JPH04239778A - Field-effect transistor and its manufacture - Google Patents

Field-effect transistor and its manufacture

Info

Publication number
JPH04239778A
JPH04239778A JP3006639A JP663991A JPH04239778A JP H04239778 A JPH04239778 A JP H04239778A JP 3006639 A JP3006639 A JP 3006639A JP 663991 A JP663991 A JP 663991A JP H04239778 A JPH04239778 A JP H04239778A
Authority
JP
Japan
Prior art keywords
semiconductor region
gate
silicon carbide
recess
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3006639A
Other languages
Japanese (ja)
Other versions
JP2917532B2 (en
Inventor
Katsunori Ueno
勝典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3006639A priority Critical patent/JP2917532B2/en
Publication of JPH04239778A publication Critical patent/JPH04239778A/en
Application granted granted Critical
Publication of JP2917532B2 publication Critical patent/JP2917532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To increase the withstand voltage value of a field-effect transistor and to reduce the forward voltage, by using silicon carbide semiconductors solving the problem that thermal diffusion of impurities to silicon carbides is difficult. CONSTITUTION:The first and second semiconductor regions composed of one and the other conductivity type silicon carbides are laminated doping impurities at the time of epitaxial growth, the third semiconductor region is formed into one conductivity type in a part of the surface of the second semiconductor region by ion implantation. And a recession is dug from the third semiconductor region until it reaches the first semiconductor region, and a gate is fitted into it after its surface is covered with a gate insulating film. Besides, source and drain terminals are drawn out from the first and third semiconductor regions, and a gate terminal is drawn out from the gate respectively.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、炭化珪素半導体を用い
とくに高圧大電流用に適する電界効果トランジスタおよ
びその製造方法に関する。 【0002】 【従来の技術】高電圧や大電流を扱う用途に適するいわ
ゆる電力用トランジスタには従来からすべてシリコン半
導体が用いられており、現在までに実用化された主なも
のには周知のようにバイポーラトランジスタ,電界効果
トランジスタおよび絶縁ゲートバイポーラトランジスタ
がある。この電力用トランジスタ全般に対し要求される
最も基本的な性能として、オン時の順方向電圧が低いこ
と、入力インピーダンスが高いこと、およびスイッチン
グ速度が高いことが挙げられるが、これらの観点からこ
れらのトランジスタを見るとそれぞれ一長一短がある。 【0003】すなわち、バイポーラトランジスタと電界
効果トランジスタとはいずれも速いスイッチング速度を
有するが、前者には順方向電圧が低い利点がある反面,
入力インピーダンスが低い欠点があり、後者には逆に入
力インピーダンスが高い利点がある反面,順方向電圧が
高い欠点がある。これらの中間的な性格の絶縁ゲートバ
イポーラトランジスタは低い順方向電圧と高い入力イン
ピーダンスを兼備するが、スイッチング速度がこれらと
比べると遅い欠点がある。 【0004】このため、従来からかかる問題点を解決し
て電力用トランジスタの性能を改善する努力が種々なさ
れて来たが、この改善にも半導体材料がもつ基本的な性
能値に基づく限界が自ずからあって現在ではシリコン半
導体を利用するトランジスタの性能の理論的限界にすで
にかなり近づきつつあるものと考えられ、この限界を克
服し得る新しい半導体材料の一つとして炭化珪素が注目
されている。 【0005】周知のように、この炭化珪素はシリコンよ
りもバンドギャップが広い半導体であり、放射能レベル
の高い環境や自動車のエンジン回り等のノイズの高い場
所に適する半導体装置用材料として注目されていたが、
最近ではかなり結晶性の高いウエハが得られるようにな
り(例えば R.F.Davis etal; Mat
. Res. Soc. Symp.Proc., V
ol. 162, l990, p.463を参照) 
、それを用いる半導体装置の実現可能性が検討されつつ
ある (例えば K. Shenai et al; 
IEEE Trans. on Elect. Dev
., Vol. 36, No. 9, 1989, 
p.1181を参照) 。 【0006】炭化珪素はバンドギャップが広い前述の特
徴のほかに、その結晶内でキャリアの増倍効果が発生す
る電界強度がシリコンより高く, 従って絶縁破壊電圧
が高い特長があるが、低い抵抗値をもつ半導体層をその
中に作り込むのがまだ必ずしも容易でないので、炭化珪
素を利用するトランジスタとしてはバイポーラ形よりは
むしろ電界効果形の方が適し、本発明も炭化珪素半導体
を利用するこの電界効果トランジスタに関する。なお、
この種トランジスタに関する従来技術はほとんど知られ
ていないが、 R.F.Davis, HFPC Ma
y (1989) Proceedings; p.8
1 には横形の電界効果トランジスタを試作した結果、
シリコン半導体の場合と同様なトランジスタ特性が得ら
れた旨の報告がある。 【0007】しかし、このような横形構造の電界効果ト
ランジスタは周知のように大電流用に不利であり、高電
界強度に耐え得る炭化珪素の本来の特長を活かして高耐
圧化する上でも不利を免れないので、炭化珪素半導体を
用いる電界効果トランジスタにおいても高圧大電流用に
は縦形構造の採用が望ましい。かかる電力用に適する炭
化珪素の電界効果トランジスタの縦形構造はまだ知られ
ていないが、参考用にシリコン半導体を用いる場合の代
表的な縦形構造の概要を以下に図4を参照して簡単に説
明する。 【0008】大電流用の縦形電界効果トランジスタは一
般に小形トランジスタを多数個並列接続してなるが、図
4はかかる複合構造中の1単位をnチャネル形の場合に
つき示すものである。n形の基板40の裏面側からドレ
イン用の接続層41を強いn形で拡散し、その表面上に
ゲート酸化膜42を介して多結晶シリコンのゲート43
を配設した上で、これをマスクに利用して不純物をイオ
ン注入しかつ熱拡散させることによりp形の深いウエル
44と強いn形の浅いソース層45とを図のようにそれ
ぞれ周縁がゲート43の下側にもぐり込むように作り込
む。さらに、ゲート43の範囲を絶縁膜46で覆った後
その上にアルミの電極膜47を配設し、かつ裏面側のド
レイン接続層41にも電極膜47を付ける。 【0009】かかる縦形の電界効果トランジスタ50は
、図示のようにウエル44とソース層45とを表面上で
短絡する電極膜47をソース端子S, ドレイン接続層
41と接続された電極膜47をドレイン端子D, ゲー
ト43と接続された電極膜46をゲート端子Gとそれぞ
れするもので、端子Gに与えるゲート電圧によりウエル
44のゲート43の下側部分の表面におけるチャネル形
成を制御することによりソース端子Sとドレイン端子D
の間が遮断または導通状態にされる。導通時の電流iは
図のように基板40等の内部を縦方向に流れるので縦形
と呼ばれる。 【0010】 【発明が解決しようとする課題】ところが、図4のよう
な縦形構造をそのまま炭化珪素を用いる電界効果トラン
ジスタに適用するのは困難である。これは、半導体層を
作り込むための不純物の拡散に要する温度がシリコンの
場合1000℃程度なのに比べて炭化珪素では2000
℃以上にもなるためであって、かかる高温下で不純物を
熱拡散させ得る実用設備が現実にはないほか、図4のウ
エル44のようなかなり深い拡散には非常な長時間を要
するので実際上は実行不可能に近いからである。 【0011】もう一つの問題は、電界効果トランジスタ
にはその順方向電圧が前述のように元々高い欠点がある
ことであって、炭化珪素を利用することによって高耐圧
化はできても大電流が流れた時の順方向電圧があまり高
いとその実用性が著しく減殺される結果になり兼ねない
。順方向電圧を低めるには半導体層内の不純物濃度を上
げてその固有抵抗値を下げる必要があるが、上述のよう
に不純物拡散が困難なようではこの欠点の解消も困難で
ある。 【0012】本発明は、かかる現状に立脚して不純物の
熱拡散が困難な炭化珪素の問題点を解決し、高スイッチ
ング速度と高入力インピーダンスの電界効果トランジス
タの特長を活かしながらその一層の高耐圧化を可能にし
、かつその順方向電圧を改善することができる炭化珪素
を用いる縦形構造の電界効果トランジスタおよびその製
造方法を提供することを目的とする。 【0013】 【課題を解決するための手段】この目的は本発明の電界
効果トランジスタによれば、一方の導電形の炭化珪素か
らなる第1半導体領域と、それに重ねた他方の導電形の
炭化珪素からなる第2半導体領域と、第2半導体領域の
表面の一部の範囲に一方の導電形で作り込まれた第3半
導体領域と、第3半導体領域の範囲内から第1半導体領
域に達するよう掘り込まれた凹所と、この凹所の表面を
覆うゲート絶縁膜と、このゲート酸化膜を介し凹所に作
り込まれたゲート領域とを設け、第1および第3半導体
領域から1対のソース・ドレイン端子を, ゲート領域
からゲート端子をそれぞれ導出することにより達成され
る。 【0014】なお、ふつうは上記構成中の第1半導体領
域をドレイン層, 第2半導体領域をウエルないしはサ
ブストレート, 第3半導体領域をソース層とそれぞれ
することでよく、かつ第1半導体領域を一方の導電形の
炭化珪素からなる基板の上に成長された炭化珪素のエピ
タキシャル層とし、第2半導体領域をさらにその上に成
長された炭化珪素のエピタキシャル層とするのがよく、
この際の基板には高不純物濃度の炭化珪素の単結晶を用
いるのがよい。また、第3半導体領域は第2半導体領域
の表面に不純物を導入して活性化しただけのごく浅い半
導体層とすることでよい。さらに、第2半導体領域と第
3半導体領域は端子を導出するための電極膜により表面
で相互に短絡するのが有利である。 【0015】本発明の電界効果トランジスタにおいても
シリコン半導体を用いる場合と同様に小形トランジスタ
を集積化した複合構造とするのが望ましい。高耐圧用の
電界効果トランジスタでは半導体表面に沿う絶縁破壊を
防止するためガードリングやチャネルストッパ層を通常
設けるが、炭化珪素半導体を用いる場合はそのための不
純物拡散が困難なのでこのかわりに第2半導体領域の周
縁から第1半導体領域に達するメサエッチング溝を掘り
込むのが有利である。電界効果トランジスタが上述の複
合構造の場合このメサエッチング溝は複数個の小形トラ
ンジスタを共通に囲むように設けることでよい。 【0016】また本発明の電界効果トランジスタの製造
方法によれば、一方の導電形の炭化珪素の基板上に一方
の導電形の炭化珪素の第1半導体領域をエピタキシャル
成長させる工程と、第1半導体領域の上に他方の導電形
の炭化珪素の第2半導体領域をエピタキシャル成長させ
る工程と、第2半導体領域の表面の一部の範囲に凹所を
第1半導体領域に達するように掘り込む工程と、凹所の
表面をゲート絶縁膜で覆う工程と、ゲート絶縁膜を介し
て凹所に嵌め込むようにゲート領域を作り込む工程と、
第2半導体領域の表面の凹所の周辺範囲に不純物をイオ
ン注入して第3半導体領域を一方の導電形で作り込む工
程と、第1および第3半導体領域に接続されたソース・
ドレイン用電極膜とゲート領域に接続されたゲート用電
極膜とを配設する工程とを経由することによって前述の
目的が達成される。 【0017】なお、上記構成中の第1および第2半導体
領域のエピタキシャル成長工程ではシランとメタン等を
含む原料ガスを用いるCVD法によってこれらの半導体
領域を気相成長させることでよく、それらへの凹所の掘
り込み工程ではリアクティブイオンエッチング法を利用
するのが有利である。また、ゲート絶縁膜の被覆工程で
は凹所の表面を酸化することにより酸化シリコン膜を形
成するのがよく、凹所へのゲート領域の作り込み工程は
CVD法により多結晶シリコンをそれ用に成長させるの
が有利である。 【0018】第3半導体領域を作り込む工程では、不純
物をイオン注入した後それを熱拡散させるのが前述のよ
うに困難なので、高温の熱処理によって注入不純物を活
性化させて例えば 0.1μm程度の浅い第3半導体領
域を作り込むことでよい。また、この第3半導体領域の
作り込み工程はゲート領域を設けた後とする必要はとく
になく、ゲート領域用の凹所の掘り込み工程の前に行な
うことでもよい。 【0019】なお、炭化珪素半導体に対するp形不純物
としてアルミを,n形不純物として窒素をそれぞれ用い
るのが、上記各半導体領域に対しできるだけ狭い不純物
準位を賦与して電界効果トランジスタの特性を向上させ
る上で望ましい。 【0020】 【作用】本発明による電界効果トランジスタとその製造
方法では、前項の構成中にいう第1および第2半導体領
域を炭化珪素のエピタキシャル層で構成してそのエピタ
キシャル成長時に不純物を最初から導入して置き、かつ
ゲート領域を第2半導体領域を貫いて第1半導体領域に
達するように掘り込んだ凹所内に嵌め込むいわば埋め込
み構造として凹所の側面のゲート絶縁膜に接する第2半
導体領域の部分をチャネル形成面とすることにより、第
1および第2の半導体領域に対して後から不純物を拡散
させる必要をなくして、不純物の熱拡散が困難な炭化珪
素の問題点を解決する。 【0021】さらに、本発明は炭化珪素の許容最大電界
強度が高い特長を利用してその第1半導体領域内の電界
強度を高く設定することにより電界効果トランジスタの
耐圧を向上するとともに、この電界強度の設定値に合わ
せて第1半導体領域の厚みを最適化することにより電界
効果トランジスタの順方向電圧の低減を可能にする。以
下、この順方向電圧を低減できる理由を若干の式を用い
て説明する。 【0022】本発明の電界効果トランジスタでは前述の
ように第2半導体領域にチャネルが形成され、そのオン
抵抗をRとするとこのチャネルの抵抗Rcと第1半導体
領域内の抵抗R1の和になるので、               R=Rc+R1    
                         
             1)で表されるが、数百V
以上の高耐圧電界効果トランジスタではチャネル抵抗R
cは第1半導体領域の抵抗R1の1%程度になるので、
実際には抵抗Rは抵抗R1だけで決まるとしてよい。 【0023】電界効果トランジスタのオフ時にかかる電
圧も同様にすべて第1半導体領域に掛かるものとしてよ
く、電界効果トランジスタの耐圧値をVとすると次式で
表すことができる。               V=Emd−qN1d2
 /2ε                     
       2)ただし、Emは第1半導体領域内の
電界強度つまり炭化珪素の許容最大電界強度,dは第1
半導体領域の厚み, qは電子電荷, N1は第1半導
体領域の不純物濃度,εは炭化珪素の誘電率であり、第
1半導体領域に空乏層が延びた時の内部の電界強度分布
がよく知られているようにその不純物濃度で決まる傾斜
で直線的に変化するものとした。 【0024】さて、オン時の1)式中の第1半導体領域
の抵抗R1はその厚みdに比例し不純物濃度N1に逆比
例するから、オン抵抗Rがこの抵抗R1と等しいとする
とその逆数は次式で表される。               1/R=A・μN1/d
                         
       3)ただし、Aは比例定数、μは炭化珪
素内の電子の易動度である。さて、この3)式に2)式
から得られる不純物濃度N1を入れると、               1/R=A・ (2εμ
/q)(Em/d2 −V/d3 )       4
)が得られる。この4)式の右辺を第1半導体領域の厚
みdの関数とし左辺を最小にする厚みを求めると、  
            d=3V/2Em     
                         
        5)となり、第1半導体領域の厚みを
この最適値dに設定した時の電界効果トランジスタの順
方向電圧をVfとすると、5)式の厚みdを4)式に入
れることにより次式が得られる。               Vf∝R∝V2 /εμ
Em3                      
         6)  【0025】以上からわか
るように、第1半導体領域の厚みdを炭化珪素の最大電
界強度Emに応じて上の5)式のように最適化すること
により電界効果トランジスタの順方向電圧Vfを6)式
のように最大電界強度Emの3乗に逆比例して低減でき
る。炭化珪素の最大電界強度Emは3x1016V/c
mでシリコンの 3.7x1015V/cmよりも約1
桁高いので順方向電圧Vfを大幅に低減できることがわ
かる。また、第1半導体領域の厚みdもシリコンの場合
の8分の1程度に薄く構成できる。なお、6)式の電子
の易動度μが炭化珪素ではシリコンより低いので上の効
果は若干減殺されるが、それでも順方向電圧を20分の
1程度に低減できる。 【0026】 【実施例】以下、図を参照して本発明の実施例を説明す
る。図1は本発明による電界効果トランジスタの実施例
の断面図、図2はその製造方法の実施例を図1の完成状
態に至るまでの主な工程ごとの状態で示す断面図、図3
は複合構造の電界効果トランジスタの断面図と上面図で
ある。これらの実施例では電界効果トランジスタはすべ
てnチャネル形であるものとする。 【0027】図1に示す電界効果トランジスタ30用に
は、この実施例では強いn形にドープされた炭化珪素の
単結晶の基板10上に同じn形の所定不純物濃度でドー
プされた炭化珪素のエピタキシャル層からなる第1半導
体領域11と、逆のp形の高不純物濃度でドープされた
同様な炭化珪素からなる第2半導体領域12が順次重ね
られた3層構成の炭化珪素が用いられ、第2半導体領域
の表面の中央部分にn形不純物として窒素等を高ドーズ
量でイオン注入した浅い第3半導体領域13が作り込ま
れる。電界効果トランジスタ30が例えば1000V耐
圧の場合は、第1半導体領域11の厚みは10μm程度
, 第2半導体領域12の厚みは1〜2μm, 第3半
導体領域13の深さは 0.5μm程度にそれぞれされ
る。さらに、第3半導体領域13の中央部から凹所14
が第2半導体領域12を貫いて第1半導体領域11に達
するよう掘り込まれ、その表面を覆うように薄いゲート
絶縁膜21が付けられる。この実施例のゲート23は凹
所14を埋めるように作り込まれた多結晶シリコンとさ
れる。 【0028】図1の電界効果トランジスタ30では、第
2半導体領域12がp形のウエル, 第3半導体領域1
3がn形のソース領域,第1半導体領域11とその下の
基板10がn形のドレイン領域をそれぞれ構成し、これ
らから接続用端子をそれぞれ導出するため絶縁膜24を
表面と裏面に付けてそれに開口された窓内で所定個所に
導電接触する電極膜25を設ける。図示のように、第2
半導体領域12と第3半導体領域13の表面はこの電極
膜25により短絡されてそれからソース端子Sが導出さ
れる。基板10と導電接触する電極膜25からドレイン
端子Dが, ゲート23に導電接触する電極膜25から
ゲート端子Gがそれぞれ導出される。 【0029】この電界効果トランジスタ30は、ゲート
絶縁膜21を介してゲート23と対向するp形の第2半
導体領域12の部分をチャネル形成領域とするnチャネ
ル形で、通常のようにゲート端子Gに与える電圧によっ
てこのチャネル形成を制御してソース端子Sとドレイン
端子Dの間を遮断または導通状態にすることができる。 導通時に電流が基板10と第1半導体領域11内を縦方
向に流れる縦形であり、遮断時には第1半導体領域11
内に空乏層が延びる。前述のように、この第1半導体領
域11の炭化珪素の最大電界強度が高くその厚みをシリ
コンの場合より約1桁薄くできるので、本発明による電
界効果トランジスタ30は高耐圧用に適し、かつ順方向
電圧を1桁以上低減できる。また、高入力インピーダン
スかつ高スイッチング速度である電界効果トランジスタ
の特長は本発明の場合もそのまま活かされシリコンの場
合と同程度である。 このほか、炭化珪素は熱伝導率がシリコンより3倍程度
も高いので冷却が容易な利点がある。なお、大電流用の
電界効果トランジスタでは図3に示すような複合構造と
するのが有利である。 【0030】本発明の電界効果トランジスタは上述のよ
うに高耐圧に適するが、シリコンの場合のように表面部
にガードリングやチャネルストッパを設けるため第2半
導体領域12の表面に不純物を拡散するのが困難なので
、そのかわりに周縁部に図1に示すようにメサエッチン
グ溝15を設けるのが望ましい。このメサエッチングに
はふっ素系の反応ガス等を用いるドライエッチングを利
用するのがよく、等方性のエッチング条件を選定するこ
とによりメサエッチング溝15を図のように45度程度
の傾斜で第2半導体領域12の周縁から少なくとも第1
半導体領域11に達するよう掘り込んだ後に、エッチン
グ面を酸化シリコンや窒化シリコンの絶縁膜24により
覆った上で各チップに単離して図示の状態とする。 【0031】次に、図2を参照して本発明の電界効果ト
ランジスタの製造方法を説明する。同図(a) は数百
μmの厚みのn形の炭化珪素の基板10の上にいずれも
炭化珪素のn形の第1半導体領域11とp形の第2半導
体領域12を前述のように10μm程度と1〜2μmの
厚みでそれぞれエピタキシャル成長させた状態を示す。 【0032】これらの半導体領域11と12のエピタキ
シャル成長は例えばシランとメタン等を含む原料ガスを
用いるCVD法により気相成長させることでよく、この
気相成長用の原料ガス中に不純物を混合して置くことに
よってエピタキシャル成長させる炭化珪素に所望の濃度
で不純物をドープできる。このためのn形不純物として
は窒素, p形不純物としてはアルミが最も適する。 【0033】図2(b) は凹所14の掘り込み工程を
示す。 この掘り込みには化学エッチングも可能ではあるが、ド
ライエッチング法とくにリアクティブイオンエッチング
法を利用して異方性エッチング条件下で凹所14を図示
のようにほぼ直角な側面形状で掘り込むのが有利である
。 この凹所14の幅は次工程で多結晶シリコン等によって
容易に埋め得るように狭めの例えば2〜3μmとするの
が望ましい。図では省略されているが、この掘り込みエ
ッチングはもちろんフォトレジスト膜等をマスクとして
行なわれる。 【0034】図2(c) はゲート絶縁膜21とゲート
用の多結晶シリコン22の成長工程を示す。ゲート絶縁
膜21はシリコンの場合と同様に熱酸化膜とするのが最
も簡単であり、酸素を含むふん囲気内の短時間の熱酸化
により炭化珪素の場合も酸化シリコン膜をゲート絶縁膜
21に適する例えば0.05〜0.1 μmの膜厚で付
けることができる。次に、多結晶シリコン22はシラン
を原料ガスとする減圧CVD法等により凹所14内を埋
めるまで成長させて図示の状態とする。さらに、この多
結晶シリコン22を例えばCF4 を反応ガスとするド
ライエッチング法により図2(d) のように凹所14
内のみを残して除去し、かつ凹所14以外の表面に残る
ゲート絶縁膜21を希ふっ酸等を用いる短時間の化学エ
ッチングにより除去する。 【0035】図2(d) は第3半導体領域13を作り
込む工程を示す。これにはイオン注入法を用い、不要部
分を図示しないマスクで覆った上で窒素を 100kV
程度の加速電圧下の高ドーズ量で第2半導体領域12の
表面のゲート23の周辺範囲に例えば 0.1μm程度
の深さに打ち込むことによりn形の第3半導体領域13
を作り込む。炭化珪素ではこの導入不純物の熱拡散が困
難なので、以後は1100℃程度の高温下で熱処理を施
して不純物を活性化させるだけとする。第3半導体領域
13はこのようにごく浅くてもそのソース領域としての
役目を充分に果たすことができる。以降は図1で説明し
たようにメサエッチング溝15の掘り込みと絶縁膜24
の被覆と電極膜25の配設を経て図1の完成状態とする
。 【0036】図3に本発明を複合構造の電界効果トラン
ジスタ31に適用した実施例を示す。図3(a) はそ
の断面図,図3(b) は一部の上面図であり、同図(
a) は同図(b) のX−X矢視断面に相当する。図
3(a) の3個の凹所14内のゲート23は、実際に
は同図(b) に示された連続した網状のパターンをも
つゲート23の断面である。複合構造の場合は凹所14
とゲート23をこのような網状あるいは櫛状のパターン
に形成するのが有利で、図示の都合から同図(b) に
は網の目が2個だけ示されているが実際には数十〜数百
個の目をもつ網状パターンとされる。かかるパターンを
もつ凹所14が同図(a) のように第2半導体領域1
2を貫いて第1半導体領域11に達するよう掘り込まれ
るのは前実施例と同じであり、第3半導体領域は凹所1
4から外側および網目の内側に向けて広がるように設け
られる。 【0037】図3(b) のようにゲート23はその網
状パターンから外側に向けた延在部23aを備え、この
延在部23aに導電接触する電極膜25からゲート端子
Gが導出される。ソース端子S用の電極膜25はゲート
23の網状パターン全体を覆うよう形成され、同図(a
) からわかるようにゲート23とは絶縁膜24により
絶縁される。第2半導体領域12と第3半導体領域13
の表面がこのソース端子S用の電極膜25によって短絡
されるのは前実施例と同じである。メサエッチング溝1
5はかかる複合構造の全体を外側から囲むように電界効
果トランジスタ31のチップの周縁部に掘り込まれ、そ
の表面が絶縁膜24により保護される。ドレイン端子D
用の電極膜25は同図(a)に示すようにこの例ではチ
ップの裏面全体を覆うように設けられる。この図3に示
す複合構造の電界効果トランジスタ31は大電流用に適
し、数十Aから百A以上の定格のものを容易に構成でき
、数十Aの電界効果トランジスタ31を10mm角程度
のチップ内に作り込むことができる。 【0038】以上説明した実施例に限らず、本発明は適
宜な態様ないし種々な形態で実施をすることができる。 実施例中の各半導体領域の導電形や厚み等はあくまで例
示であり、電界効果トランジスタが使用される電圧,電
流等の条件に合わせて適宜に設定されるべきものである
。また図2に例示した製造方法では凹所の掘り込み後に
第3半導体領域の作り込むようにしたが、第3半導体領
域の作り込み後に凹所を掘り込むようにしてもよい。 【0039】 【発明の効果】以上のとおり本発明の電界効果トランジ
スタでは、炭化珪素の第1および第2半導体領域を一方
および他方の導電形で積み重ね、第3半導体領域を第2
半導体領域の表面の一部に一方の導電形で作り込み、第
3半導体領域の範囲内から凹所を第1半導体領域に達す
るよう掘り込んでその表面をゲート絶縁膜で覆い、かつ
凹所にゲートを作り込むようにし、またその製造方法で
は、一方の導電形の炭化珪素の基板上に一方および他方
の導電形の炭化珪素の第1および第2半導体領域をエピ
タキシャル成長させ、第2半導体領域の表面の一部から
凹所を第1半導体領域に達するまで掘り込んでその表面
をゲート絶縁膜で覆った上で凹所にゲート領域を作り込
み、凹所の周辺に不純物をイオン注入して第3半導体領
域を一方の導電形で作り込むことにより、次の効果を得
ることができる。 【0040】(a) 第1および第2半導体領域をエピ
タキシャル成長時に不純物をドープした炭化珪素で構成
し、かつゲートを凹所内に嵌め込む構造として第2半導
体領域にチャネルを形成させることにより、第1および
第2半導体領域に後から不純物を拡散させる必要をなく
し、炭化珪素に対し不純物の熱拡散が困難な問題点を解
決して実用性の高い電界効果トランジスタを提供できる
。 【0041】(b) 炭化珪素の許容最大電界強度が高
い特長を利用して第1半導体領域に高い電界強度に耐え
る役目を持たせることにより、シリコン形と比べて耐圧
値が格段に高い電界効果トランジスタを構成できる。 【0042】(c) 第1半導体領域内の電界強度の設
定値に合わせてその厚みと不純物濃度を最適化すること
により、電界効果トランジスタの順方向電圧を従来より
1桁以上低減することができる。 【0043】(d) 炭化珪素の高い熱伝導率を利用し
て内部発熱を容易に放散させ得るので、順方向電圧の低
減と相挨って電界効果トランジスタのチップサイズを減
少させ、かつその動作信頼性を向上することができる。 【0044】本発明は電界効果トランジスタの高いスイ
ッチング速度と入力インピーダンスの長所をそのまま活
かしながら、シリコンを用いる場合の限界を克服して上
述のように高耐圧でかつ順方向電圧が低い特長をもつ電
力用電界効果トランジスタを炭化珪素を用いて始めて実
用化することを可能にするものである。
Description: FIELD OF THE INVENTION The present invention relates to a field effect transistor using a silicon carbide semiconductor, particularly suitable for high voltage and large current applications, and a method for manufacturing the same. [Prior Art] All so-called power transistors, which are suitable for applications that handle high voltages and large currents, have traditionally used silicon semiconductors, and the main ones that have been put into practical use to date include the well-known There are bipolar transistors, field effect transistors, and insulated gate bipolar transistors. The most basic performances required of power transistors in general include low forward voltage when turned on, high input impedance, and high switching speed. When looking at transistors, each has advantages and disadvantages. That is, both bipolar transistors and field effect transistors have high switching speeds, but while the former has the advantage of low forward voltage,
The latter has the disadvantage of low input impedance, while the latter has the advantage of high input impedance, but has the disadvantage of high forward voltage. These intermediate insulated gate bipolar transistors have low forward voltage and high input impedance, but have the disadvantage of slow switching speed. For this reason, various efforts have been made to solve these problems and improve the performance of power transistors, but these improvements naturally have limits based on the basic performance values of semiconductor materials. At present, it is thought that we are already approaching the theoretical limit of the performance of transistors using silicon semiconductors, and silicon carbide is attracting attention as one of the new semiconductor materials that can overcome this limit. As is well known, silicon carbide is a semiconductor with a wider bandgap than silicon, and is attracting attention as a material for semiconductor devices suitable for environments with high radiation levels and high-noise locations such as around car engines. However,
Recently, wafers with considerably high crystallinity have become available (for example, R.F. Davis et al; Mat
.. Res. Soc. Symp. Proc. , V
ol. 162, l990, p. 463)
, the feasibility of semiconductor devices using it is being studied (for example, K. Shenai et al.
IEEE Trans. on Elect. Dev
.. , Vol. 36, No. 9, 1989,
p. 1181). In addition to the above-mentioned feature of a wide bandgap, silicon carbide has a higher electric field strength than silicon, which causes a carrier multiplication effect within its crystal, and therefore has a higher dielectric breakdown voltage, but has a lower resistance value. Since it is still not always easy to create a semiconductor layer with a semiconductor layer therein, a field effect type transistor is more suitable than a bipolar type as a transistor using silicon carbide. Regarding effect transistors. In addition,
Although almost no prior art regarding this type of transistor is known, R. F. Davis, HFPC Ma
y (1989) Proceedings; p. 8
1. As a result of prototyping a horizontal field effect transistor,
There are reports that transistor characteristics similar to those of silicon semiconductors can be obtained. However, as is well known, field effect transistors with such a horizontal structure are disadvantageous when used for large currents, and they are also disadvantageous when increasing voltage resistance by taking advantage of silicon carbide's inherent ability to withstand high electric field strength. Therefore, it is desirable to adopt a vertical structure for high voltage and large current even in field effect transistors using silicon carbide semiconductors. Although the vertical structure of a silicon carbide field effect transistor suitable for such electric power is not yet known, a typical vertical structure when using a silicon semiconductor is briefly explained below with reference to FIG. 4 for reference. do. A vertical field effect transistor for large currents is generally made up of a large number of small transistors connected in parallel, and FIG. 4 shows one unit in such a composite structure in the case of an n-channel type. A drain connection layer 41 is diffused with a strong n-type from the back side of an n-type substrate 40, and a polycrystalline silicon gate 43 is formed on the surface via a gate oxide film 42.
Then, using this as a mask, impurities are ion-implanted and thermally diffused to form a deep p-type well 44 and a strong n-type shallow source layer 45, with their peripheral edges forming gates as shown in the figure. Make it so that it goes under the 43. Further, after covering the gate 43 with an insulating film 46, an aluminum electrode film 47 is provided thereon, and the electrode film 47 is also attached to the drain connection layer 41 on the back side. As shown in the figure, such a vertical field effect transistor 50 has an electrode film 47 connecting the well 44 and the source layer 45 on the surface as a source terminal S, and an electrode film 47 connected to the drain connection layer 41 as a drain terminal. The electrode film 46 connected to the terminal D and the gate 43 is used as the gate terminal G, and the gate voltage applied to the terminal G controls channel formation on the surface of the lower part of the gate 43 of the well 44, thereby forming a source terminal. S and drain terminal D
The gap between the two is cut off or made conductive. The current i during conduction flows vertically inside the substrate 40 and the like as shown in the figure, so it is called a vertical type. [0010] However, it is difficult to apply the vertical structure as shown in FIG. 4 to a field effect transistor using silicon carbide as it is. This is because the temperature required for diffusion of impurities to form a semiconductor layer is about 1000°C in the case of silicon, while in silicon carbide it is about 2000°C.
℃ or higher, and in reality there is no practical equipment that can thermally diffuse impurities at such high temperatures. In addition, it takes a very long time to diffuse impurities into a considerable depth such as the well 44 in FIG. This is because the above is almost impossible to implement. Another problem is that field effect transistors have the disadvantage that their forward voltage is inherently high as mentioned above, and although silicon carbide can be used to increase the withstand voltage, it is difficult to handle large currents. If the forward voltage when flowing is too high, its practicality may be significantly reduced. In order to lower the forward voltage, it is necessary to increase the impurity concentration in the semiconductor layer to lower its specific resistance value, but it is difficult to eliminate this drawback if impurity diffusion is difficult as described above. Based on the current situation, the present invention solves the problem of silicon carbide, in which thermal diffusion of impurities is difficult, and makes use of the features of field effect transistors such as high switching speed and high input impedance, while achieving even higher breakdown voltage. It is an object of the present invention to provide a field effect transistor with a vertical structure using silicon carbide, which can improve the forward voltage of the transistor, and a method of manufacturing the same. [Means for Solving the Problems] According to the field effect transistor of the present invention, a first semiconductor region made of silicon carbide of one conductivity type, and a first semiconductor region made of silicon carbide of the other conductivity type overlapped therewith. a third semiconductor region made of one conductivity type in a part of the surface of the second semiconductor region; A dug recess, a gate insulating film covering the surface of the recess, and a gate region formed in the recess through the gate oxide film are provided, and a pair of semiconductor regions are formed from the first and third semiconductor regions. This is achieved by leading out the source/drain terminals and the gate terminal from the gate region. [0014] In general, the first semiconductor region in the above structure may be used as a drain layer, the second semiconductor region may be used as a well or substrate, and the third semiconductor region may be used as a source layer. It is preferable that the second semiconductor region is an epitaxial layer of silicon carbide grown on a substrate made of silicon carbide of a conductivity type, and the second semiconductor region is an epitaxial layer of silicon carbide further grown thereon.
In this case, it is preferable to use a silicon carbide single crystal with a high impurity concentration as the substrate. Furthermore, the third semiconductor region may be a very shallow semiconductor layer that is simply activated by introducing impurities into the surface of the second semiconductor region. Furthermore, it is advantageous that the second semiconductor region and the third semiconductor region are short-circuited to each other at their surfaces by an electrode film for leading out the terminal. It is also desirable that the field effect transistor of the present invention has a composite structure in which small transistors are integrated, as in the case of using a silicon semiconductor. In field effect transistors for high voltage applications, a guard ring or a channel stopper layer is usually provided to prevent dielectric breakdown along the semiconductor surface, but when using a silicon carbide semiconductor, it is difficult to diffuse impurities for this purpose, so a second semiconductor region is used instead. It is advantageous to cut a mesa-etched trench from the periphery of the semiconductor region to the first semiconductor region. When the field effect transistor has the above-mentioned composite structure, the mesa etching groove may be provided so as to surround a plurality of small transistors in common. According to the method for manufacturing a field effect transistor of the present invention, the step of epitaxially growing a first semiconductor region of silicon carbide of one conductivity type on a substrate of silicon carbide of one conductivity type; a step of epitaxially growing a second semiconductor region of silicon carbide of the other conductivity type on the surface of the second semiconductor region; a step of digging a recess in a part of the surface of the second semiconductor region so as to reach the first semiconductor region; a step of covering the surface of the area with a gate insulating film; a step of forming a gate region so as to fit into the recess through the gate insulating film;
A step of implanting impurity ions into the peripheral area of the recess in the surface of the second semiconductor region to form a third semiconductor region of one conductivity type, and a step of forming a third semiconductor region of one conductivity type,
The above object is achieved through the steps of providing a drain electrode film and a gate electrode film connected to the gate region. In the epitaxial growth process of the first and second semiconductor regions in the above structure, these semiconductor regions may be grown in a vapor phase by CVD using a raw material gas containing silane, methane, etc. It is advantageous to use a reactive ion etching method in the digging process. In addition, in the process of coating the gate insulating film, it is preferable to form a silicon oxide film by oxidizing the surface of the recess, and in the process of forming the gate region in the recess, polycrystalline silicon is grown using the CVD method. It is advantageous to let them do so. In the step of forming the third semiconductor region, as described above, it is difficult to thermally diffuse impurities after ion implantation, so the implanted impurities are activated by high-temperature heat treatment to form a layer of, for example, about 0.1 μm. It is sufficient to create a shallow third semiconductor region. Furthermore, it is not particularly necessary to carry out the step of forming the third semiconductor region after providing the gate region, and it may be carried out before the step of digging a recess for the gate region. Note that using aluminum as the p-type impurity and nitrogen as the n-type impurity for the silicon carbide semiconductor imparts impurity levels as narrow as possible to each of the semiconductor regions and improves the characteristics of the field effect transistor. preferred above. [Operation] In the field effect transistor and the manufacturing method thereof according to the present invention, the first and second semiconductor regions referred to in the structure described in the previous section are formed of an epitaxial layer of silicon carbide, and impurities are introduced from the beginning during the epitaxial growth. A portion of the second semiconductor region that is in contact with the gate insulating film on the side surface of the recess as a so-called buried structure in which the gate region is placed in a recess dug so as to penetrate through the second semiconductor region and reach the first semiconductor region. By using the channel forming surface as the channel forming surface, it is not necessary to diffuse impurities into the first and second semiconductor regions later, thereby solving the problem of silicon carbide in which thermal diffusion of impurities is difficult. Furthermore, the present invention improves the withstand voltage of a field effect transistor by setting the electric field strength in the first semiconductor region high by utilizing the feature of silicon carbide having a high allowable maximum electric field strength, and also increases the electric field strength. By optimizing the thickness of the first semiconductor region in accordance with the set value of , it is possible to reduce the forward voltage of the field effect transistor. The reason why this forward voltage can be reduced will be explained below using some equations. In the field effect transistor of the present invention, a channel is formed in the second semiconductor region as described above, and if its on-resistance is R, it is the sum of the resistance Rc of this channel and the resistance R1 in the first semiconductor region. , R=Rc+R1

1), but several hundred V
In the above high voltage field effect transistor, the channel resistance R
Since c is about 1% of the resistance R1 of the first semiconductor region,
In reality, the resistance R may be determined only by the resistance R1. Similarly, all the voltages applied when the field effect transistor is turned off may be applied to the first semiconductor region, and if the withstand voltage value of the field effect transistor is V, it can be expressed by the following equation. V=Emd-qN1d2
/2ε
2) However, Em is the electric field strength in the first semiconductor region, that is, the maximum allowable electric field strength of silicon carbide, and d is the first
The thickness of the semiconductor region, q is the electron charge, N1 is the impurity concentration of the first semiconductor region, and ε is the dielectric constant of silicon carbide.The internal electric field strength distribution when the depletion layer extends into the first semiconductor region is well known. It was assumed that the slope changes linearly with the slope determined by the impurity concentration, as shown in the figure. Now, since the resistance R1 of the first semiconductor region in equation 1) when on is proportional to its thickness d and inversely proportional to the impurity concentration N1, if the on-resistance R is equal to this resistance R1, its reciprocal is It is expressed by the following formula. 1/R=A・μN1/d

3) However, A is a proportionality constant and μ is the mobility of electrons in silicon carbide. Now, when we insert the impurity concentration N1 obtained from equation 2) into equation 3), we get 1/R=A・(2εμ
/q) (Em/d2 -V/d3) 4
) is obtained. Letting the right side of this equation 4) be a function of the thickness d of the first semiconductor region, and finding the thickness that minimizes the left side, we get:
d=3V/2Em

5), and if the forward voltage of the field effect transistor when the thickness of the first semiconductor region is set to this optimum value d is Vf, then by inserting the thickness d from equation 5) into equation 4), the following equation can be obtained. It will be done. Vf∝R∝V2 /εμ
Em3
6) As can be seen from the above, by optimizing the thickness d of the first semiconductor region according to the maximum electric field strength Em of silicon carbide as shown in equation 5) above, the forward voltage Vf of the field effect transistor can be reduced. can be reduced in inverse proportion to the cube of the maximum electric field strength Em, as shown in equation 6). The maximum electric field strength Em of silicon carbide is 3x1016V/c
m, about 1 more than silicon's 3.7x1015V/cm
It can be seen that the forward voltage Vf can be significantly reduced because it is an order of magnitude higher. Further, the thickness d of the first semiconductor region can be made as thin as about one-eighth of that in the case of silicon. Note that since the electron mobility μ in equation 6) is lower in silicon carbide than in silicon, the above effect is somewhat diminished, but the forward voltage can still be reduced to about 1/20th. [Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of an embodiment of a field-effect transistor according to the present invention, FIG. 2 is a cross-sectional view showing an embodiment of the manufacturing method of the field effect transistor at each main step leading to the completed state shown in FIG. 1, and FIG.
1 is a cross-sectional view and a top view of a field effect transistor with a composite structure. In these embodiments, all field effect transistors are of n-channel type. For the field effect transistor 30 shown in FIG. 1, in this embodiment, silicon carbide doped with a predetermined impurity concentration of the same n-type is formed on a substrate 10 of a single crystal of silicon carbide doped strongly n-type. A three-layer structure of silicon carbide is used, in which a first semiconductor region 11 made of an epitaxial layer and a second semiconductor region 12 made of similar silicon carbide doped with an opposite p-type impurity concentration are stacked one after another. A shallow third semiconductor region 13 is formed in the center of the surface of the second semiconductor region by ion-implanting nitrogen or the like as an n-type impurity at a high dose. For example, when the field effect transistor 30 has a breakdown voltage of 1000V, the thickness of the first semiconductor region 11 is approximately 10 μm, the thickness of the second semiconductor region 12 is 1 to 2 μm, and the depth of the third semiconductor region 13 is approximately 0.5 μm. be done. Furthermore, the recess 14 is further extended from the center of the third semiconductor region 13.
is dug through the second semiconductor region 12 to reach the first semiconductor region 11, and a thin gate insulating film 21 is applied to cover the surface thereof. The gate 23 in this embodiment is made of polycrystalline silicon made to fill the recess 14. In the field effect transistor 30 of FIG. 1, the second semiconductor region 12 is a p-type well, and the third semiconductor region 1 is a p-type well.
3 constitutes an n-type source region, and the first semiconductor region 11 and the substrate 10 thereunder constitute an n-type drain region, and insulating films 24 are attached to the front and back surfaces in order to lead out connection terminals from these, respectively. An electrode film 25 is provided at a predetermined location within the window opened therein to make conductive contact. As shown, the second
The surfaces of the semiconductor region 12 and the third semiconductor region 13 are short-circuited by this electrode film 25, and a source terminal S is led out from the electrode film 25. A drain terminal D is led out from the electrode film 25 which is in conductive contact with the substrate 10, and a gate terminal G is led out from the electrode film 25 which is in conductive contact with the gate 23. This field effect transistor 30 is an n-channel type in which a channel formation region is a portion of the p-type second semiconductor region 12 facing the gate 23 with the gate insulating film 21 interposed therebetween. By controlling this channel formation by applying a voltage to the source terminal S and the drain terminal D, it is possible to cut off or conduct the connection between the source terminal S and the drain terminal D. It is a vertical type in which current flows vertically within the substrate 10 and the first semiconductor region 11 when conducting, and when cut off, the current flows vertically within the substrate 10 and the first semiconductor region 11.
A depletion layer extends inside. As mentioned above, the maximum electric field strength of silicon carbide in the first semiconductor region 11 is high and its thickness can be made approximately one order of magnitude thinner than in the case of silicon. Therefore, the field effect transistor 30 according to the present invention is suitable for high breakdown voltage applications and has a high maximum electric field strength. Directional voltage can be reduced by more than an order of magnitude. Furthermore, the features of field effect transistors, such as high input impedance and high switching speed, are utilized as they are in the case of the present invention, and are comparable to those of silicon. In addition, silicon carbide has the advantage of being easy to cool because its thermal conductivity is about three times higher than that of silicon. Note that in a field effect transistor for large current use, it is advantageous to adopt a composite structure as shown in FIG. Although the field effect transistor of the present invention is suitable for high breakdown voltages as described above, it is difficult to diffuse impurities into the surface of the second semiconductor region 12 in order to provide a guard ring or a channel stopper on the surface, as in the case of silicon. Since it is difficult to do so, it is desirable to provide mesa etching grooves 15 in the peripheral portion as shown in FIG. 1 instead. It is best to use dry etching using a fluorine-based reactive gas for this mesa etching, and by selecting isotropic etching conditions, the mesa etching groove 15 is formed into a second groove with an inclination of about 45 degrees as shown in the figure. At least the first
After digging to reach the semiconductor region 11, the etched surface is covered with an insulating film 24 of silicon oxide or silicon nitride, and each chip is isolated to form the state shown in the figure. Next, a method for manufacturing a field effect transistor according to the present invention will be explained with reference to FIG. In the figure (a), an n-type first semiconductor region 11 and a p-type second semiconductor region 12, both made of silicon carbide, are formed on an n-type silicon carbide substrate 10 with a thickness of several hundred μm as described above. The epitaxial growth is shown to have a thickness of approximately 10 μm and a thickness of 1 to 2 μm, respectively. The epitaxial growth of these semiconductor regions 11 and 12 may be carried out by vapor phase growth using, for example, a CVD method using a source gas containing silane, methane, etc., and impurities may be mixed into this source gas for vapor phase growth. By placing the silicon carbide on the substrate, silicon carbide to be epitaxially grown can be doped with impurities at a desired concentration. For this purpose, nitrogen is most suitable as the n-type impurity, and aluminum is most suitable as the p-type impurity. FIG. 2(b) shows the process of digging the recess 14. Although chemical etching is also possible for this digging, it is better to use a dry etching method, particularly a reactive ion etching method, to dig the recess 14 under anisotropic etching conditions so that the side surface shape is approximately right angle as shown in the figure. is advantageous. The width of this recess 14 is desirably narrow, for example, 2 to 3 μm, so that it can be easily filled with polycrystalline silicon or the like in the next step. Although not shown in the figure, this digging etching is of course performed using a photoresist film or the like as a mask. FIG. 2C shows the growth process of the gate insulating film 21 and the polycrystalline silicon 22 for the gate. The easiest way to form the gate insulating film 21 is to use a thermal oxide film as in the case of silicon, and even in the case of silicon carbide, a silicon oxide film can be formed into the gate insulating film 21 by short-term thermal oxidation in an atmosphere containing oxygen. It can be applied with a suitable film thickness of, for example, 0.05 to 0.1 μm. Next, the polycrystalline silicon 22 is grown by a low pressure CVD method using silane as a raw material gas until it fills the inside of the recess 14, resulting in the state shown in the figure. Furthermore, this polycrystalline silicon 22 is etched by a dry etching method using, for example, CF4 as a reaction gas to form a recess 14 as shown in FIG. 2(d).
The gate insulating film 21 remaining on the surface other than the recess 14 is removed by short-time chemical etching using dilute hydrofluoric acid or the like. FIG. 2(d) shows the step of forming the third semiconductor region 13. For this purpose, an ion implantation method is used, and after covering unnecessary parts with a mask (not shown), nitrogen is applied at 100kV.
The n-type third semiconductor region 13 is implanted into the peripheral area of the gate 23 on the surface of the second semiconductor region 12 to a depth of, for example, about 0.1 μm with a high dose under an acceleration voltage of about 0.5 μm.
Incorporate. Since thermal diffusion of introduced impurities is difficult in silicon carbide, the impurities are only activated by heat treatment at a high temperature of about 1100° C. thereafter. Even if the third semiconductor region 13 is very shallow in this way, it can sufficiently fulfill its role as a source region. Thereafter, as explained in FIG. 1, the mesa etching groove 15 is dug and the insulating film 24 is
After coating and disposing the electrode film 25, the completed state shown in FIG. 1 is obtained. FIG. 3 shows an embodiment in which the present invention is applied to a field effect transistor 31 having a composite structure. Figure 3(a) is a cross-sectional view, and Figure 3(b) is a top view of a part of it.
a) corresponds to the cross section taken along the line X-X in FIG. 2(b). The gates 23 in the three recesses 14 in FIG. 3(a) are actually cross sections of the gates 23 having a continuous mesh pattern shown in FIG. 3(b). Recess 14 in case of composite structure
It is advantageous to form the gate 23 in such a net-like or comb-like pattern; for convenience of illustration, only two meshes are shown in FIG. It is said to be a net-like pattern with hundreds of eyes. The recess 14 having such a pattern forms the second semiconductor region 1 as shown in FIG.
2 to reach the first semiconductor region 11 is the same as in the previous embodiment, and the third semiconductor region is dug through the recess 1 to reach the first semiconductor region 11.
4 to the outside and the inside of the mesh. As shown in FIG. 3(b), the gate 23 has an extending portion 23a extending outward from the mesh pattern, and a gate terminal G is led out from the electrode film 25 that is in conductive contact with the extending portion 23a. The electrode film 25 for the source terminal S is formed so as to cover the entire mesh pattern of the gate 23.
), it is insulated from the gate 23 by the insulating film 24. Second semiconductor region 12 and third semiconductor region 13
The surface of the source terminal S is short-circuited by the electrode film 25 for the source terminal S, as in the previous embodiment. Mesa etching groove 1
5 is dug into the periphery of the chip of the field effect transistor 31 so as to surround the entire composite structure from the outside, and its surface is protected by the insulating film 24. Drain terminal D
In this example, the electrode film 25 is provided so as to cover the entire back surface of the chip, as shown in FIG. The field effect transistor 31 with the composite structure shown in FIG. 3 is suitable for large currents, and can easily be configured with a rating of several tens of A to over 100 A. It can be built inside. [0038] The present invention is not limited to the embodiments described above, but can be implemented in appropriate aspects or various forms. The conductivity type, thickness, etc. of each semiconductor region in the embodiments are merely examples, and should be appropriately set according to the voltage, current, etc. conditions under which the field effect transistor is used. Further, in the manufacturing method illustrated in FIG. 2, the third semiconductor region is formed after the recess is formed, but the recess may be formed after the third semiconductor region is formed. As described above, in the field effect transistor of the present invention, the first and second semiconductor regions of silicon carbide are stacked with one conductivity type and the other conductivity type, and the third semiconductor region is stacked with the second conductivity type.
One conductivity type is formed in a part of the surface of the semiconductor region, a recess is dug from within the range of the third semiconductor region to reach the first semiconductor region, the surface is covered with a gate insulating film, and the recess is formed in the recess. In the manufacturing method, first and second semiconductor regions of silicon carbide of one conductivity type and the other conductivity type are epitaxially grown on a substrate of silicon carbide of one conductivity type, and the gate is formed in the second semiconductor region. A recess is dug from a part of the surface until it reaches the first semiconductor region, the surface is covered with a gate insulating film, a gate region is formed in the recess, and impurity ions are implanted around the recess. By forming three semiconductor regions of one conductivity type, the following effects can be obtained. (a) The first and second semiconductor regions are made of silicon carbide doped with impurities during epitaxial growth, and the gate is fitted into the recess to form a channel in the second semiconductor region. Furthermore, it is possible to eliminate the need to diffuse impurities later into the second semiconductor region, solve the problem of difficulty in thermally diffusing impurities into silicon carbide, and provide a highly practical field effect transistor. (b) By utilizing the feature of silicon carbide, which has a high allowable maximum electric field strength, and giving the first semiconductor region the role of withstanding high electric field strength, an electric field effect with a much higher breakdown voltage value than that of silicon type can be achieved. Can configure transistors. (c) By optimizing the thickness and impurity concentration in the first semiconductor region according to the set value of the electric field strength, the forward voltage of the field effect transistor can be reduced by more than one order of magnitude compared to the conventional one. . (d) Since internal heat generation can be easily dissipated by utilizing the high thermal conductivity of silicon carbide, the chip size of the field effect transistor can be reduced in conjunction with the reduction of the forward voltage, and its operation can be reduced. Reliability can be improved. The present invention utilizes the advantages of high switching speed and input impedance of field effect transistors while overcoming the limitations of using silicon to create a power source with high withstand voltage and low forward voltage as described above. This makes it possible for the first time to put practical field effect transistors into practical use using silicon carbide.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による炭化珪素半導体を用いる電界効果
トランジスタの一実施例を示す断面図である。
FIG. 1 is a cross-sectional view showing one embodiment of a field effect transistor using a silicon carbide semiconductor according to the present invention.

【図2】本発明による電界効果トランジスタの製造方法
の図1に対応する実施例を図1の完成状態に至るまでの
主な工程中の状態を同図(a) 〜(d)により示す電
界効果トランジスタ用のウエハの断面図である。
FIG. 2 shows electric fields in the main steps of the method of manufacturing a field-effect transistor according to the present invention, which corresponds to FIG. 1, and shown in FIGS. FIG. 2 is a cross-sectional view of a wafer for effect transistors.

【図3】本発明を複合構造の電界効果トランジスタに適
用した実施例を同図(a) の断面図と同図(b) の
一部上面図により示すものである。
FIG. 3 shows an embodiment in which the present invention is applied to a field effect transistor having a composite structure, with a cross-sectional view in FIG. 3(a) and a partial top view in FIG. 3(b).

【図4】従来のシリコン半導体を用いる電界効果トラン
ジスタの構造例を参考用に示すその断面図である。
FIG. 4 is a cross-sectional view showing, for reference, a structural example of a conventional field effect transistor using a silicon semiconductor.

【符号の説明】[Explanation of symbols]

10      炭化珪素の基板 11      第1半導体領域ないしはドレイン領域
12      第2半導体領域ないしはウエル領域1
3      第3半導体領域ないしはソース領域14
      凹所 15      メサエッチング溝 21      ゲート絶縁膜 22      多結晶シリコン 23      ゲート 25      電極膜 30      電界効果トランジスタ31     
 複合構造の電界効果トランジスタD      ドレ
イン端子 G      ゲート端子 S      ソース端子
10 Silicon carbide substrate 11 First semiconductor region or drain region 12 Second semiconductor region or well region 1
3 Third semiconductor region or source region 14
Recess 15 Mesa etching groove 21 Gate insulating film 22 Polycrystalline silicon 23 Gate 25 Electrode film 30 Field effect transistor 31
Composite structure field effect transistor D Drain terminal G Gate terminal S Source terminal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一方の導電形の炭化珪素からなる第1半導
体領域と、その上に重ねられた他方の導電形の炭化珪素
からなる第2半導体領域と、この第2半導体領域の表面
の一部の範囲に一方の導電形で作り込まれた第3半導体
領域と、この第3半導体領域の範囲内から第1半導体領
域に達するよう掘り込まれた凹所と、この凹所の表面を
覆うゲート絶縁膜と、このゲート酸化膜を介し凹所に作
り込まれたゲート領域とを備えてなり、第1および第3
半導体領域に接続された1対のソース・ドレイン端子と
ゲート領域に接続されたゲート端子とが導出されたこと
を特徴とする電界効果トランジスタ。
1. A first semiconductor region made of silicon carbide of one conductivity type, a second semiconductor region made of silicon carbide of the other conductivity type overlaid thereon, and a portion of the surface of the second semiconductor region. a third semiconductor region made of one conductivity type in the range of the third semiconductor region; a recess dug from within the third semiconductor region to reach the first semiconductor region; and a recess that covers the surface of the recess. comprising a gate insulating film and a gate region formed in a recess through the gate oxide film;
A field effect transistor characterized in that a pair of source/drain terminals connected to a semiconductor region and a gate terminal connected to a gate region are derived.
【請求項2】請求項1に記載のトランジスタにおいて、
第2半導体領域の周縁から第1半導体領域に達するメサ
エッチング溝が掘り込まれたことを特徴とする電界効果
トランジスタ。
2. The transistor according to claim 1,
A field effect transistor characterized in that a mesa etching groove is dug from the periphery of the second semiconductor region to the first semiconductor region.
【請求項3】一方の導電形の炭化珪素からなる基板上に
一方の導電形の炭化珪素からなる第1半導体領域をエピ
タキシャル成長させる工程と、第1半導体領域の上に他
方の導電形の炭化珪素からなる第2半導体領域をエピタ
キシャル成長させる工程と、第2半導体領域の表面の一
部の範囲内に凹所を第1半導体領域に達するように掘り
込む工程と、凹所の表面をゲート絶縁膜で覆う工程と、
ゲート絶縁膜を介して凹所に嵌め込むようにゲート領域
を作り込む工程と、第2半導体領域の表面の凹所の周辺
範囲に不純物をイオン注入して第3半導体領域を一方の
導電形で作り込む工程と、第1および第3半導体領域に
接続されたソース・ドレイン用電極膜とゲート領域に接
続されたゲート用電極膜を配設する工程とを含むことを
特徴とする電界効果トランジスタの製造方法。
3. A step of epitaxially growing a first semiconductor region made of silicon carbide of one conductivity type on a substrate made of silicon carbide of one conductivity type, and growing silicon carbide of the other conductivity type on the first semiconductor region. a step of epitaxially growing a second semiconductor region, a step of digging a recess within a part of the surface of the second semiconductor region so as to reach the first semiconductor region, and a step of forming a gate insulating film on the surface of the recess. A covering step;
A process of forming a gate region so as to fit into the recess through a gate insulating film, and implanting impurity ions into the peripheral area of the recess on the surface of the second semiconductor region to form the third semiconductor region with one conductivity type. 1. A field effect transistor comprising: a manufacturing step; and a step of providing source/drain electrode films connected to first and third semiconductor regions and gate electrode films connected to a gate region. Production method.
JP3006639A 1991-01-24 1991-01-24 Field effect transistor Expired - Lifetime JP2917532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3006639A JP2917532B2 (en) 1991-01-24 1991-01-24 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3006639A JP2917532B2 (en) 1991-01-24 1991-01-24 Field effect transistor

Publications (2)

Publication Number Publication Date
JPH04239778A true JPH04239778A (en) 1992-08-27
JP2917532B2 JP2917532B2 (en) 1999-07-12

Family

ID=11643942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3006639A Expired - Lifetime JP2917532B2 (en) 1991-01-24 1991-01-24 Field effect transistor

Country Status (1)

Country Link
JP (1) JP2917532B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013017A1 (en) * 1992-11-24 1994-06-09 Cree Research, Inc. Power mosfet in silicon carbide
WO1994017547A1 (en) * 1993-01-25 1994-08-04 North Carolina State University Method of manufacturing a silicon carbide field effect transistor
EP0635881A2 (en) * 1993-07-12 1995-01-25 Motorola, Inc. A method of fabricating a silicon carbide locos vertical mosfet and device
EP0635882A2 (en) * 1993-07-12 1995-01-25 Motorola, Inc. A method of fabricating a silicon carbide vertical mosfet
EP0660501A1 (en) * 1993-12-24 1995-06-28 Nippondenso Co., Ltd. Generator motor for vehicles
WO1995024055A1 (en) * 1994-03-04 1995-09-08 Siemens Aktiengesellschaft Silicon carbide-based mis structure with high latch-up resistance
FR2738394A1 (en) * 1995-09-06 1997-03-07 Nippon Denso Co SILICON CARBIDE SEMICONDUCTOR DEVICE, AND MANUFACTURING METHOD THEREOF
US5696396A (en) * 1993-11-12 1997-12-09 Nippondenso Co., Ltd. Semiconductor device including vertical MOSFET structure with suppressed parasitic diode operation
US5708352A (en) * 1993-12-07 1998-01-13 Nippondenso Co., Ltd. A.C. Generator for vehicles
US5719760A (en) * 1995-06-06 1998-02-17 Nippondenso Co., Ltd. Direct-mounted vehicle generator using low heat producing SiC rectifiers
US5723376A (en) * 1994-06-23 1998-03-03 Nippondenso Co., Ltd. Method of manufacturing SiC semiconductor device having double oxide film formation to reduce film defects
US5744826A (en) * 1996-01-23 1998-04-28 Denso Corporation Silicon carbide semiconductor device and process for its production
US5915180A (en) * 1994-04-06 1999-06-22 Denso Corporation Process for producing a semiconductor device having a single thermal oxidizing step
US5952679A (en) * 1996-10-17 1999-09-14 Denso Corporation Semiconductor substrate and method for straightening warp of semiconductor substrate
US6054752A (en) * 1997-06-30 2000-04-25 Denso Corporation Semiconductor device
EP1009022A1 (en) * 1998-12-09 2000-06-14 STMicroelectronics S.r.l. Manufacturing process of a high integration density power MOS device
US6133587A (en) * 1996-01-23 2000-10-17 Denso Corporation Silicon carbide semiconductor device and process for manufacturing same
US6262439B1 (en) 1997-11-28 2001-07-17 Denso Corporation Silicon carbide semiconductor device
US6573534B1 (en) 1995-09-06 2003-06-03 Denso Corporation Silicon carbide semiconductor device
JP2007281265A (en) * 2006-04-10 2007-10-25 Mitsubishi Electric Corp Trench mosfet, and its manufacturing method
JP2009187966A (en) * 2008-02-01 2009-08-20 Sumitomo Electric Ind Ltd Method of manufacturing semiconductor device
JP2016506080A (en) * 2012-12-28 2016-02-25 クリー インコーポレイテッドCree Inc. Transistor structure and manufacturing method thereof
US11417760B2 (en) 2017-12-21 2022-08-16 Wolfspeed, Inc. Vertical semiconductor device with improved ruggedness
US11489069B2 (en) 2017-12-21 2022-11-01 Wolfspeed, Inc. Vertical semiconductor device with improved ruggedness

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142568A (en) * 1983-12-29 1985-07-27 Sharp Corp Manufacture of sic field effect transistor
JPH0429368A (en) * 1990-05-24 1992-01-31 Sharp Corp Field effect transistor using silicon carbide and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142568A (en) * 1983-12-29 1985-07-27 Sharp Corp Manufacture of sic field effect transistor
JPH0429368A (en) * 1990-05-24 1992-01-31 Sharp Corp Field effect transistor using silicon carbide and its manufacturing method

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100271106B1 (en) * 1992-11-24 2000-11-01 크리 인코포레이티드 Power mosfet in silicon carbide
US5506421A (en) * 1992-11-24 1996-04-09 Cree Research, Inc. Power MOSFET in silicon carbide
WO1994013017A1 (en) * 1992-11-24 1994-06-09 Cree Research, Inc. Power mosfet in silicon carbide
WO1994017547A1 (en) * 1993-01-25 1994-08-04 North Carolina State University Method of manufacturing a silicon carbide field effect transistor
EP0635881A2 (en) * 1993-07-12 1995-01-25 Motorola, Inc. A method of fabricating a silicon carbide locos vertical mosfet and device
EP0635882A2 (en) * 1993-07-12 1995-01-25 Motorola, Inc. A method of fabricating a silicon carbide vertical mosfet
EP0635882A3 (en) * 1993-07-12 1995-10-11 Motorola Inc A method of fabricating a silicon carbide vertical mosfet.
EP0635881A3 (en) * 1993-07-12 1995-10-11 Motorola Inc A method of fabricating a silicon carbide locos vertical mosfet and device.
US5696396A (en) * 1993-11-12 1997-12-09 Nippondenso Co., Ltd. Semiconductor device including vertical MOSFET structure with suppressed parasitic diode operation
US5708352A (en) * 1993-12-07 1998-01-13 Nippondenso Co., Ltd. A.C. Generator for vehicles
EP0660501A1 (en) * 1993-12-24 1995-06-28 Nippondenso Co., Ltd. Generator motor for vehicles
WO1995024055A1 (en) * 1994-03-04 1995-09-08 Siemens Aktiengesellschaft Silicon carbide-based mis structure with high latch-up resistance
US5915180A (en) * 1994-04-06 1999-06-22 Denso Corporation Process for producing a semiconductor device having a single thermal oxidizing step
US5723376A (en) * 1994-06-23 1998-03-03 Nippondenso Co., Ltd. Method of manufacturing SiC semiconductor device having double oxide film formation to reduce film defects
US5719760A (en) * 1995-06-06 1998-02-17 Nippondenso Co., Ltd. Direct-mounted vehicle generator using low heat producing SiC rectifiers
FR2738394A1 (en) * 1995-09-06 1997-03-07 Nippon Denso Co SILICON CARBIDE SEMICONDUCTOR DEVICE, AND MANUFACTURING METHOD THEREOF
DE19636302A1 (en) * 1995-09-06 1997-03-13 Nippon Denso Co Silicon carbide semiconductor device, e.g. vertical high power MOSFET
US5976936A (en) * 1995-09-06 1999-11-02 Denso Corporation Silicon carbide semiconductor device
US6020600A (en) * 1995-09-06 2000-02-01 Nippondenso Co., Ltd. Silicon carbide semiconductor device with trench
US6573534B1 (en) 1995-09-06 2003-06-03 Denso Corporation Silicon carbide semiconductor device
DE19636302C2 (en) * 1995-09-06 1998-08-20 Denso Corp Silicon carbide semiconductor device and manufacturing method
US5744826A (en) * 1996-01-23 1998-04-28 Denso Corporation Silicon carbide semiconductor device and process for its production
US6133587A (en) * 1996-01-23 2000-10-17 Denso Corporation Silicon carbide semiconductor device and process for manufacturing same
US5952679A (en) * 1996-10-17 1999-09-14 Denso Corporation Semiconductor substrate and method for straightening warp of semiconductor substrate
US6054752A (en) * 1997-06-30 2000-04-25 Denso Corporation Semiconductor device
US6262439B1 (en) 1997-11-28 2001-07-17 Denso Corporation Silicon carbide semiconductor device
EP1009022A1 (en) * 1998-12-09 2000-06-14 STMicroelectronics S.r.l. Manufacturing process of a high integration density power MOS device
US6541318B2 (en) 1998-12-09 2003-04-01 Stmicroelectronics, S.R.L. Manufacturing process of a high integration density power MOS device
JP2007281265A (en) * 2006-04-10 2007-10-25 Mitsubishi Electric Corp Trench mosfet, and its manufacturing method
JP2009187966A (en) * 2008-02-01 2009-08-20 Sumitomo Electric Ind Ltd Method of manufacturing semiconductor device
JP2016506080A (en) * 2012-12-28 2016-02-25 クリー インコーポレイテッドCree Inc. Transistor structure and manufacturing method thereof
US10886396B2 (en) 2012-12-28 2021-01-05 Cree, Inc. Transistor structures having a deep recessed P+ junction and methods for making same
US11417760B2 (en) 2017-12-21 2022-08-16 Wolfspeed, Inc. Vertical semiconductor device with improved ruggedness
US11489069B2 (en) 2017-12-21 2022-11-01 Wolfspeed, Inc. Vertical semiconductor device with improved ruggedness

Also Published As

Publication number Publication date
JP2917532B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
JP2917532B2 (en) Field effect transistor
US6429041B1 (en) Methods of fabricating silicon carbide inversion channel devices without the need to utilize P-type implantation
JP3387563B2 (en) Field effect transistor and method of manufacturing the same
JP3180895B2 (en) Method for manufacturing silicon carbide semiconductor device
US6465807B1 (en) Silicon carbide vertical MOSFET and method for manufacturing the same
US7528040B2 (en) Methods of fabricating silicon carbide devices having smooth channels
US7705362B2 (en) Silicon carbide devices with hybrid well regions
JP3327135B2 (en) Field effect transistor
EP1542270A1 (en) Vertical junction field effect transistor and method for fabricating the same
JP2014107571A (en) Semiconductor element
TW200302575A (en) High voltage power MOSFET having a voltage sustaining region that includes doped columns formed by trench etching and diffusion from regions of oppositely doped polysilicon
JP2000022137A (en) Silicon carbide mos semiconductor element and fabrication thereof
JP4990458B2 (en) Self-aligned silicon carbide LMOSFET
WO2018082455A1 (en) Power device and manufacturing method therefor
KR20040063085A (en) Symmetric trench mosfet device and method of making same
JP4965756B2 (en) Semiconductor device
JP4678902B2 (en) Silicon carbide UMOS semiconductor device and method of manufacturing the same
JPH1174524A (en) Semiconductor device and its manufacture
JPH07193242A (en) Semiconductor device and its manufacture
JP2003318392A (en) Silicon carbide semiconductor device and manufacturing method therefor
JP3436220B2 (en) Vertical semiconductor device
US5773849A (en) Field of the invention
US5923051A (en) Field controlled semiconductor device of SiC and a method for production thereof
CN111276540A (en) Trench gate power MOSFET and manufacturing method thereof
US6150671A (en) Semiconductor device having high channel mobility and a high breakdown voltage for high power applications

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12