JP2917532B2 - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JP2917532B2
JP2917532B2 JP3006639A JP663991A JP2917532B2 JP 2917532 B2 JP2917532 B2 JP 2917532B2 JP 3006639 A JP3006639 A JP 3006639A JP 663991 A JP663991 A JP 663991A JP 2917532 B2 JP2917532 B2 JP 2917532B2
Authority
JP
Japan
Prior art keywords
semiconductor region
silicon carbide
effect transistor
gate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3006639A
Other languages
Japanese (ja)
Other versions
JPH04239778A (en
Inventor
勝典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3006639A priority Critical patent/JP2917532B2/en
Publication of JPH04239778A publication Critical patent/JPH04239778A/en
Application granted granted Critical
Publication of JP2917532B2 publication Critical patent/JP2917532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭化珪素半導体を用い
とくに高圧大電流用に適する電界効果トランジスタおよ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor using a silicon carbide semiconductor, particularly suitable for high voltage and large current, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】高電圧や大電流を扱う用途に適するいわ
ゆる電力用トランジスタには従来からすべてシリコン半
導体が用いられており、現在までに実用化された主なも
のには周知のようにバイポーラトランジスタ,電界効果
トランジスタおよび絶縁ゲートバイポーラトランジスタ
がある。この電力用トランジスタ全般に対し要求される
最も基本的な性能として、オン時の順方向電圧が低いこ
と、入力インピーダンスが高いこと、およびスイッチン
グ速度が高いことが挙げられるが、これらの観点からこ
れらのトランジスタを見るとそれぞれ一長一短がある。
2. Description of the Related Art A so-called power transistor suitable for handling a high voltage or a large current has conventionally used all silicon semiconductors. , Field effect transistors and insulated gate bipolar transistors. The most basic performance required for the power transistor in general is that the on-state forward voltage is low, the input impedance is high, and the switching speed is high. Looking at transistors, each has advantages and disadvantages.

【0003】すなわち、バイポーラトランジスタと電界
効果トランジスタとはいずれも速いスイッチング速度を
有するが、前者には順方向電圧が低い利点がある反面,
入力インピーダンスが低い欠点があり、後者には逆に入
力インピーダンスが高い利点がある反面,順方向電圧が
高い欠点がある。これらの中間的な性格の絶縁ゲートバ
イポーラトランジスタは低い順方向電圧と高い入力イン
ピーダンスを兼備するが、スイッチング速度がこれらと
比べると遅い欠点がある。
That is, the bipolar transistor and the field-effect transistor both have a high switching speed, but the former has an advantage of a low forward voltage,
The latter has the disadvantage of low input impedance, and the latter has the advantage of high input impedance, but has the disadvantage of high forward voltage. These insulated gate bipolar transistors have a low forward voltage and a high input impedance, but have the disadvantage of a slower switching speed.

【0004】このため、従来からかかる問題点を解決し
て電力用トランジスタの性能を改善する努力が種々なさ
れて来たが、この改善にも半導体材料がもつ基本的な性
能値に基づく限界が自ずからあって現在ではシリコン半
導体を利用するトランジスタの性能の理論的限界にすで
にかなり近づきつつあるものと考えられ、この限界を克
服し得る新しい半導体材料の一つとして炭化珪素が注目
されている。
For this reason, various efforts have been made in the past to improve the performance of power transistors by solving the above problems, but this improvement naturally has its limitations based on the basic performance values of semiconductor materials. At present, it is considered that the theoretical limit of the performance of a transistor using a silicon semiconductor is already approaching considerably, and silicon carbide is attracting attention as one of new semiconductor materials capable of overcoming this limit.

【0005】周知のように、この炭化珪素はシリコンよ
りもバンドギャップが広い半導体であり、放射能レベル
の高い環境や自動車のエンジン回り等のノイズの高い場
所に適する半導体装置用材料として注目されていたが、
最近ではかなり結晶性の高いウエハが得られるようにな
り(例えば R.F.Davis etal; Mat. Res. Soc. Symp.Pro
c., Vol. 162, l990, p.463を参照) 、それを用いる半
導体装置の実現可能性が検討されつつある (例えば K.
Shenai et al; IEEE Trans. on Elect. Dev., Vol. 36,
No. 9, 1989, p.1181を参照) 。
As is well known, silicon carbide is a semiconductor having a wider bandgap than silicon, and is attracting attention as a material for semiconductor devices suitable for environments with high radioactivity levels or places with high noise such as around automobile engines. But
Recently, highly crystalline wafers have been obtained (eg, RFDavis etal; Mat. Res. Soc. Symp.
c., Vol. 162, l990, p. 463), and the feasibility of a semiconductor device using the same is being studied (for example, K.
Shenai et al; IEEE Trans. On Elect. Dev., Vol. 36,
No. 9, 1989, p.1181).

【0006】炭化珪素はバンドギャップが広い前述の特
徴のほかに、その結晶内でキャリアの増倍効果が発生す
る電界強度がシリコンより高く, 従って絶縁破壊電圧が
高い特長があるが、低い抵抗値をもつ半導体層をその中
に作り込むのがまだ必ずしも容易でないので、炭化珪素
を利用するトランジスタとしてはバイポーラ形よりはむ
しろ電界効果形の方が適し、本発明も炭化珪素半導体を
利用するこの電界効果トランジスタに関する。なお、こ
の種トランジスタに関する従来技術はほとんど知られて
いないが、 R.F.Davis, HFPC May (1989) Proceedings;
p.81 には横形の電界効果トランジスタを試作した結
果、シリコン半導体の場合と同様なトランジスタ特性が
得られた旨の報告がある。
[0006] In addition to the above-mentioned characteristics of silicon carbide having a wide band gap, silicon carbide has a characteristic that the electric field strength at which a carrier multiplication effect occurs in the crystal is higher than that of silicon, and thus the dielectric breakdown voltage is higher. Since it is not always easy to form a semiconductor layer having the same structure therein, a field effect type is more suitable than a bipolar type as a transistor using silicon carbide. Related to effect transistors. Although little is known about the prior art regarding this type of transistor, RFDavis, HFPC May (1989) Proceedings;
On p.81, there is a report that as a result of trial production of a horizontal field-effect transistor, transistor characteristics similar to those of a silicon semiconductor were obtained.

【0007】しかし、このような横形構造の電界効果ト
ランジスタは周知のように大電流用に不利であり、高電
界強度に耐え得る炭化珪素の本来の特長を活かして高耐
圧化する上でも不利を免れないので、炭化珪素半導体を
用いる電界効果トランジスタにおいても高圧大電流用に
は縦形構造の採用が望ましい。かかる電力用に適する炭
化珪素の電界効果トランジスタの縦形構造はまだ知られ
ていないが、参考用にシリコン半導体を用いる場合の代
表的な縦形構造の概要を以下に図4を参照して簡単に説
明する。
However, such a field-effect transistor having a horizontal structure is disadvantageous for a large current, as is well known, and is disadvantageous even in achieving a high breakdown voltage by utilizing the inherent characteristics of silicon carbide which can withstand a high electric field strength. Therefore, it is desirable to employ a vertical structure for a high voltage and large current in a field effect transistor using a silicon carbide semiconductor. Although a vertical structure of a silicon carbide field effect transistor suitable for such power is not yet known, an outline of a typical vertical structure when a silicon semiconductor is used for reference will be briefly described below with reference to FIG. I do.

【0008】大電流用の縦形電界効果トランジスタは一
般に小形トランジスタを多数個並列接続してなるが、図
4はかかる複合構造中の1単位をnチャネル形の場合に
つき示すものである。n形の基板40の裏面側からドレイ
ン用の接続層41を強いn形で拡散し、その表面上にゲー
ト酸化膜42を介して多結晶シリコンのゲート43を配設し
た上で、これをマスクに利用して不純物をイオン注入し
かつ熱拡散させることによりp形の深いウエル44と強い
n形の浅いソース層45とを図のようにそれぞれ周縁がゲ
ート43の下側にもぐり込むように作り込む。さらに、ゲ
ート43の範囲を絶縁膜46で覆った後その上にアルミの電
極膜47を配設し、かつ裏面側のドレイン接続層41にも電
極膜47を付ける。
A vertical field effect transistor for a large current generally comprises a number of small transistors connected in parallel. FIG. 4 shows one unit in such a composite structure in the case of an n-channel type. A drain connection layer 41 is diffused in a strong n-type from the back side of the n-type substrate 40, and a polycrystalline silicon gate 43 is provided on the surface thereof via a gate oxide film 42. The impurity is ion-implanted and thermally diffused to form a deep p-type well 44 and a shallow n-type source layer 45 such that the peripheries extend under the gate 43 as shown in the figure. . Further, after covering the area of the gate 43 with the insulating film 46, an aluminum electrode film 47 is provided thereon, and the electrode film 47 is also attached to the drain connection layer 41 on the back surface side.

【0009】かかる縦形の電界効果トランジスタ50は、
図示のようにウエル44とソース層45とを表面上で短絡す
る電極膜47をソース端子S, ドレイン接続層41と接続さ
れた電極膜47をドレイン端子D, ゲート43と接続された
電極膜46をゲート端子Gとそれぞれするもので、端子G
に与えるゲート電圧によりウエル44のゲート43の下側部
分の表面におけるチャネル形成を制御することによりソ
ース端子Sとドレイン端子Dの間が遮断または導通状態
にされる。導通時の電流iは図のように基板40等の内部
を縦方向に流れるので縦形と呼ばれる。
Such a vertical field effect transistor 50 is
As shown, the electrode film 47 for short-circuiting the well 44 and the source layer 45 on the surface is replaced with the source terminal S, the electrode film 47 connected to the drain connection layer 41 is replaced with the drain terminal D, and the electrode film 46 connected to the gate 43. Is a gate terminal G, and the terminal G
By controlling the formation of a channel on the surface of the lower part of the gate 43 of the well 44 by the gate voltage applied to the well 44, the source terminal S and the drain terminal D are cut off or made conductive. The current i at the time of conduction is called a vertical type because it flows vertically inside the substrate 40 and the like as shown in the figure.

【0010】[0010]

【発明が解決しようとする課題】ところが、図4のよう
な縦形構造をそのまま炭化珪素を用いる電界効果トラン
ジスタに適用するのは困難である。これは、半導体層を
作り込むための不純物の拡散に要する温度がシリコンの
場合1000℃程度なのに比べて炭化珪素では2000℃以上に
もなるためであって、かかる高温下で不純物を熱拡散さ
せ得る実用設備が現実にはないほか、図4のウエル44の
ようなかなり深い拡散には非常な長時間を要するので実
際上は実行不可能に近いからである。
However, it is difficult to apply the vertical structure as shown in FIG. 4 to a field effect transistor using silicon carbide as it is. This is because the temperature required for diffusion of impurities for forming a semiconductor layer is about 2000 ° C. or more for silicon carbide compared to about 1000 ° C. for silicon, and impurities can be thermally diffused at such a high temperature. This is because practical equipment is not practical, and rather deep diffusion like the well 44 in FIG. 4 takes a very long time, so that it is practically impractical.

【0011】もう一つの問題は、電界効果トランジスタ
にはその順方向電圧が前述のように元々高い欠点がある
ことであって、炭化珪素を利用することによって高耐圧
化はできても大電流が流れた時の順方向電圧があまり高
いとその実用性が著しく減殺される結果になり兼ねな
い。順方向電圧を低めるには半導体層内の不純物濃度を
上げてその固有抵抗値を下げる必要があるが、上述のよ
うに不純物拡散が困難なようではこの欠点の解消も困難
である。
Another problem is that the field effect transistor has a drawback that the forward voltage is originally high as described above. Even if a high breakdown voltage can be achieved by using silicon carbide, a large current cannot be obtained. If the forward voltage at the time of flowing is too high, its practicality may be significantly reduced. To lower the forward voltage, it is necessary to increase the impurity concentration in the semiconductor layer to lower its intrinsic resistance. However, as described above, it is difficult to eliminate this drawback if the impurity diffusion is difficult.

【0012】本発明は、かかる現状に立脚して不純物の
熱拡散が困難な炭化珪素の問題点を解決し、高スイッチ
ング速度と高入力インピーダンスの電界効果トランジス
タの特長を活かしながらその一層の高耐圧化を可能に
し、かつその順方向電圧を改善することができる炭化珪
素を用いる縦形構造の電界効果トランジスタおよびその
製造方法を提供することを目的とする。
The present invention solves the problems of silicon carbide in which the thermal diffusion of impurities is difficult based on the present situation, and further utilizes the characteristics of a field-effect transistor having a high switching speed and a high input impedance while further improving its high withstand voltage. It is an object of the present invention to provide a vertical-structure field effect transistor using silicon carbide and a method of manufacturing the same using silicon carbide, which is capable of improving the forward voltage.

【0013】[0013]

【課題を解決するための手段】この目的は、本発明の電
界効果トランジスタによれば、一方の導電形の炭化珪素
からなる第1半導体領域と、それに重ねた他方の導電形
の炭化珪素からなる第2半導体領域と、第2半導体領域
の表面の一部の範囲に一方の導電形で作り込まれた第3
半導体領域と、第3半導体領域の範囲内から第1半導体
領域に達するよう掘り込まれた凹所と、この凹所の表面
を覆うゲート絶縁膜と、このゲート絶縁膜を介し凹所に
作り込まれたゲート領域とを設け、第1および第3半導
体領域に接続された1対のソース・ドレイン端子とゲー
ト領域に接続されたゲート端子とを備え、第2半導体領
域の周縁から第1半導体領域に達するメサエッチング溝
が掘り込まれるものとすることにより達成される。
According to the present invention, there is provided a field effect transistor comprising a first semiconductor region made of silicon carbide of one conductivity type and silicon carbide of another conductivity type superposed thereon. A second semiconductor region, and a third semiconductor region of one conductivity type formed in a part of the surface of the second semiconductor region.
A semiconductor region, a recess dug to reach the first semiconductor region from within the third semiconductor region, a gate insulating film covering the surface of the recess, and a recess formed through the gate insulating film. And a pair of source / drain terminals connected to the first and third semiconductor regions, and a gate terminal connected to the gate region. The first semiconductor region extends from the periphery of the second semiconductor region. Is achieved by digging a mesa-etched groove reaching.

【0014】なお、ふつうは上記構成中の第1半導体領
域をドレイン層, 第2半導体領域をウエルないしはサブ
ストレート, 第3半導体領域をソース層とそれぞれする
ことでよく、かつ第1半導体領域を一方の導電形の炭化
珪素からなる基板の上に成長された炭化珪素のエピタキ
シャル層とし、第2半導体領域をさらにその上に成長さ
れた炭化珪素のエピタキシャル層とするのがよく、この
際の基板には高不純物濃度の炭化珪素の単結晶を用いる
のがよい。また、第3半導体領域は第2半導体領域の表
面に不純物を導入して活性化しただけのごく浅い半導体
層とすることでよい。さらに、第2半導体領域と第3半
導体領域は端子を導出するための電極膜により表面で相
互に短絡するのが有利である。
In general, the first semiconductor region in the above structure may be used as a drain layer, the second semiconductor region may be used as a well or a substrate, and the third semiconductor region may be used as a source layer. It is preferable that the second semiconductor region is an epitaxial layer of silicon carbide grown on a substrate made of silicon carbide of the conductivity type of the above, and the second semiconductor region is an epitaxial layer of silicon carbide further grown thereon. It is preferable to use a single crystal of silicon carbide having a high impurity concentration. Further, the third semiconductor region may be a very shallow semiconductor layer which is activated by introducing impurities into the surface of the second semiconductor region. Further, it is advantageous that the second semiconductor region and the third semiconductor region are short-circuited to each other on the surface by an electrode film for leading out a terminal.

【0015】本発明の電界効果トランジスタにおいても
シリコン半導体を用いる場合と同様に小形トランジスタ
を集積化した複合構造とするのが望ましい。高耐圧用の
電界効果トランジスタでは半導体表面に沿う絶縁破壊を
防止するためガードリングやチャネルストッパ層を通常
設けるが、炭化珪素半導体を用いる場合はそのための不
純物拡散が困難なのでこのかわりに第2半導体領域の周
縁から第1半導体領域に達するメサエッチング溝を掘り
込むのが有利である。電界効果トランジスタが上述の複
合構造の場合このメサエッチング溝は複数個の小形トラ
ンジスタを共通に囲むように設けることでよい。
It is desirable that the field effect transistor of the present invention also has a composite structure in which small transistors are integrated as in the case of using a silicon semiconductor. In a field effect transistor for high breakdown voltage, a guard ring or a channel stopper layer is usually provided in order to prevent dielectric breakdown along the semiconductor surface. However, when a silicon carbide semiconductor is used, impurity diffusion for the purpose is difficult, so that the second semiconductor region is used instead. It is advantageous to dig a mesa-etched groove reaching the first semiconductor region from the periphery of. When the field effect transistor has the above-described composite structure, the mesa etching groove may be provided so as to commonly surround a plurality of small transistors.

【0016】また本発明の電界効果トランジスタの製造
方法としては、一方の導電型の炭化珪素の基板上に一方
の導電型の炭化珪素の第1半導体領域をエピタキシャル
成長させる工程と、第1半導体領域の上に他方の導電形
の炭化珪素の第2半導体領域をエピタキシャル成長させ
る工程と、第2半導体領域の表面の一部の範囲に凹所を
第1半導体領域に達するように掘り込む工程と、凹所の
表面をゲート絶縁膜で覆う工程と、ゲート絶縁膜を介し
て凹所に嵌め込むようにゲート領域を作り込む工程と、
第2半導体領域の表面の凹所の周辺範囲に不純物をイオ
ン注入して第3半導体領域を一方の導電形で作り込む工
程と、第1および第3半導体領域に接続されたソース・
ドレイン用電極膜とゲート領域に接続されたゲート用電
極膜とを配設する工程とを経由する。
The method of manufacturing a field-effect transistor according to the present invention includes a step of epitaxially growing a first semiconductor region of silicon carbide of one conductivity type on a substrate of silicon carbide of one conductivity type; A step of epitaxially growing a second semiconductor region of silicon carbide of the other conductivity type thereon, a step of digging a recess in a part of the surface of the second semiconductor region so as to reach the first semiconductor region, Covering the surface of the substrate with a gate insulating film, and forming a gate region so as to fit into the recess through the gate insulating film,
Implanting impurities into the peripheral region of the recess on the surface of the second semiconductor region to form the third semiconductor region in one conductivity type; and forming a source and a source connected to the first and third semiconductor regions.
Disposing a drain electrode film and a gate electrode film connected to the gate region.

【0017】なお、上記構成中の第1および第2半導体
領域のエピタキシャル成長工程ではシランとメタン等を
含む原料ガスを用いるCVD法によってこれらの半導体
領域を気相成長させることでよく、それらへの凹所の掘
り込み工程ではリアクティブイオンエッチング法を利用
するのが有利である。また、ゲート絶縁膜の被覆工程で
は凹所の表面を酸化することにより酸化シリコン膜を形
成するのがよく、凹所へのゲート領域の作り込み工程は
CVD法により多結晶シリコンをそれ用に成長させるの
が有利である。
In the epitaxial growth step of the first and second semiconductor regions in the above structure, these semiconductor regions may be grown in a vapor phase by a CVD method using a source gas containing silane and methane. It is advantageous to use a reactive ion etching method in the excavation step. In the step of covering the gate insulating film, it is preferable to form a silicon oxide film by oxidizing the surface of the recess, and in the step of forming a gate region in the recess, polycrystalline silicon is grown by CVD. Advantageously.

【0018】第3半導体領域を作り込む工程では、不純
物をイオン注入した後それを熱拡散させるのが前述のよ
うに困難なので、高温の熱処理によって注入不純物を活
性化させて例えば 0.1μm程度の浅い第3半導体領域を
作り込むことでよい。また、この第3半導体領域の作り
込み工程はゲート領域を設けた後とする必要はとくにな
く、ゲート領域用の凹所の掘り込み工程の前に行なうこ
とでもよい。
In the step of forming the third semiconductor region, it is difficult to thermally diffuse the impurity after ion implantation as described above. Therefore, the implanted impurity is activated by a high-temperature heat treatment, and the impurity is shallow, for example, about 0.1 μm. The third semiconductor region may be formed. Further, the step of forming the third semiconductor region does not need to be performed after the gate region is provided, but may be performed before the step of excavating the recess for the gate region.

【0019】なお、炭化珪素半導体に対するp形不純物
としてアルミを,n形不純物として窒素をそれぞれ用い
るのが、上記各半導体領域に対しできるだけ狭い不純物
準位を賦与して電界効果トランジスタの特性を向上させ
る上で望ましい。
The use of aluminum as the p-type impurity and the use of nitrogen as the n-type impurity for the silicon carbide semiconductor improves the characteristics of the field-effect transistor by imparting impurity levels as narrow as possible to the respective semiconductor regions. Desirable above.

【0020】[0020]

【作用】本発明による電界効果トランジスタでは、前項
の構成にいう第1および第2半導体領域を炭化珪素のエ
ピタキシャル層で構成してそのエピタキシャル成長時に
不純物を最初から導入して置き、かつゲート領域を第2
半導体領域を貫いて第1半導体領域に達するように掘り
込んだ凹所内に嵌め込むいわば埋め込み構造として凹所
の側面のゲート絶縁膜に接する第2半導体領域の部分を
チャネル形成面とすることにより、第1および第2の半
導体領域に対して後ろから不純物を拡散させる必要をな
くして、不純物の熱拡散が困難な炭化珪素の問題点を解
決する。
In the field effect transistor according to the present invention, the first and second semiconductor regions described in the preceding item are constituted by an epitaxial layer of silicon carbide, impurities are introduced from the beginning during the epitaxial growth, and the gate region is formed by the first and second semiconductor regions. 2
By making the portion of the second semiconductor region in contact with the gate insulating film on the side surface of the recess as a so-called buried structure to be fitted into the recess dug to reach the first semiconductor region through the semiconductor region, This eliminates the need to diffuse impurities from the back into the first and second semiconductor regions, and solves the problem of silicon carbide in which thermal diffusion of impurities is difficult.

【0021】さらに、本発明は炭化珪素の許容最大電界
強度が高い特長を利用してその第1半導体領域内の電界
強度を高く設定することにより電界効果トランジスタの
耐圧を向上するとともに、この電界強度の設定値に合わ
せて第1半導体領域の厚みを最適化することにより電界
効果トランジスタの順方向電圧の低減を可能にする。以
下、この順方向電圧を低減できる理由を若干の式を用い
て説明する。
Further, the present invention improves the withstand voltage of the field effect transistor by setting the electric field strength in the first semiconductor region to be high by utilizing the feature that silicon carbide has a high allowable maximum electric field strength. By optimizing the thickness of the first semiconductor region in accordance with the set value, the forward voltage of the field effect transistor can be reduced. Hereinafter, the reason why the forward voltage can be reduced will be described using some equations.

【0022】本発明の電界効果トランジスタでは前述の
ように第2半導体領域にチャネルが形成され、そのオン
抵抗をRとするとこのチャネルの抵抗Rcと第1半導体領
域内の抵抗R1の和になるので、 R=Rc+R1 1) で表されるが、数百V以上の高耐圧電界効果トランジス
タではチャネル抵抗Rcは第1半導体領域の抵抗R1の1%
程度になるので、実際には抵抗Rは抵抗R1だけで決まる
としてよい。
In the field effect transistor of the present invention, as described above, a channel is formed in the second semiconductor region, and if the on-resistance is R, the sum of the resistance Rc of this channel and the resistance R1 in the first semiconductor region is obtained. , R = Rc + R1 1) In a high withstand voltage field effect transistor of several hundred V or more, the channel resistance Rc is 1% of the resistance R1 of the first semiconductor region.
Actually, the resistance R may be determined only by the resistance R1.

【0023】電界効果トランジスタのオフ時にかかる電
圧も同様にすべて第1半導体領域に掛かるものとしてよ
く、電界効果トランジスタの耐圧値をVとすると次式で
表すことができる。 V=Emd−qN1d2 /2ε 2) ただし、Emは第1半導体領域内の電界強度つまり炭化珪
素の許容最大電界強度,dは第1半導体領域の厚み, q
は電子電荷, N1は第1半導体領域の不純物濃度,εは炭
化珪素の誘電率であり、第1半導体領域に空乏層が延び
た時の内部の電界強度分布がよく知られているようにそ
の不純物濃度で決まる傾斜で直線的に変化するものとし
た。
Similarly, the voltage applied when the field effect transistor is turned off may be applied to the first semiconductor region, and can be expressed by the following equation, where V is the withstand voltage of the field effect transistor. V = Emd−qN1d 2 / 2ε 2) where Em is the electric field intensity in the first semiconductor region, that is, the allowable maximum electric field intensity of silicon carbide, d is the thickness of the first semiconductor region, q
Is the electron charge, N1 is the impurity concentration of the first semiconductor region, and ε is the dielectric constant of silicon carbide. As is well known, the internal electric field intensity distribution when the depletion layer extends in the first semiconductor region is well known. It changes linearly with a slope determined by the impurity concentration.

【0024】さて、オン時の1)式中の第1半導体領域の
抵抗R1はその厚みdに比例し不純物濃度N1に逆比例する
から、オン抵抗Rがこの抵抗R1と等しいとするとその逆
数は次式で表される。 1/R=A・μN1/d 3) ただし、Aは比例定数、μは炭化珪素内の電子の易動度
である。さて、この3)式に2)式から得られる不純物濃度
N1を入れると、 1/R=A・ (2εμ/q)(Em/d2 −V/d3 ) 4) が得られる。この4)式の右辺を第1半導体領域の厚みd
の関数とし左辺を最小にする厚みを求めると、 d=3V/2Em 5) となり、第1半導体領域の厚みをこの最適値dに設定し
た時の電界効果トランジスタの順方向電圧をVfとする
と、5)式の厚みdを4)式に入れることにより次式が得ら
れる。 Vf∝R∝V2 /εμEm3 6)
Since the resistance R1 of the first semiconductor region in the equation (1) at the time of ON is proportional to the thickness d and inversely proportional to the impurity concentration N1, if the ON resistance R is equal to the resistance R1, the reciprocal thereof is as follows. It is expressed by the following equation. 1 / R = A · μN1 / d 3) where A is a proportionality constant, and μ is the mobility of electrons in silicon carbide. By the way, the impurity concentration obtained from the equation (3) and the equation (2)
When N1 is inserted, 1 / R = A · (2εμ / q) (Em / d 2 −V / d 3 ) 4) is obtained. The right side of the equation (4) is the thickness d of the first semiconductor region.
When the thickness that minimizes the left side is obtained as a function of the following equation, d = 3V / 2Em 5). Assuming that the forward voltage of the field effect transistor when the thickness of the first semiconductor region is set to this optimum value d is Vf, By substituting the thickness d in equation (5) into equation (4), the following equation is obtained. VfαRαV 2 / εμEm 3 6)

【0025】以上からわかるように、第1半導体領域
の厚みdを炭化珪素の最大電界強度Emに応じて上の5)式
のように最適化することにより電界効果トランジスタの
順方向電圧Vfを6)式のように最大電界強度Emの3乗に逆
比例して低減できる。炭化珪素の最大電界強度Emは3x
1016V/cmでシリコンの 3.7x1015V/cmよりも約1桁
高いので順方向電圧Vfを大幅に低減できることがわか
る。また、第1半導体領域の厚みdもシリコンの場合の
8分の1程度に薄く構成できる。なお、6)式の電子の易
動度μが炭化珪素ではシリコンより低いので上の効果は
若干減殺されるが、それでも順方向電圧を20分の1程度
に低減できる。
As can be seen from the above, the forward voltage Vf of the field effect transistor is reduced by 6 by optimizing the thickness d of the first semiconductor region according to the maximum electric field strength Em of silicon carbide as in the above equation (5). ), It can be reduced in inverse proportion to the cube of the maximum electric field strength Em. The maximum electric field strength Em of silicon carbide is 3x
Since about one order of magnitude higher than 3.7 × 10 15 V / cm of silicon at 10 16 V / cm it can be seen that significantly reduce the forward voltage Vf. Also, the thickness d of the first semiconductor region can be made as thin as about 8 of that of silicon. Note that the above effect is slightly reduced because the mobility μ of electrons in equation 6) is lower in silicon carbide than in silicon, but the forward voltage can still be reduced to about 1/20.

【0026】[0026]

【実施例】以下、図を参照して本発明の実施例を説明す
る。図1は本発明による電界効果トランジスタの実施例
の断面図、図2はその製造方法の実施例を図1の完成状
態に至るまでの主な工程ごとの状態で示す断面図、図3
は複合構造の電界効果トランジスタの断面図と上面図で
ある。これらの実施例では電界効果トランジスタはすべ
てnチャネル形であるものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of an embodiment of a field-effect transistor according to the present invention, FIG.
2A and 2B are a cross-sectional view and a top view of a field-effect transistor having a composite structure. In these embodiments, all the field effect transistors are of the n-channel type.

【0027】図1に示す電界効果トランジスタ30用に
は、この実施例では強いn形にドープされた炭化珪素の
単結晶の基板10上に同じn形の所定不純物濃度でドープ
された炭化珪素のエピタキシャル層からなる第1半導体
領域11と、逆のp形の高不純物濃度でドープされた同様
な炭化珪素からなる第2半導体領域12が順次重ねられた
3層構成の炭化珪素が用いられ、第2半導体領域の表面
の中央部分にn形不純物として窒素等を高ドーズ量でイ
オン注入した浅い第3半導体領域13が作り込まれる。電
界効果トランジスタ30が例えば1000V耐圧の場合は、第
1半導体領域11の厚みは10μm程度, 第2半導体領域12
の厚みは1〜2μm, 第3半導体領域13の深さは 0.5μ
m程度にそれぞれされる。さらに、第3半導体領域13の
中央部から凹所14が第2半導体領域12を貫いて第1半導
体領域11に達するよう掘り込まれ、その表面を覆うよう
に薄いゲート絶縁膜21が付けられる。この実施例のゲー
ト23は凹所14を埋めるように作り込まれた多結晶シリコ
ンとされる。
For the field-effect transistor 30 shown in FIG. 1, in this embodiment, a strong n-type doped silicon carbide single crystal substrate 10 is deposited on a substrate 10 of the same n-type doped silicon carbide. A three-layer silicon carbide is used in which a first semiconductor region 11 made of an epitaxial layer and a second semiconductor region 12 made of the same silicon carbide doped with a high p-type impurity concentration are sequentially stacked. A shallow third semiconductor region 13 in which nitrogen or the like is ion-implanted at a high dose as an n-type impurity is formed in the central portion of the surface of the second semiconductor region. When the field-effect transistor 30 has a withstand voltage of, for example, 1000 V, the thickness of the first semiconductor region 11 is about 10 μm,
Has a thickness of 1-2 μm and a depth of the third semiconductor region 13 of 0.5 μm.
m. Further, a recess 14 is dug from the center of the third semiconductor region 13 to penetrate the second semiconductor region 12 to reach the first semiconductor region 11, and a thin gate insulating film 21 is provided so as to cover the surface thereof. The gate 23 in this embodiment is made of polycrystalline silicon formed so as to fill the recess 14.

【0028】図1の電界効果トランジスタ30では、第2
半導体領域12がp形のウエル, 第3半導体領域13がn形
のソース領域,第1半導体領域11とその下の基板10がn
形のドレイン領域をそれぞれ構成し、これらから接続用
端子をそれぞれ導出するため絶縁膜24を表面と裏面に付
けてそれに開口された窓内で所定個所に導電接触する電
極膜25を設ける。図示のように、第2半導体領域12と第
3半導体領域13の表面はこの電極膜25により短絡されて
それからソース端子Sが導出される。基板10と導電接触
する電極膜25からドレイン端子Dが, ゲート23に導電接
触する電極膜25からゲート端子Gがそれぞれ導出され
る。
In the field-effect transistor 30 shown in FIG.
The semiconductor region 12 is a p-type well, the third semiconductor region 13 is an n-type source region, the first semiconductor region 11 and the underlying substrate 10 are n-type.
In order to derive connection terminals therefrom, insulating films 24 are provided on the front and back surfaces, respectively, and an electrode film 25 which is in conductive contact with a predetermined portion in a window opened therethrough is provided. As shown, the surfaces of the second semiconductor region 12 and the third semiconductor region 13 are short-circuited by the electrode film 25, and the source terminal S is led out. A drain terminal D is led out of the electrode film 25 that is in conductive contact with the substrate 10, and a gate terminal G is led out of the electrode film 25 that is in conductive contact with the gate 23.

【0029】この電界効果トランジスタ30は、ゲート絶
縁膜21を介してゲート23と対向するp形の第2半導体領
域12の部分をチャネル形成領域とするnチャネル形で、
通常のようにゲート端子Gに与える電圧によってこのチ
ャネル形成を制御してソース端子Sとドレイン端子Dの
間を遮断または導通状態にすることができる。導通時に
電流が基板10と第1半導体領域11内を縦方向に流れる縦
形であり、遮断時には第1半導体領域11内に空乏層が延
びる。前述のように、この第1半導体領域11の炭化珪素
の最大電界強度が高くその厚みをシリコンの場合より約
1桁薄くできるので、本発明による電界効果トランジス
タ30は高耐圧用に適し、かつ順方向電圧を1桁以上低減
できる。また、高入力インピーダンスかつ高スイッチン
グ速度である電界効果トランジスタの特長は本発明の場
合もそのまま活かされシリコンの場合と同程度である。
このほか、炭化珪素は熱伝導率がシリコンより3倍程度
も高いので冷却が容易な利点がある。なお、大電流用の
電界効果トランジスタでは図3に示すような複合構造と
するのが有利である。
This field-effect transistor 30 is an n-channel type in which a portion of the p-type second semiconductor region 12 facing the gate 23 with the gate insulating film 21 interposed therebetween is a channel forming region.
The channel formation can be controlled by a voltage applied to the gate terminal G as usual, so that the source terminal S and the drain terminal D can be cut off or made conductive. It is of a vertical type in which a current flows vertically in the substrate 10 and the first semiconductor region 11 during conduction, and a depletion layer extends in the first semiconductor region 11 during interruption. As described above, since the maximum electric field strength of silicon carbide in first semiconductor region 11 is high and the thickness can be made approximately one digit thinner than that of silicon, field effect transistor 30 according to the present invention is suitable for high breakdown voltage and The direction voltage can be reduced by one digit or more. The characteristics of the field-effect transistor having a high input impedance and a high switching speed are also utilized in the case of the present invention as they are, and are comparable to those of silicon.
In addition, since silicon carbide has a thermal conductivity about three times higher than that of silicon, there is an advantage that cooling is easy. Note that it is advantageous for the field effect transistor for a large current to have a composite structure as shown in FIG.

【0030】本発明の電界効果トランジスタは上述のよ
うに高耐圧に適するが、シリコンの場合のように表面部
にガードリングやチャネルストッパを設けるため第2半
導体領域12の表面に不純物を拡散するのが困難なので、
そのかわりに周縁部に図1に示すようにメサエッチング
溝15を設けるのが望ましい。このメサエッチングにはふ
っ素系の反応ガス等を用いるドライエッチングを利用す
るのがよく、等方性のエッチング条件を選定することに
よりメサエッチング溝15を図のように45度程度の傾斜で
第2半導体領域12の周縁から少なくとも第1半導体領域
11に達するよう掘り込んだ後に、エッチング面を酸化シ
リコンや窒化シリコンの絶縁膜24により覆った上で各チ
ップに単離して図示の状態とする。
Although the field effect transistor of the present invention is suitable for high breakdown voltage as described above, since a guard ring or a channel stopper is provided on the surface as in the case of silicon, it is necessary to diffuse impurities into the surface of the second semiconductor region 12. Is difficult,
Instead, it is desirable to provide a mesa etching groove 15 in the peripheral portion as shown in FIG. For this mesa etching, dry etching using a fluorine-based reaction gas or the like is preferably used. By selecting isotropic etching conditions, the mesa etching groove 15 is formed at a second angle of about 45 degrees as shown in FIG. At least the first semiconductor region from the periphery of the semiconductor region 12
After digging to reach 11, the etched surface is covered with an insulating film 24 of silicon oxide or silicon nitride and then isolated into chips to obtain the state shown in the figure.

【0031】次に、図2を参照して本発明の電界効果ト
ランジスタの製造方法を説明する。同図(a) は数百μm
の厚みのn形の炭化珪素の基板10の上にいずれも炭化珪
素のn形の第1半導体領域11とp形の第2半導体領域12
を前述のように10μm程度と1〜2μmの厚みでそれぞ
れエピタキシャル成長させた状態を示す。
Next, a method of manufacturing the field effect transistor of the present invention will be described with reference to FIG. Figure (a) shows several hundred μm.
Each of n-type first semiconductor region 11 and p-type second semiconductor region 12 of silicon carbide is provided on n-type silicon carbide substrate 10
Shows a state where epitaxial growth was performed at a thickness of about 10 μm and a thickness of 1 to 2 μm, respectively, as described above.

【0032】これらの半導体領域11と12のエピタキシャ
ル成長は例えばシランとメタン等を含む原料ガスを用い
るCVD法により気相成長させることでよく、この気相
成長用の原料ガス中に不純物を混合して置くことによっ
てエピタキシャル成長させる炭化珪素に所望の濃度で不
純物をドープできる。このためのn形不純物としては窒
素, p形不純物としてはアルミが最も適する。
The epitaxial growth of these semiconductor regions 11 and 12 may be carried out by vapor phase growth by a CVD method using a source gas containing, for example, silane and methane, and by mixing impurities into the source gas for the vapor phase growth. By arranging, silicon carbide to be epitaxially grown can be doped with impurities at a desired concentration. For this purpose, nitrogen is most suitable as the n-type impurity and aluminum is most suitable as the p-type impurity.

【0033】図2(b) は凹所14の掘り込み工程を示す。
この掘り込みには化学エッチングも可能ではあるが、ド
ライエッチング法とくにリアクティブイオンエッチング
法を利用して異方性エッチング条件下で凹所14を図示の
ようにほぼ直角な側面形状で掘り込むのが有利である。
この凹所14の幅は次工程で多結晶シリコン等によって容
易に埋め得るように狭めの例えば2〜3μmとするのが
望ましい。図では省略されているが、この掘り込みエッ
チングはもちろんフォトレジスト膜等をマスクとして行
なわれる。
FIG. 2B shows a process of excavating the recess 14.
Chemical etching can be used for this digging, but the recess 14 is digged in a substantially right-angled side shape as shown in the figure under anisotropic etching conditions using dry etching, particularly reactive ion etching. Is advantageous.
It is desirable that the width of the recess 14 is narrow, for example, 2 to 3 μm so that it can be easily filled with polycrystalline silicon or the like in the next step. Although not shown in the figure, this digging etching is of course performed using a photoresist film or the like as a mask.

【0034】図2(c) はゲート絶縁膜21とゲート用の多
結晶シリコン22の成長工程を示す。ゲート絶縁膜21はシ
リコンの場合と同様に熱酸化膜とするのが最も簡単であ
り、酸素を含むふん囲気内の短時間の熱酸化により炭化
珪素の場合も酸化シリコン膜をゲート絶縁膜21に適する
例えば0.05〜0.1 μmの膜厚で付けることができる。次
に、多結晶シリコン22はシランを原料ガスとする減圧C
VD法等により凹所14内を埋めるまで成長させて図示の
状態とする。さらに、この多結晶シリコン22を例えばCF
4 を反応ガスとするドライエッチング法により図2(d)
のように凹所14内のみを残して除去し、かつ凹所14以外
の表面に残るゲート絶縁膜21を希ふっ酸等を用いる短時
間の化学エッチングにより除去する。
FIG. 2C shows a step of growing the gate insulating film 21 and the polycrystalline silicon 22 for the gate. The gate insulating film 21 is most easily formed as a thermal oxide film as in the case of silicon, and a silicon oxide film is formed as the gate insulating film 21 even in the case of silicon carbide by short-time thermal oxidation in an atmosphere containing oxygen. It can be applied in a suitable thickness of, for example, 0.05 to 0.1 μm. Next, the polycrystalline silicon 22 is reduced in pressure C using silane as a source gas.
The recess 14 is grown until it fills the recess 14 by the VD method or the like to obtain the state shown in the figure. Furthermore, this polycrystalline silicon 22 is, for example, CF
Fig. 2 (d) by dry etching using 4 as a reaction gas
The gate insulating film 21 remaining only on the surface other than the recess 14 is removed by short-time chemical etching using dilute hydrofluoric acid or the like.

【0035】図2(d) は第3半導体領域13を作り込む工
程を示す。これにはイオン注入法を用い、不要部分を図
示しないマスクで覆った上で窒素を 100kV程度の加速電
圧下の高ドーズ量で第2半導体領域12の表面のゲート23
の周辺範囲に例えば 0.1μm程度の深さに打ち込むこと
によりn形の第3半導体領域13を作り込む。炭化珪素で
はこの導入不純物の熱拡散が困難なので、以後は1100℃
程度の高温下で熱処理を施して不純物を活性化させるだ
けとする。第3半導体領域13はこのようにごく浅くても
そのソース領域としての役目を充分に果たすことができ
る。以降は図1で説明したようにメサエッチング溝15の
掘り込みと絶縁膜24の被覆と電極膜25の配設を経て図1
の完成状態とする。
FIG. 2D shows a step of forming the third semiconductor region 13. To this end, unnecessary portions are covered with a mask (not shown) using an ion implantation method, and nitrogen is applied to the gate 23 on the surface of the second semiconductor region 12 at a high dose under an acceleration voltage of about 100 kV.
Is implanted to a depth of, for example, about 0.1 μm in the peripheral area of the n-type third semiconductor region 13. Since thermal diffusion of the introduced impurities is difficult in silicon carbide, the temperature is thereafter set to 1100 ° C.
A heat treatment is performed only at a high temperature to activate the impurities. Even if the third semiconductor region 13 is very shallow, it can sufficiently serve as its source region. Thereafter, as described with reference to FIG. 1, the mesa etching groove 15 is dug, the insulating film 24 is covered, and the electrode film 25 is provided.
To the completed state.

【0036】図3に本発明を複合構造の電界効果トラン
ジスタ31に適用した実施例を示す。図3(a) はその断面
図,図3(b) は一部の上面図であり、同図(a) は同図
(b) のX−X矢視断面に相当する。図3(a) の3個の凹
所14内のゲート23は、実際には同図(b) に示された連続
した網状のパターンをもつゲート23の断面である。複合
構造の場合は凹所14とゲート23をこのような網状あるい
は櫛状のパターンに形成するのが有利で、図示の都合か
ら同図(b) には網の目が2個だけ示されているが実際に
は数十〜数百個の目をもつ網状パターンとされる。かか
るパターンをもつ凹所14が同図(a) のように第2半導体
領域12を貫いて第1半導体領域11に達するよう掘り込ま
れるのは前実施例と同じであり、第3半導体領域は凹所
14から外側および網目の内側に向けて広がるように設け
られる。
FIG. 3 shows an embodiment in which the present invention is applied to a field effect transistor 31 having a composite structure. FIG. 3 (a) is a cross-sectional view, FIG. 3 (b) is a partial top view, and FIG.
(b) corresponds to a cross section taken along line XX. The gate 23 in the three recesses 14 in FIG. 3A is actually a cross section of the gate 23 having a continuous mesh pattern shown in FIG. 3B. In the case of a composite structure, it is advantageous to form the recess 14 and the gate 23 in such a net-like or comb-like pattern, and for convenience of illustration, only two meshes are shown in FIG. However, it is actually a net-like pattern having tens to hundreds of eyes. The recess 14 having such a pattern is dug so as to penetrate the second semiconductor region 12 and reach the first semiconductor region 11 as shown in FIG. Recess
It is provided to extend from 14 toward the outside and the inside of the mesh.

【0037】図3(b) のようにゲート23はその網状パタ
ーンから外側に向けた延在部23aを備え、この延在部23
aに導電接触する電極膜25からゲート端子Gが導出され
る。ソース端子S用の電極膜25はゲート23の網状パター
ン全体を覆うよう形成され、同図(a) からわかるように
ゲート23とは絶縁膜24により絶縁される。第2半導体領
域12と第3半導体領域13の表面がこのソース端子S用の
電極膜25によって短絡されるのは前実施例と同じであ
る。メサエッチング溝15はかかる複合構造の全体を外側
から囲むように電界効果トランジスタ31のチップの周縁
部に掘り込まれ、その表面が絶縁膜24により保護され
る。ドレイン端子D用の電極膜25は同図(a)に示すよう
にこの例ではチップの裏面全体を覆うように設けられ
る。この図3に示す複合構造の電界効果トランジスタ31
は大電流用に適し、数十Aから百A以上の定格のものを
容易に構成でき、数十Aの電界効果トランジスタ31を10
mm角程度のチップ内に作り込むことができる。
As shown in FIG. 3B, the gate 23 has an extending portion 23a extending outward from the net pattern.
The gate terminal G is led out from the electrode film 25 that is in conductive contact with the terminal a. The electrode film 25 for the source terminal S is formed so as to cover the entire mesh pattern of the gate 23, and is insulated from the gate 23 by the insulating film 24, as can be seen from FIG. As in the previous embodiment, the surfaces of the second semiconductor region 12 and the third semiconductor region 13 are short-circuited by the electrode film 25 for the source terminal S. The mesa etching groove 15 is dug into the peripheral portion of the chip of the field effect transistor 31 so as to surround the whole of the composite structure from the outside, and its surface is protected by the insulating film 24. In this example, the electrode film 25 for the drain terminal D is provided so as to cover the entire back surface of the chip as shown in FIG. The field effect transistor 31 having the composite structure shown in FIG.
Are suitable for large currents, can easily be configured with a rating of several tens of amps to more than one hundred amps, and have a field effect transistor 31 of several tens amps.
It can be built in a chip of about mm square.

【0038】以上説明した実施例に限らず、本発明は適
宜な態様ないし種々な形態で実施をすることができる。
実施例中の各半導体領域の導電形や厚み等はあくまで例
示であり、電界効果トランジスタが使用される電圧,電
流等の条件に合わせて適宜に設定されるべきものであ
る。また図2に例示した製造方法では凹所の掘り込み後
に第3半導体領域の作り込むようにしたが、第3半導体
領域の作り込み後に凹所を掘り込むようにしてもよい。
The present invention is not limited to the above-described embodiments, but can be embodied in appropriate modes and various forms.
The conductivity type, thickness, and the like of each semiconductor region in the embodiment are merely examples, and should be appropriately set in accordance with conditions such as voltage and current in which the field effect transistor is used. Further, in the manufacturing method illustrated in FIG. 2, the third semiconductor region is formed after the recess is formed, but the recess may be formed after the third semiconductor region is formed.

【0039】[0039]

【発明の効果】以上のとおり本発明の電界効果トランジ
スタでは、炭化珪素の第1および第2半導体領域を一方
および他方の導電形で積み重ね、第3半導体領域を第2
半導体領域の表面の一部に一方の導電形で作り込み、第
3半導体領域の範囲内から凹所を第1半導体領域に達す
るよう掘り込んでその表面をゲート絶縁膜で覆い、かつ
凹所にゲートを作り込むようにし、またその製造方法で
は、一方の導電形の炭化珪素の基板上に一方および他方
の導電形の炭化珪素の第1および第2半導体領域をエピ
タキシャル成長させ、第2半導体領域の表面の一部から
凹所を第1半導体領域に達するまで掘り込んでその表面
をゲート絶縁膜で覆った上で凹所にゲート領域を作り込
み、凹所の周辺に不純物をイオン注入して第3半導体領
域を一方の導電形で作り込むことにより、次の効果を得
ることができる。
As described above, in the field effect transistor of the present invention, the first and second semiconductor regions of silicon carbide are stacked in one and the other conductivity types, and the third semiconductor region is formed in the second semiconductor region.
A part of the surface of the semiconductor region is formed with one conductivity type, a recess is dug from within the third semiconductor region to reach the first semiconductor region, and the surface is covered with a gate insulating film. A gate is formed, and in the manufacturing method, first and second semiconductor regions of silicon carbide of one conductivity type and the other conductivity type are epitaxially grown on a substrate of silicon carbide of one conductivity type. A recess is dug from a part of the surface until reaching the first semiconductor region, the surface is covered with a gate insulating film, a gate region is formed in the recess, and impurities are ion-implanted around the recess to form a first semiconductor region. The following effects can be obtained by forming the three semiconductor regions with one conductivity type.

【0040】(a) 第1および第2半導体領域をエピタキ
シャル成長時に不純物をドープした炭化珪素で構成し、
かつゲートを凹所内に嵌め込む構造として第2半導体領
域にチャネルを形成させることにより、第1および第2
半導体領域に後から不純物を拡散させる必要をなくし、
炭化珪素に対し不純物の熱拡散が困難な問題点を解決し
て実用性の高い電界効果トランジスタを提供できる。
(A) The first and second semiconductor regions are made of silicon carbide doped with impurities during epitaxial growth,
In addition, by forming a channel in the second semiconductor region as a structure in which the gate is fitted in the recess, the first and second channels are formed.
Eliminates the need to diffuse impurities later into the semiconductor region,
It is possible to provide a highly practical field-effect transistor by solving the problem of difficulty in thermally diffusing impurities into silicon carbide.

【0041】(b) 炭化珪素の許容最大電界強度が高い特
長を利用して第1半導体領域に高い電界強度に耐える役
目を持たせることにより、シリコン形と比べて耐圧値が
格段に高い電界効果トランジスタを構成できる。
(B) By making use of the feature that silicon carbide has a high allowable maximum electric field strength, the first semiconductor region has a role of withstanding high electric field strength, so that the withstand voltage value is much higher than that of the silicon type. A transistor can be formed.

【0042】(c) 第1半導体領域内の電界強度の設定値
に合わせてその厚みと不純物濃度を最適化することによ
り、電界効果トランジスタの順方向電圧を従来より1桁
以上低減することができる。
(C) By optimizing the thickness and the impurity concentration in accordance with the set value of the electric field intensity in the first semiconductor region, the forward voltage of the field effect transistor can be reduced by one digit or more compared to the prior art. .

【0043】(d) 炭化珪素の高い熱伝導率を利用して内
部発熱を容易に放散させ得るので、順方向電圧の低減と
相挨って電界効果トランジスタのチップサイズを減少さ
せ、かつその動作信頼性を向上することができる。
(D) Since the internal heat can be easily dissipated by utilizing the high thermal conductivity of silicon carbide, the chip size of the field effect transistor can be reduced and the operation thereof can be reduced in conjunction with the reduction of the forward voltage. Reliability can be improved.

【0044】本発明は電界効果トランジスタの高いスイ
ッチング速度と入力インピーダンスの長所をそのまま活
かしながら、シリコンを用いる場合の限界を克服して上
述のように高耐圧でかつ順方向電圧が低い特長をもつ電
力用電界効果トランジスタを炭化珪素を用いて始めて実
用化することを可能にするものである。
The present invention overcomes the limitations of using silicon while maintaining the advantages of high switching speed and input impedance of a field-effect transistor, and as described above, has a high breakdown voltage and a low forward voltage. It is possible to commercialize a field effect transistor for practical use for the first time using silicon carbide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による炭化珪素半導体を用いる電界効果
トランジスタの一実施例を示す断面図である。
FIG. 1 is a sectional view showing one embodiment of a field-effect transistor using a silicon carbide semiconductor according to the present invention.

【図2】本発明による電界効果トランジスタの製造方法
の図1に対応する実施例を図1の完成状態に至るまでの
主な工程中の状態を同図(a) 〜(d)により示す電界効果
トランジスタ用のウエハの断面図である。
FIG. 2 shows an embodiment corresponding to FIG. 1 of the method for manufacturing a field-effect transistor according to the present invention, showing the state in the main process up to the completed state in FIG. 1 by FIGS. It is sectional drawing of the wafer for effect transistors.

【図3】本発明を複合構造の電界効果トランジスタに適
用した実施例を同図(a) の断面図と同図(b) の一部上面
図により示すものである。
FIG. 3 shows an embodiment in which the present invention is applied to a field effect transistor having a composite structure, by a cross-sectional view of FIG. 3A and a partial top view of FIG.

【図4】従来のシリコン半導体を用いる電界効果トラン
ジスタの構造例を参考用に示すその断面図である。
FIG. 4 is a cross-sectional view showing a structural example of a conventional field effect transistor using a silicon semiconductor for reference.

【符号の説明】[Explanation of symbols]

10 炭化珪素の基板 11 第1半導体領域ないしはドレイン領域 12 第2半導体領域ないしはウエル領域 13 第3半導体領域ないしはソース領域 14 凹所 15 メサエッチング溝 21 ゲート絶縁膜 22 多結晶シリコン 23 ゲート 25 電極膜 30 電界効果トランジスタ 31 複合構造の電界効果トランジスタ D ドレイン端子 G ゲート端子 S ソース端子 10 Substrate of silicon carbide 11 First semiconductor region or drain region 12 Second semiconductor region or well region 13 Third semiconductor region or source region 14 Recess 15 Mesa etching groove 21 Gate insulating film 22 Polycrystalline silicon 23 Gate 25 Electrode film 30 Field-effect transistor 31 Field-effect transistor of composite structure D Drain terminal G Gate terminal S Source terminal

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一方の導電形の炭化珪素からなる第1半導
体領域と、その上に重ねられた他方の導電形の炭化珪素
からなる第2半導体領域と、この第2半導体領域の表面
の一部の範囲に一方の導電形で作り込まれた第3半導体
領域と、この第3半導体領域の範囲内から第1半導体領
域に達するように掘り込まれた凹所と、この凹所の表面
を覆うゲート絶縁膜と、このゲート絶縁膜を介し凹所に
作り込まれたゲート領域と、第1および第3半導体領域
に接続された1対のソース・ドレイン端子とゲート領域
に接続されたゲート端子とを備え、第2半導体領域の周
縁から第1半導体領域に達するメサエッチング溝が掘り
込まれたことを特徴とする電界効果トランジスタ。
A first semiconductor region made of silicon carbide of one conductivity type, a second semiconductor region made of silicon carbide of another conductivity type superposed thereon, and a first semiconductor region made of silicon carbide of another conductivity type. A third semiconductor region formed of one conductivity type in the region of the portion, a recess dug to reach the first semiconductor region from within the third semiconductor region, and a surface of the recess. A gate insulating film to cover, a gate region formed in the recess through the gate insulating film, a pair of source / drain terminals connected to the first and third semiconductor regions, and a gate terminal connected to the gate region And a mesa-etched groove extending from the periphery of the second semiconductor region to the first semiconductor region.
JP3006639A 1991-01-24 1991-01-24 Field effect transistor Expired - Lifetime JP2917532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3006639A JP2917532B2 (en) 1991-01-24 1991-01-24 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3006639A JP2917532B2 (en) 1991-01-24 1991-01-24 Field effect transistor

Publications (2)

Publication Number Publication Date
JPH04239778A JPH04239778A (en) 1992-08-27
JP2917532B2 true JP2917532B2 (en) 1999-07-12

Family

ID=11643942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3006639A Expired - Lifetime JP2917532B2 (en) 1991-01-24 1991-01-24 Field effect transistor

Country Status (1)

Country Link
JP (1) JP2917532B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506421A (en) * 1992-11-24 1996-04-09 Cree Research, Inc. Power MOSFET in silicon carbide
US5322802A (en) * 1993-01-25 1994-06-21 North Carolina State University At Raleigh Method of fabricating silicon carbide field effect transistor
US5399515A (en) * 1993-07-12 1995-03-21 Motorola, Inc. Method of fabricating a silicon carbide vertical MOSFET and device
US5397717A (en) * 1993-07-12 1995-03-14 Motorola, Inc. Method of fabricating a silicon carbide vertical MOSFET
JP3334290B2 (en) * 1993-11-12 2002-10-15 株式会社デンソー Semiconductor device
DE69409615T2 (en) * 1993-12-07 1998-12-03 Denso Corp., Kariya, Aichi AC generator for motor vehicles
JP3374491B2 (en) * 1993-12-24 2003-02-04 株式会社デンソー Electric generator for vehicle
WO1995024055A1 (en) * 1994-03-04 1995-09-08 Siemens Aktiengesellschaft Silicon carbide-based mis structure with high latch-up resistance
EP0676814B1 (en) * 1994-04-06 2006-03-22 Denso Corporation Process of producing trench semiconductor device
US5723376A (en) * 1994-06-23 1998-03-03 Nippondenso Co., Ltd. Method of manufacturing SiC semiconductor device having double oxide film formation to reduce film defects
JP3575110B2 (en) * 1995-06-06 2004-10-13 株式会社デンソー AC generator for vehicles
US6573534B1 (en) 1995-09-06 2003-06-03 Denso Corporation Silicon carbide semiconductor device
KR100199997B1 (en) * 1995-09-06 1999-07-01 오카메 히로무 Silicon carbide semiconductor device
JP3471509B2 (en) * 1996-01-23 2003-12-02 株式会社デンソー Silicon carbide semiconductor device
US6133587A (en) * 1996-01-23 2000-10-17 Denso Corporation Silicon carbide semiconductor device and process for manufacturing same
US5952679A (en) * 1996-10-17 1999-09-14 Denso Corporation Semiconductor substrate and method for straightening warp of semiconductor substrate
US6054752A (en) * 1997-06-30 2000-04-25 Denso Corporation Semiconductor device
JP4192281B2 (en) 1997-11-28 2008-12-10 株式会社デンソー Silicon carbide semiconductor device
EP1009022A1 (en) 1998-12-09 2000-06-14 STMicroelectronics S.r.l. Manufacturing process of a high integration density power MOS device
JP5101030B2 (en) * 2006-04-10 2012-12-19 三菱電機株式会社 Trench-type MOSFET and manufacturing method thereof
JP2009187966A (en) * 2008-02-01 2009-08-20 Sumitomo Electric Ind Ltd Method of manufacturing semiconductor device
US10115815B2 (en) * 2012-12-28 2018-10-30 Cree, Inc. Transistor structures having a deep recessed P+ junction and methods for making same
US11489069B2 (en) 2017-12-21 2022-11-01 Wolfspeed, Inc. Vertical semiconductor device with improved ruggedness
US10615274B2 (en) 2017-12-21 2020-04-07 Cree, Inc. Vertical semiconductor device with improved ruggedness

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142568A (en) * 1983-12-29 1985-07-27 Sharp Corp Manufacture of sic field effect transistor
JP2542448B2 (en) * 1990-05-24 1996-10-09 シャープ株式会社 Field effect transistor and method of manufacturing the same

Also Published As

Publication number Publication date
JPH04239778A (en) 1992-08-27

Similar Documents

Publication Publication Date Title
JP2917532B2 (en) Field effect transistor
US5693569A (en) Method of forming silicon carbide trench mosfet with a schottky electrode
US9490338B2 (en) Silicon carbide semiconductor apparatus and method of manufacturing same
US6429041B1 (en) Methods of fabricating silicon carbide inversion channel devices without the need to utilize P-type implantation
JP2766240B2 (en) High voltage semiconductor device
JP3327135B2 (en) Field effect transistor
JPH01138759A (en) High-breakdown strength planar element
JPH06224437A (en) Field-effect transistor and manufacture thereof
JP2008503894A (en) Silicon carbide device and manufacturing method thereof
US6777745B2 (en) Symmetric trench MOSFET device and method of making same
JP4990458B2 (en) Self-aligned silicon carbide LMOSFET
JP4164892B2 (en) Semiconductor device and manufacturing method thereof
US3381188A (en) Planar multi-channel field-effect triode
JPH07193242A (en) Semiconductor device and its manufacture
CN112951905A (en) SiC reverse conducting type insulated gate bipolar transistor device and manufacturing method thereof
JP3436220B2 (en) Vertical semiconductor device
US5773849A (en) Field of the invention
WO2023116383A1 (en) Insulated gate bipolar transistor with super junction structure, and preparation method therefor
CN114664934B (en) DMOS transistor with field plate and manufacturing method thereof
US6150671A (en) Semiconductor device having high channel mobility and a high breakdown voltage for high power applications
JP3941641B2 (en) Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device manufactured by the manufacturing method
Ueda et al. A new vertical double diffused MOSFET—the self-aligned terraced-gate MOSFET
JP2005019494A (en) Semiconductor device and its manufacturing method
JP7074173B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
CN114068721A (en) Double-trapezoid-groove protection trapezoid-groove silicon carbide MOSFET device and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12