and 6 1 ~ P 3 Each barrel B so that the flow rate ratio of main agent: curing agent: paint is 5: 2: 7 when it is moved by a unit length 1 ~ B 3 Is designed.
[0038]
Barrel B 3 However, in this example, the piston P 3 The paint tank 2 is formed as small as about 1/3 so that the paint tank 2 can be filled with the mixed paint when it is reciprocated three times.
[0039]
A paint inflow port 10 in and an outflow port 10 out are formed in the paint chamber 10 of the cylinder for pressure feeding 6, and an inflow / outlet port 11 a for hydraulic oil is formed in the hydraulic oil chamber 11. The outlet 10out of the paint chamber 10 is a valve device VA. 4 The spray type diffusion mixer 7 is connected through a paint valve 19.
[0040]
This valve device VA 4 Is configured to selectively connect the outlet 10out of the cylinder 6 for pressure feeding to the injection diffusion mixer 7 side and the drain side, and to selectively supply cleaning air and cleaning liquid to the injection diffusion mixer 7.
[0041]
In the injection-type diffusion mixer 7, a small-diameter orifice 7a is formed between the inlet 7in and the outlet 7out. In this example, a coaxial opposed small-diameter orifice 7a formed to have a diameter of about 0.2 to 0.5 mm is formed, and the two-component mixed-type paint supplied from the pumping cylinder 6 at 1 to 10 MPa is the orifice 7a. It will be jetted when passing through.
[0042]
As a result, the main agent and the curing agent contained in the paint are atomized and diffused, so that the two-component mixed paint is more uniformly mixed. Thus, the paint mixed sufficiently in this way Is fed to the paint tank 2 connected to the paint discharge port 20.
[0043]
The hydraulic oil supply system D for switching and supplying hydraulic oil to the cylinders 4 and 6 and collecting the hydraulic oil discharged from the cylinders 4 and 6 is 1 to 10 MPa from the hydraulic oil tank 21 by the pump 22. A hydraulic oil supply pipe 23 that supplies hydraulic oil at the supply pressure and a drain 24 that returns the hydraulic oil to the hydraulic oil tank 21 are connected to the hydraulic oil chambers 8 of the measuring cylinder 4 via the switching valve 25. A low-pressure pipe 26 and a high-pressure pipe 27 communicated with the working fluid chamber 11 of the pressure-feeding cylinder 6 are switchably connected.
[0044]
In addition, a pressure reducing valve 28 having a set pressure of 1 MPa or less is interposed in the low pressure pipe 26 so as to maintain the supply pressure of the main agent and the curing agent discharged from the measuring cylinder 4 at a low pressure.
[0045]
The hydraulic oil is supplied / discharged to each cylinder 4 and 6 by the hydraulic oil supply system D at a predetermined timing, and at the same time, each valve device VA is supplied. 1 ~ VA 4 By controlling the opening and closing of the on / off valve 18, the main agent and the curing agent are filled / extruded and the paint is filled / extruded.
[0046]
The above is an example of the present invention, and its operation will be described next with reference to FIG.
First, as shown in FIG. 3A, the hydraulic oil chamber 8 of the measuring cylinder 4 is connected to the drain 24, and the valve device VA. 1 And VA 2 The main agent valve 14 and the curing agent valve 15 are opened, and each of the paint component chambers 9 is filled with a hydrophilic main agent and a hydrophobic curing agent (FIG. 3B).
[0047]
And the valve device VA 1 And VA 2 The valve device VA formed at the inlet 5in of the static mixer 5 is closed. 3 The main oil valve 16 and the hardener valve 17 are opened, the switching valve 25 of the hydraulic oil supply system D is operated to connect the hydraulic oil supply pipe 23 to the low pressure pipe 26, and the high pressure pipe 27 of the pumping cylinder 6 is connected to the drain 24. Connecting.
[0048]
As a result, hydraulic oil is supplied to the measuring cylinder 4 at a low pressure of 1 MPa or less, and the piston P 1 And P 2 Are synchronously slid to the cylinder bottom 3b side, the hydrophilic main agent and the hydrophobic curing agent are pressed out to the static mixer 5 and premixed, and the barrel B of the cylinder 6 for pressure feeding 3 It flows into the inside (FIG. 3C).
[0049]
At this time, piston P 1 And P 2 Therefore, even if the extrusion speed changes, the flow ratio of the main agent and the curing agent supplied from the metering cylinder 4 is always equal to the mixing ratio.
When the main agent and the curing agent are fed to the static mixer 5 at a constant flow ratio according to the mixing ratio, the main agent and the curing agent flow into the pressure feeding cylinder 6 in a uniformly dispersed state.
[0050]
Therefore, the main agent and the curing agent, which are mixed while being maintained at a preset mixing ratio, are filled in the pressure feeding cylinder 6 in a uniformly dispersed state. In addition, since the main agent and the curing agent are supplied at a low pressure, bubbles do not occur when the main agent and the curing agent pass through the static mixer 5 or when the mixed paint flows into the pressure feeding cylinder 6. .
[0051]
Since the paint in which the main agent and the curing agent are uniformly dispersed in this way is temporarily stored in the pumping cylinder, molecular diffusion proceeds at the boundary surface between the main agent and the curing agent using the time, and the main agent And the curing agent becomes familiar with each paint component.
[0052]
However, since the main agent and the curing agent are hydrophilic and hydrophobic, respectively, the diameter of each droplet is as large as about 0.5 mm at the maximum by just mixing with the static mixer 5, and it is sufficient to paint as it is. The film performance cannot be obtained.
Therefore, when the filling into the pressure feeding cylinder 6 is completed (FIG. 3 (d)), the switching valve 25 of the hydraulic oil supply system D is operated to connect the hydraulic oil supply pipe 23 to the high-pressure pipe 27. The hydraulic oil chamber 8 of the measuring cylinder 4 is connected to the drain 24.
[0053]
At the same time, the on / off valve 18 is closed to prevent the backflow from the pressure feeding cylinder 6, and the valve device VA communicated with the injection type diffusion mixer 7. 4 The paint valve 19 is opened.
Further, a valve device VA for supplying a main agent and a curing agent to each measuring cylinder 4 1 And VA 2 The main agent valve 14 and the curing agent valve 15 are opened.
[0054]
As a result, first, the hydraulic oil is supplied to the hydraulic oil chamber 9 of the cylinder 6 for pressure feeding at a high pressure of 1 to 10 MPa, and the hydraulic oil is supplied from the paint chamber 10 to the injection type diffusion mixer 7 at a pressure equal to the supply pressure of the hydraulic oil. The liquid mixed paint is sent out (FIG. 3E).
[0055]
The two-component mixed-type paint flowed from the inlet 7in of the injection-type diffusion mixer 7 at a high pressure of 1 to 10 MPa is directed toward the coaxial opposed small-diameter orifice 7a formed to have a diameter of about 0.2 to 0.5 mm. The pressure gradually becomes high and is jetted when passing through the small-diameter orifice 7a.
As a result, since the main agent and the curing agent contained in the paint are diffused in the atomized state, even the hydrophilic main agent and the hydrophobic curing agent that are difficult to mix are uniformly diffused and mixed, and this is connected to the paint filling port 20. Supplied to the paint tank 2.
[0056]
In this way, since the respective paint components are uniformly mixed and fed in the two stages of premixing and spray diffusion mixing, not only when the paint tank 2 is filled with paint, but also the paint is sent directly to the coating machine. Even when painting continuously for a long time, it is possible to feed each paint component while mixing evenly just before the coating machine, and it is necessary to store the mechanically mixed material beforehand by blender etc. There is no.
[0057]
The main agent and the curing agent are supplied to the measuring cylinder 4 while the two-component mixed type paint is pressed out from the pumping cylinder 6 and filled in the paint tank 2, and the main agent and the curing agent are supplied to the respective paint component chambers 9. The agent is filled (FIG. 3 (e)).
At this time, even if the supply pressure of the main agent and the curing agent to each metering cylinder 4 is low, each hydraulic oil is released to the drain 24, so that it takes a short time to finish the pressure of the paint from the pressure feeding cylinder 6. Can be filled with.
[0058]
Further, since the capacity of the pressure feeding cylinder 6 is the paint tank 21/3, as soon as the extrusion of the mixed paint in the pressure feed cylinder 6 is completed, the main agent and the curing agent are immediately pressed out from each measuring cylinder 4, and the mixed paint is obtained. Is filled in the cylinder 6 for pressure feeding, the pressure is again pumped out, and the procedure for supplying the cylinder to the paint tank 2 is repeated three times. 3 3 in total, the filling of the mixed paint into the paint tank 2 is completed (FIGS. 3B to 3E).
[0059]
Thus, since the main agent and the curing agent are filled in each measuring cylinder 4 while the mixed paint is being pressed out from the pressure feeding cylinder 6, the pressure feeding is completed at the same time as the extrusion of the paint from the pressure feeding cylinder 6 is completed. The cylinder 6 can be filled with paint.
[0060]
Therefore, these can be continuously performed alternately without providing an interval between the filling of the paint and the pressure feeding from the pressure feeding cylinder 6, and therefore, the tact time is not wasted.
In addition, after the filling of the mixed paint in one paint tank 2 is completed, the mixed paint can be filled into the pressure feeding cylinder while the empty paint tank 2 waiting next is set in the paint discharge port 20. Therefore, the tact time until the paint tank 2 is replaced and filling is started can be shortened.
[0061]
Next, when cleaning the paint feeding device 1, the valve device VA is used. 1 ~ VA 4 As shown in FIG. 4, the four cleaning systems F are moved from the upstream side to the downstream side as shown in FIG. 1 ~ F 4 Divide into
Each cleaning system F 1 ~ F 4 Each valve device VA arranged on the upstream side of each 1 ~ VA 4 The cleaning liquid and cleaning air are introduced from the 1 ~ F 3 Then, the downstream valve device VA 3 , VA 4 Is discharged from the drain to the cleaning system F 4 Then, the paint tank 2 is discharged from the filling port 20 to which it is not connected.
[0062]
Specifically, cleaning system F 1 And F 2 The valve device VA 1 And VA 2 Valve device VA through each measuring cylinder 4 3 Cleaning the flow path leading to the drain 3 The valve device VA 3 Valve device VA through the static mixer 5 and the pressure feeding cylinder 6 4 Cleaning the flow path leading to the drain 4 The valve device VA 4 Then, the flow path from the injection diffusion mixer 7 to the paint filling port 6 is washed.
[0063]
Thus, the flow path is divided into a plurality of cleaning systems F. 1 ~ F 4 Since each of them can be washed at the same time, the entire coating material feeding device 1 can be washed quickly and reliably, and the two-component mixing can be performed by washing at any timing as required. It is possible to prevent the mold paint from remaining in the static mixer 5, the pressure feeding cylinder 6, the injection type diffusion mixer 7, and the pipes connecting these to cure.
[0064]
The hydraulic oil supply system D is not limited to the case where the hydraulic oil is supplied to each of the cylinders 4 and 6 with one pump 22, and the system provided with a pump for supplying hydraulic oil to the measuring cylinder 4 at a low pressure, A system in which a pump for supplying high-pressure hydraulic oil to the cylinder 6 may be provided in parallel.
Furthermore, it is not limited to the case where the paint component is pressed out from the metering cylinder 4 at a low pressure and the two-component mixed paint is pressed out from the pumping cylinder 6 at a high pressure, and may be supplied at a constant pressure of about 1 MPa.
[0065]
Further, the piston rod (not shown) of the pressure feeding cylinder 6 is replaced with the piston rod R of the measuring cylinder 4. 1 And R 2 If it is attached to the beam 13 together, all pistons P 1 ~ P 3 Can also be slid with the same stroke.
[0066]
According to this, each piston P 1 ~ P 3 When the reverse moves synchronously, the main agent and the curing agent are sent out from each metering cylinder 4 at a predetermined flow rate ratio corresponding to the mixing ratio, and at the same time, the mixed paint is filled in the pressure feeding cylinder 6.
Each piston P 1 ~ P 3 When the ink advances in synchronism, the mixed paint is pressed out from the pressure feed cylinder 6 to the paint tank 2 and at the same time, the main agent and the curing agent are fed to each metering cylinder 4.
Thus, each piston P 1 ~ P 3 Since the main agent and the curing agent are mixed at a predetermined mixing ratio only by synchronizing and advancing and retreating with the same stroke, the flow rate control and timing control become easier.
[0067]
Furthermore, in the above description, the two-component mixed paint composed of the main agent and the curing agent has been described. However, any multi-component mixing that mixes two or more kinds of paint components such as a plurality of main agents and a curing agent, and a main agent and an additive. Applicable to mold paints.
[0068]
Furthermore, the paint feeding device 1 of the present invention is not limited to the case where the paint tank 2 installed or installed in the coating machine is filled with the paint, but directly supplies the paint to the coating machine that performs coating while receiving the supply of the paint. It can also be used as a paint supply device.
[0069]
【The invention's effect】
As described above, according to the present invention, the paint components such as the main agent and the curing agent are separately and simultaneously pressed out from the measuring cylinder in an amount corresponding to the mixing ratio. It is fed to the premixer at a constant flow ratio and dispersed uniformly. After the paint is filled in the pressure feed cylinder and then pumped to the coating machine or paint tank, the paint is sprayed by the injection-type diffusion mixer. Since each paint component having a large particle size is atomized and diffused by being jetted, it is possible to fill the paint tank in a uniformly mixed state even with difficult-to-mix paint components such as a hydrophilic main agent and a hydrophobic curing agent. Very effective.
[0070]
In this way, each paint component is uniformly mixed and fed in the two stages of premixing-spray diffusion mixing, so of course when filling the paint tank, the paint is fed directly to the coating machine. Even when painting continuously for a long time, it is not necessary to store the mechanically mixed material in advance with a blender, etc., and each paint component is sent while being mixed evenly just before the coating machine or paint tank. There is an effect that can be paid.
[0071]
In addition, since paint components such as the main agent and the curing agent are discharged from the measuring cylinder by an amount corresponding to the mixing ratio, there is an effect that no troublesome flow rate control is required.
At this time, for example, as a measuring cylinder, it is provided with a piston that is started and stopped synchronously with the same stroke, and a volume that can be individually filled with paint components such as a main agent and a curing agent according to the mixing ratio. If a barrel is used, each paint component can be pressed out at a flow rate ratio corresponding to the mixing ratio by simply moving the piston in synchronism, and the piston drive control is extremely simplified.
[0072]
Furthermore, in synchronism with the filling of the paint into the pumping cylinder and the feeding of the paint from the cylinder, the pumping of the paint component from each measuring cylinder and the filling of the paint component into the cylinder are alternately performed. Each metering cylinder is filled with the paint component while the paint is being pumped from the cylinder, and at the same time the pump cylinder is empty, the paint component is pushed out from each metering cylinder and the pump cylinder is filled with the paint. The cylinder for pumping does not need to provide an interval between the filling and the pumping of the paint, and the filling and the pumping can be alternately performed continuously. Therefore, the tact time is not wasted and the working efficiency is excellent. .
[0073]
Then, if each cylinder is arranged in one cylinder unit and a premixer and a diffusion mixer are mounted on the cylinder unit, they are formed into an all-in-one type in which they are integrally arranged. There is also an advantage that the weight can be reduced and the whole can be made more compact.
[0074]
Further, a series of flow paths composed of a premixer, a pressure feeding cylinder, an injection type diffusion mixer, and piping connecting them are divided into a plurality of channels from the upstream to the downstream, and a washing fluid is divided into each of the divided flow paths. Since each of the flow paths can be washed at the same time, even if the main agent and curing agent of the aqueous two-component mixed paint are supplied from the measuring cylinder, they remain in the flow path from the premixer to the paint tank. There is also an effect that the two-component mixed paint to be cured can be easily and reliably removed in a short time before curing.
[Brief description of the drawings]
FIG. 1 is a fluid circuit diagram showing a paint feeding device according to the present invention.
FIG. 2 is an external view thereof.
FIG. 3 is an explanatory diagram showing the operation.
FIG. 4 is an explanatory view showing the cleaning system.
[Explanation of symbols]
1 ... Paint feeder
2 ... Paint tank
3 ... Cylinder unit
4 ... Weighing cylinder
5 ... Pipe stirrer type premixer
6 ......... Cylinder for pressure feeding
7 ... …… Diffusion type diffusion mixer
B 1 ~ B 3 ………barrel
P 1 ~ P 3 ………piston
F 1 ~ F 4 ……… Cleaning system

Claims (5)

二種以上の塗料成分を所定の比率で混合して調整された塗料を塗装機やこれに装備されもしくは脱着自在に装着される塗料タンク(2)に送給する塗料送給装置において、前記塗料成分を各々その混合比率に応じた分量ずつ個別に且つ同時に圧し出す計量シリンダ(4)と、当該シリンダ(4)から圧し出された前記塗料成分を通過させることによって予備混合させる管路攪拌型予備混合器(5)と、当該予備混合器(5)で前記塗料成分を予備混合した塗料を前記塗装機又は塗料タンク(2)へ圧送する圧送用シリンダ(6)と、当該シリンダ(6)から圧送される塗料の流体圧により当該塗料を噴流化させて各塗料成分を均一に拡散させる噴射型拡散混合器(7)を備えたことを特徴とする塗料送給装置。In the paint feeding device for feeding a paint prepared by mixing two or more kinds of paint components in a predetermined ratio to a coating machine or a paint tank (2) mounted on or removable from the paint machine, the paint A metering cylinder (4) that individually and simultaneously presses components according to their mixing ratios, and a pipe-stirring type preliminary for premixing by passing the paint component that has been pressed out from the cylinder (4) From the mixer (5), the pressure feeding cylinder (6) for pressure-feeding the paint premixed with the paint component in the premixer (5) to the paint machine or paint tank (2), and the cylinder (6) A paint feeding apparatus comprising an injection type diffusion mixer (7) for jetting the paint by a fluid pressure of the paint to be fed and uniformly diffusing each paint component. 前記計量シリンダ(4)が、前記塗料成分を各々その混合比率に応じた分量ずつ個別に充填する二以上のバレル(B、B)を具備し、これら各バレル(B、B)に充填された塗料成分を圧し出す各ピストン(P、P)が、同一のストローク長を有すると共に、同期的に起動及び停止せられる請求項1記載の塗料送給装置。The measuring cylinder (4) includes two or more barrels (B 1 , B 2 ) for individually filling the paint components in amounts corresponding to the mixing ratios, and each of these barrels (B 1 , B 2 ). The paint feeding device according to claim 1 , wherein each piston (P 1 , P 2 ) that presses out the paint component filled in the container has the same stroke length and is activated and stopped synchronously. 前記圧送用シリンダ(6)への塗料の充填及び当該シリンダ(6)からの塗料の圧送に同期させて、前記各計量シリンダ(4)からの塗料成分の圧し出し及び当該シリンダ(4)への塗料成分の充填を交互に行う請求項1記載の塗料送給装置。In synchronism with the filling of the paint into the pumping cylinder (6) and the feeding of the paint from the cylinder (6), the paint components are discharged from the measuring cylinders (4) and applied to the cylinder (4). The paint feeding device according to claim 1, wherein the filling of the paint components is performed alternately. 前記各シリンダ(4、6)が、一つのシリンダユニット(3)に配設されると共に、当該シリンダユニット(3)に前記予備混合器(5)及び噴射型拡散混合器(7)が搭載された請求項1乃至3記載の塗料送給装置。Each of the cylinders (4, 6) is disposed in one cylinder unit (3), and the preliminary mixer (5) and the injection type diffusion mixer (7) are mounted on the cylinder unit (3). The paint feeding device according to any one of claims 1 to 3. 各塗料成分を混合した塗料が流れる前記予備混合器(5)、圧送用シリンダ(6)、噴射型拡散混合器(7)及びこれらを接続する配管からなる一連の流路がその上流から下流に至るまで複数に分断されると共に、分断された夫々の流路に洗浄流体を個別に導入してその流路内を洗浄する洗浄系(F〜F)を備えた請求項1乃至4記載の塗料送給装置。A series of flow paths consisting of the premixer (5), the pressure feed cylinder (6), the injection type diffusion mixer (7) and the pipes connecting them are flowed from the upstream to the downstream. 5. A cleaning system (F 1 to F 4 ) comprising a cleaning system (F 1 to F 4 ) that is divided into a plurality of channels and individually introduces a cleaning fluid into each of the divided channels and cleans the inside of the channels. Paint feeder.
JP2001390179A 2001-12-21 2001-12-21 Paint feeder Expired - Fee Related JP3927026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001390179A JP3927026B2 (en) 2001-12-21 2001-12-21 Paint feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001390179A JP3927026B2 (en) 2001-12-21 2001-12-21 Paint feeder

Publications (2)

Publication Number Publication Date
JP2003190847A JP2003190847A (en) 2003-07-08
JP3927026B2 true JP3927026B2 (en) 2007-06-06

Family

ID=27598183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001390179A Expired - Fee Related JP3927026B2 (en) 2001-12-21 2001-12-21 Paint feeder

Country Status (1)

Country Link
JP (1) JP3927026B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101037650B1 (en) 2008-09-22 2011-05-30 주식회사 프로다이나믹스산업 Paint spray system using hydraulic pressure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2546249C (en) * 2003-11-26 2012-06-26 Trinity Industrial Corporation Jet dispersing device
JP2006102645A (en) * 2004-10-05 2006-04-20 Trinity Ind Corp Coating system and coating material stably supplying apparatus
JP7488647B2 (en) * 2019-12-24 2024-05-22 タクボエンジニアリング株式会社 Coating method using a multi-component paint coating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101037650B1 (en) 2008-09-22 2011-05-30 주식회사 프로다이나믹스산업 Paint spray system using hydraulic pressure

Also Published As

Publication number Publication date
JP2003190847A (en) 2003-07-08

Similar Documents

Publication Publication Date Title
JP4027693B2 (en) Paint feeding device and valve unit
EP2731771B1 (en) Solvent-free plural component spraying system and method
EP3177391B1 (en) Cartridge holder, multi-chamber cartridges and metering and mixing devices containing same
US20070000947A1 (en) Apparatus and methods for dispensing fluidic or viscous materials
KR100426755B1 (en) Solvent flush reaction infection molding mixhead
WO1982003023A1 (en) System for dispensing curable compositions
JP3927026B2 (en) Paint feeder
US7025286B1 (en) Third stream automotive color injection
US11407176B2 (en) Pumping system and method for 3D printing
US6755348B1 (en) Third stream automotive color injection
KR20030033936A (en) Paint Supply Method and Paint Supply System
JP4358585B2 (en) Paint supply device and valve unit thereof
US6601733B1 (en) Multi-component proportioning system and delivery system utilizing same
JP2003200084A (en) Method and apparatus for feeding coating material
US20010046181A1 (en) Multiple component mixing and dispensing system
US20210245185A9 (en) Measuring and mixing devices
JP2002066396A (en) Two fluid mixing type discharge device
US20050218556A1 (en) Method and apparatus for spray forming polyurethane skins with a hydraulic mixing head
US11389812B2 (en) Measuring and mixing devices
JPS63143930A (en) Adjustment of setting for mixing ratio of liquids, mixture discharge of ejection method and device thereof
JP2000024583A (en) Three-liquid mixing method
JPH02233131A (en) Stabilization of mixing ratio in two-liquid pressure mixing and injection apparatus of adhesive
GB2301786A (en) Applying two-part mixtures of materials
JPS61278372A (en) Coating apparatus for adhesive
JPH08323261A (en) Two-pack highly viscous material injecting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees