JP2912159B2 - Method and apparatus for measuring ear ratio of rolled aluminum material - Google Patents

Method and apparatus for measuring ear ratio of rolled aluminum material

Info

Publication number
JP2912159B2
JP2912159B2 JP6109583A JP10958394A JP2912159B2 JP 2912159 B2 JP2912159 B2 JP 2912159B2 JP 6109583 A JP6109583 A JP 6109583A JP 10958394 A JP10958394 A JP 10958394A JP 2912159 B2 JP2912159 B2 JP 2912159B2
Authority
JP
Japan
Prior art keywords
tau
aluminum
delay time
rolled material
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6109583A
Other languages
Japanese (ja)
Other versions
JPH07318540A (en
Inventor
克也 高岡
紀生 鈴木
敏志 柳井
岳夫 小川
勉 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6109583A priority Critical patent/JP2912159B2/en
Publication of JPH07318540A publication Critical patent/JPH07318540A/en
Application granted granted Critical
Publication of JP2912159B2 publication Critical patent/JP2912159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,アルミニウム圧延材の
耳率測定方法並びにその装置に係り,例えばアルミニウ
熱延板の再結晶の完了度合いを非破壊測定し,この熱
延板を深絞り加工した時の耳率測定を行う方法並びにそ
の装置に関するものである。
The present invention relates to relates to ear measuring method and apparatus of the rolled aluminum material, for example aluminum
The completion degree of recrystallization beam hot-rolled sheet was non-destructive measurement, to a method and its apparatus for performing ear measurements upon this hot-rolled sheet deep drawing.

【0002】[0002]

【従来の技術】例えばアルミニウム缶の原材料である冷
延板は,熱延板を冷間圧延して製作される。この冷間圧
延により薄板を製作するためには,熱延板を再結晶して
いることが必要である。しかし,熱延時の温度が低く,
又は熱処理が不十分な場合,結晶中に転位が残存する未
結晶状態となる。この場合,変形が難しくなり,冷間圧
延中に割れが発生し易くなる。そこで,熱延板の再結晶
の完了を判定する必要がある。このため,従来は人間が
圧延板の断面を研磨し,腐食でエッチングし,結晶の粒
形状を顕微鏡で観察していた。その場合,未再結晶材で
は,圧延により結晶が針状に伸びた組織となるが,再結
晶が進むと板厚方向に厚さを持つ結晶粒形状となる。こ
れを利用し,未再結晶粒である針状の結晶の数を求め,
再結晶の良否を判定していた。従来は,このようにして
圧延板の結晶性を測定を行っていた。更にこの圧延材の
薄板をダイスとポンチを用いて深絞り加工し,円筒を製
作する場合,この円筒の端部に凹凸形状が生じる。その
指標としていわゆる耳率が用いられる。これは,凹凸の
量を円筒の平均高さで規格化した量である(図16参
照)。そして,圧延方向に対して45°傾いた方向に耳
が平均高さより高い場合を正の耳率,圧延方向に対して
45°傾いた方向の耳が平均高さより低い場合を負の耳
率と定義されている。従来はこの耳率の測定には,上記
破壊試験による圧延材の結晶性測定結果を用いていた。
2. Description of the Related Art For example, a cold rolled sheet as a raw material of an aluminum can is manufactured by cold rolling a hot rolled sheet. In order to manufacture a thin plate by this cold rolling, it is necessary to recrystallize a hot rolled plate. However, the temperature during hot rolling was low,
Alternatively, if the heat treatment is insufficient, the crystal becomes an uncrystallized state in which dislocations remain in the crystal. In this case, deformation becomes difficult, and cracks easily occur during cold rolling. Therefore, it is necessary to determine the completion of recrystallization of the hot rolled sheet. Conventionally, therefore, humans have polished the cross section of a rolled plate, etched it by corrosion, and observed the crystal grain shape with a microscope. In this case, the unrecrystallized material has a structure in which the crystals are elongated in a needle shape by rolling, but as recrystallization proceeds, the crystal grains have a thickness in the thickness direction. Using this, the number of needle-like crystals, which are unrecrystallized grains, is determined.
The quality of recrystallization was determined. Conventionally, the crystallinity of a rolled plate has been measured in this way. Further, when a thin plate of this rolled material is deep drawn by using a die and a punch to produce a cylinder, an uneven shape is formed at the end of the cylinder. The so-called ear ratio is used as the index. This is an amount obtained by standardizing the amount of unevenness by the average height of the cylinder (see FIG. 16). A positive ear ratio is when the ears are higher than the average height in a direction inclined at 45 ° to the rolling direction, and a negative ear ratio is when the ears in the direction inclined at 45 ° to the rolling direction are lower than the average height. Is defined. Conventionally, the measurement of the ear ratio has been based on the crystallinity measurement result of the rolled material by the above-described destructive test.

【0003】[0003]

【発明が解決しようとする課題】上記したような従来の
圧延材の結晶性及び耳率測定方法では,以下のような問
題点があった。 (1)破壊検査によるため,迅速な測定が困難であっ
た。 (2)未再結晶の程度を人間が判断していたため,客観
的判断ができなかった。 (3)顕微鏡で見える小さな領域での判断であるため,
測定結果の信頼性が十分ではなかった。 本発明は,上記事情に鑑みてなされたものであり,迅速
に,客観的で且つ信頼性のある結晶性測定を行い,上記
圧延材の結晶性測定結果を用いて耳率測定を行い得る
ルミニウム圧延材の耳率測定方法及びその装置を提供す
ることを目的とするものである。
The conventional methods for measuring the crystallinity and ear ratio of a rolled material as described above have the following problems. (1) Due to the destructive inspection, quick measurement was difficult. (2) Objective judgment could not be made because humans judged the degree of non-recrystallization. (3) Because the judgment is made in a small area that can be seen with a microscope,
The reliability of the measurement results was not sufficient. The present invention has been made in view of the above circumstances, rapidly performs crystalline measurement with objective and reliable, may perform ear measurements using a crystalline measurements of the rolled material A
It is an object of the present invention to provide a method and an apparatus for measuring an ear ratio of a rolled aluminum material.

【0004】[0004]

【0005】[0005]

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に第1の発明は,集束された超音波をアルミニウム圧延
材の圧延方向に対し0゜,45゜,及び90゜をなす
向から該アルミニウム圧延材の表面に所定角度傾けてそ
れぞれ入射し,上記それぞれ入射された超音波より発散
され,上記アルミニウム圧延材の表裏面間で多重反射し
ながら伝搬する超音波に含まれる所定の屈折角の多重反
射波をそれぞれ受信し,上記それぞれ受信された多重反
射波の伝搬時間に基づいて得られた評価値φによって
アルミニウム圧延材の結晶性を測定し,上記測定され
アルミニウム圧延材の結晶性に基づいて該アルミニウ
圧延材の耳率を測定するアルミニウム圧延材の耳率測
定方法として構成されている。第2の発明は,集束され
た超音波をアルミニウム圧延材の圧延方向に対し0゜,
45゜,及び90゜をなす方向から該アルミニウム圧延
材の表面に所定角度傾けてそれぞれ入射する超音波発信
手段と,上記それぞれ入射された超音波より発散され,
上記アルミニウム圧延材の表裏面間で多重反射しながら
伝搬する超音波に含まれる所定の屈折角の多重反射波を
それぞれ受信する超音波受信手段と,上記それぞれ受信
された多重反射波の伝搬時間に基づいて得られた評価値
φによって上記アルミニウム圧延材の結晶性を測定する
結晶性測定手段と,上記測定されたアルミニウム圧延材
の結晶性に基づいて該アルミニウム圧延材の耳率を測定
する耳率測定手段とを具備してなるアルミニウム圧延材
の耳率測定装置である。ここで, φ=(τL−τC)+(τN−τC) 但し,τL:圧延方向の遅延時間 τC:圧延方向に対して45゜傾いた方向の遅延時間 τN:圧延方向に対して90゜傾いた方向の遅延時間 である。
According to a first aspect of the present invention, there is provided a method of forming a focused ultrasonic wave at 0 °, 45 ° and 90 ° with respect to a rolling direction of a rolled aluminum material. From the direction, the light is incident on the surface of the rolled aluminum material at a predetermined angle, is diverged from the ultrasonic waves incident thereon, and is included in the ultrasonic wave propagating while being multiply reflected between the front and back surfaces of the rolled aluminum material. The multiple reflection waves having a predetermined refraction angle are respectively received, and the crystallinity of the aluminum rolled material is measured by the evaluation value φ obtained based on the propagation time of each of the received multiple reflection waves, Based on the measured crystallinity of the rolled aluminum material, the aluminum
Is configured as an ear measuring method of an aluminum rolled material for measuring the ear rate of beam rolled material. According to a second aspect of the present invention, the focused ultrasonic wave is set at 0 ° with respect to the rolling direction of the aluminum rolled material ,
Ultrasonic transmitting means for entering the surface of the rolled aluminum material at a predetermined angle from the directions of 45 ° and 90 °, and diverging from the incident ultrasonic waves,
Ultrasonic receiving means for receiving each multiple reflection waves in a predetermined refraction angle included in the propagating ultrasonic waves while being multiple-reflected between the front and back surfaces of the aluminum rolled material, the propagation time of the multiple reflection waves received respectively the Evaluation value obtained based on
and comprising a crystalline measuring means for measuring the crystallinity of the aluminum rolled material by phi, the ear rate measuring means for measuring the ear rate of the aluminum rolled material based on crystalline aluminum rolled material which is the measurement This is a device for measuring the ear ratio of a rolled aluminum material. Here, φ = (τL−τC) + (τN−τC) where τL: delay time in the rolling direction τC: delay time in a direction inclined by 45 ° with respect to the rolling direction τN: tilted by 90 ° with respect to the rolling direction The delay time in the direction of

【0007】[0007]

【作用】第1,第2の発明によれば,先ず集束された超
音波がアルミニウム圧延材の圧延方向に対し0゜,45
゜,及び90゜をなす方向から該アルミニウム圧延材の
表面に所定角度傾けて入射される。上記それぞれ入射さ
れた超音波より発散され,上記アルミニウム圧延材の表
裏面間で多重反射しながら伝搬する超音波に含まれる所
定の屈折角の多重反射波がそれぞれ受信される。上記そ
れぞれ受信された多重反射波の伝搬時間に基づいて得ら
れる上記評価値φによって上記アルミニウム圧延材の結
晶性が測定される。アルミニウム圧延材のように集合組
織のある材料では,結晶がランダムに配向した等方的な
結晶粒群と,集合組織で決まる特定の配向を持つ単結晶
粒群との混合体と考えられる。この内等方的な結晶粒群
の材料中では超音波の伝搬速度は超音波の伝搬方向によ
らず一定である。一方,特定の配向を持つ単結晶粒群の
材料中では,超音波の伝搬方向による音速が変化する音
速異方性を示す。この音速異方性を集合組織の主方位の
数以上,特にアルミニウム圧延材においては圧延方向に
対し0゜,45゜,及び90゜をなす方向において求め
ることにより,材料の結晶性を高精度に測定することが
できる。
According to the first and second aspects of the present invention, the focused ultrasonic wave is first moved by 0 °, 45 ° with respect to the rolling direction of the rolled aluminum material.
ア ル ミ ニ ウ ム and 90 ° are incident on the surface of the rolled aluminum material at a predetermined angle. Multiple reflected waves having a predetermined refraction angle included in the ultrasonic waves diverging from the incident ultrasonic waves and propagating while being multiply reflected between the front and back surfaces of the rolled aluminum material are received. Based on the propagation time of each received multiple reflected wave
The crystallinity of the rolled aluminum material is measured by the evaluation value φ . In a material having a texture such as a rolled aluminum material, it is considered to be a mixture of a group of isotropic crystal grains in which crystals are randomly oriented and a group of single crystal grains having a specific orientation determined by the texture. The propagation speed of the ultrasonic wave is constant in the material of the crystal group of the isotropic crystal regardless of the propagation direction of the ultrasonic wave. On the other hand, in the material of a single crystal grain group having a specific orientation, the material exhibits a sound velocity anisotropy in which the sound speed changes depending on the propagation direction of the ultrasonic wave. This sound velocity anisotropy is equal to or greater than the number of main orientations of the texture , especially in the rolling direction for rolled aluminum.
On the other hand , the crystallinity of the material can be measured with high accuracy by determining the angles in directions of 0 °, 45 °, and 90 ° .

【0008】更に,上記測定された上記アルミニウム
延材の結晶性に基づいて該アルミニウム圧延材の耳率が
測定される。即ち,上記アルミニウム圧延材の結晶性は
当該材料の集合組織の違いを表すため,この違いにより
耳率の測定を容易に行うことができる。その結果,迅速
に,客観的にしかも信頼性のあるアルミニウム圧延材
率測定を行い得る方法並びにその装置を得ることがで
きる。
Furthermore, the ear rate of the aluminum rolled material is measured based on the crystallinity of the aluminum pressure <br/> rolled material was measured above. That is, since the crystallinity of the rolled aluminum material indicates a difference in texture of the material, the ear ratio can be easily measured based on the difference. As a result, rapidly, objectively yet a reliable aluminum rolled material
It is possible to obtain a method and an apparatus capable of performing ear measurements.

【0009】[0009]

【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は本発明を具体化した一例であって,本発明
の技術的範囲を限定する性格のものではない。ここに,
図1は本発明の一実施例に係る耳率測定装置の概略構成
を示す模式図,図2は探触子部の配置図,図3は超音波
の拡散を示す説明図,図4は検出された多重反射エコー
群を示す図,図5は圧延方向からの角度に対する超音波
の往復透過率の変化を示す図,図6は板と探触子との距
離と遅延時間との関係を示す図,図7は再結晶材と未再
結晶材との極点図,図8はアルミニウム板で生じ得る集
合組織の(111)極点図,図9は(100)<001
>単結晶の音速異方性を示す説明図,図10は(11
0)<001>単結晶の音速異方性を示す説明図,図1
1は(123)<634>単結晶の音速異方性を示す説
明図,図12は破壊試験による未再結晶率と本装置によ
る測定値との比較結果を示す図,図13は未再結晶率と
音速異方性の評価値との関係を示す図,図14は耳率と
音速異方性の評価値との関係を示す図,図15は鉄の単
結晶についての音速の異方性計算結果を示す図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention. here,
Figure 1 is a schematic diagram showing a schematic configuration of the engagement Ru ear index measuring apparatus in an embodiment of the present invention, the arrangement of FIG. 2 probe unit, Fig. 3 is an explanatory diagram showing the diffusion of ultrasound, 4 FIG. 5 is a diagram showing a detected multiple reflection echo group, FIG. 5 is a diagram showing a change in reciprocal transmittance of ultrasonic waves with respect to an angle from a rolling direction, and FIG. 6 is a diagram showing a relationship between a distance between a plate and a probe and a delay time. FIG. 7, FIG. 7 is a pole figure of a recrystallized material and an unrecrystallized material, FIG. 8 is a (111) pole figure of a texture that can be produced in an aluminum plate, and FIG. 9 is (100) <001.
FIG. 10 is an explanatory view showing the sound velocity anisotropy of a single crystal, and FIG.
0) Explanatory diagram showing sound velocity anisotropy of <001> single crystal, FIG.
1 is an explanatory diagram showing the sound velocity anisotropy of a (123) <634> single crystal, FIG. 12 is a diagram showing a comparison result between a non-recrystallization ratio by a destructive test and a value measured by this apparatus, and FIG. FIG. 14 is a diagram showing the relationship between the ratio and the evaluation value of the sound velocity anisotropy, FIG. 14 is a diagram showing the relationship between the ear ratio and the evaluation value of the sound velocity anisotropy, and FIG. It is a figure showing a calculation result.

【0010】第1の発明に係る耳率測定方法は,計測さ
れた超音波をアルミニウム圧延材の圧延方向に対し0
゜,45゜,及び90゜をなす方向から該アルミニウム
圧延材の表面に所定角度傾けてそれぞれ入射し(工程
1),上記それぞれ入射された超音波により発散され,
上記アルミニウム圧延材の表裏面間で多重反射しながら
伝搬する超音波に含まれる所定の屈折角の多重反射波を
それぞれ受信し(工程2),上記それぞれ受信された多
重反射波の伝搬時間に基づいて得られる評価値φ(後述
する)によって上記アルミニウム圧延材の結晶性を測定
する(工程3)ように構成されている。更に,上記工程
3において,上記圧延材と同一板厚の標準材について予
め求めておいた多重反射波の波形と,上記それぞれ受信
された多重反射波の波形とを比較することにより,上記
伝搬時間を求める(工程4)にしても良い。更に,上記
工程3において,上記それぞれ入射される超音波の上記
圧延材の表面での反射波を該圧延材と略平行に配置され
た再反射面により再反射することによって,上記各受信
点においてそれぞれ受信させ,上記それぞれ受信させら
れた再反射波を用いて上記各入射点と上記再反射面との
間隔の変化による上記多重反射波の伝搬時間の変化分を
補正する(工程5)ようにしても良い。更に,上記測定
された圧延材の結晶性に基づいて該圧延材の耳率を測定
する(工程6)ように構成されている。第2の発明は,
上記第1の発明の方法による装置である。これによれ
ば,上記各工程の内,工程1は超音波発信手段により,
工程2は超音波受信手段により,工程3は結晶性測定手
段により,工程4は伝搬時間演算手段により,工程5は
補正手段により,工程6は耳率測定手段によりそれぞれ
実行される。以下,本実施例では上記第1の発明につい
て上記工程1,2,…の順に方法を詳述し,装置構成を
更に具体化すると共に,それらの基本原理についても説
明する。
[0010] In the ear ratio measuring method according to the first invention, the measured ultrasonic wave is applied to the rolling direction of the aluminum rolled material with respect to the rolling direction.
方向, 45 ゜ and 90 ゜ are respectively incident on the surface of the rolled aluminum at a predetermined angle (step 1), and are diverged by the incident ultrasonic waves.
A multi-reflection wave having a predetermined refraction angle included in the ultrasonic wave propagating while being multi-reflected between the front and back surfaces of the rolled aluminum material is received (step 2), and based on the propagation time of the received multi-reflection wave. The evaluation value φ obtained by
) To measure the crystallinity of the rolled aluminum material (Step 3). Further, in the above step 3, the waveform of the multi-reflected wave previously obtained for the standard material having the same thickness as the rolled material is compared with the waveform of the received multi-reflected wave to obtain the propagation time. (Step 4). Further, in the above-mentioned step 3, the reflected waves of the respective incident ultrasonic waves on the surface of the rolled material are re-reflected by the re-reflection surface arranged substantially in parallel with the rolled material, so that at each of the reception points. Each of them is received, and the change of the propagation time of the multiple reflection wave due to the change of the interval between each of the incident points and the re-reflection surface is corrected using the respectively received re-reflection waves (step 5). May be. Further, the ear ratio of the rolled material is measured based on the measured crystallinity of the rolled material (step 6). The second invention is
An apparatus according to the method of the first invention. According to this, of the above steps, step 1 is performed by ultrasonic transmitting means,
Step 2 is executed by the ultrasonic wave receiving means, Step 3 is executed by the crystallinity measuring means, Step 4 is executed by the propagation time calculating means, Step 5 is executed by the correcting means, and Step 6 is executed by the ear ratio measuring means. Hereinafter, in this embodiment, the method of the first invention will be described in detail in the order of the steps 1, 2,..., The device configuration will be further embodied, and the basic principle thereof will also be described.

【0011】[工程1] 図1,2において,先ず線集束型の超音波探触子1
,1(第2の発明における超音波発信手段に相
当)を使用し,周知の水浸法により超音波の集束点で
ルミニウム熱延板2(アルミニウム圧延材に相当,以
下,単に熱延板という)のX−Z断面内に超音波を入射
する。水浸法で集束型探触子1,1,1の焦点を
それぞれ入射点に一致させ,図中のZ軸に対し20゜程
度(所定角度に相当)の斜め入射の条件を選定すると,
ビーム上の超音波の入射角は,各入射点から超音波探触
子1,1,1の振動子の端子部を見込む角度分の
広がりをそれぞれ持つ。これは十分遠方で観察すると,
熱延板2中には各入射点から発散した横波が伝搬したよ
うに観察される。この現象は異種材料中に入射する超音
波の屈折関係を記述するものとして知られているスネル
の法則から容易に理解される(図3参照)。このよう
に,材料表面に焦点を一致させると材料中に超音波が入
射した点の位置を限定することができるため,超音波の
入射の位置が限定され,その結果音速に換算する時の距
離の情報の特定が可能となる。ところで,音速を厳密に
測定することにより材料の特性を測定する場合,一般に
測定精度を上げるためには,材料中の伝搬時間を長く
し,距離の不確定による誤差を小さくする方法が採用さ
れる。しかし,本実施例では,板厚が薄いアルミニウム
熱延板2を対象とし,各斜めに伝搬する超音波の速度
を計測するため距離を稼ぐことが困難である。そこで,
超音波の入射点の位置を特定し焦点を入射点に一致させ
ることが特に重要である。
[Step 1] In FIGS. 1 and 2, first, a line focusing type ultrasonic probe 1 a ,
Using the 1 b, 1 c (corresponding to ultrasonic wave transmission unit in the second invention), A at the focal point of the ultrasonic wave by a known immersion method
Luminium hot rolled sheet 2 (corresponding to rolled aluminum ,
(Hereinafter, simply referred to as a hot rolled plate )). The focal points of the focusing probes 1 a , 1 b , and 1 c are respectively matched to the incident point by the water immersion method, and oblique incidence conditions of about 20 ° (corresponding to a predetermined angle) with respect to the Z axis in the figure are selected. Then
The incident angle of the ultrasonic wave on the beam has a spread corresponding to the angle at which the terminals of the transducers of the ultrasonic probes 1 a , 1 b , and 1 c are seen from each incident point. Observing this far enough,
In the hot rolled sheet 2, it is observed that a transverse wave diverging from each incident point propagates. This phenomenon can be easily understood from Snell's law, which is known to describe the refraction relationship of the ultrasonic wave incident on the dissimilar material (see FIG. 3). As described above, when the focal point coincides with the surface of the material, the position of the point where the ultrasonic wave is incident on the material can be limited, so that the position of the incident ultrasonic wave is limited, and as a result, the distance when converting to the sound velocity Information can be specified. By the way, when measuring the characteristics of a material by strictly measuring the speed of sound, a method of increasing the propagation time in the material and reducing the error due to the uncertainty of the distance is generally adopted to increase the measurement accuracy. . However, in this embodiment, the thin aluminum plate is used.
It is difficult to increase the distance because the velocity of the ultrasonic wave propagating obliquely is measured for the hot-rolled sheet 2 of FIG. Therefore,
It is particularly important to identify the location of the point of incidence of the ultrasound and to match the focal point to the point of incidence.

【0012】[工程2]次に,各入射点から発散的に放
射された超音波は,熱延板2の表裏面間で多重反射しな
がらそれぞれ伝搬するが,これらを上記と同等な線集束
型の超音波探触子3a ,3b ,3c (超音波受信手段に
相当)を用いて受信する。即ち,受信の場合も焦点を材
料の表面に一致させることにより,受信点の位置が特定
できることは送信の場合とまったく同様である。する
と,多重反射の回数によって決まるビーム路程を音速で
割ることにより求められる時間だけ遅延した複数の反射
エコーが観察される。この観察されたエコーを図4に示
す。図中それぞれのエコーは測定する板である熱延板2
に対して異なる角度で伝搬した超音波に対応するため
(表1参照),伝搬角度方向で音速に異方性がある場
合,その音速の異方性を反映した遅延時間後にエコーが
観察されることになる。
[Step 2] Next, the ultrasonic waves divergently radiated from each incident point propagate while being reflected multiple times between the front and back surfaces of the hot rolled sheet 2. the type of ultrasound probe 3 a, 3 b, 3 receives with c (corresponding to the ultrasonic reception means). That is, in the case of reception, the position of the reception point can be specified by making the focal point coincide with the surface of the material, which is exactly the same as in the case of transmission. Then, a plurality of reflected echoes delayed by a time required by dividing the beam path determined by the number of multiple reflections by the speed of sound are observed. This observed echo is shown in FIG. In the figure, each echo is a hot rolled plate 2 which is a plate to be measured.
When the sound velocity has anisotropy in the propagation angle direction, an echo is observed after a delay time that reflects the anisotropy of the sound velocity in order to respond to ultrasonic waves propagated at different angles with respect to the sound velocity (see Table 1). Will be.

【表1】 [Table 1]

【0013】[工程3]そして,多重反射の次数の異な
る複数の横波の多重反射エコーの中から屈折角が20°
〜60°の範囲の反射波(所定の屈折角の多重反射波に
相当)を抽出し,その伝搬時間を測定する。ところで,
アルミニウム熱延板の場合,再結晶すると,材料に含ま
れる結晶粒の方位分布を示す極点図上で(100)<0
01>の集合組織が優勢となるが,未再結晶状態では
(110)<001>の集合組織が優勢である。このこ
とはまた,集積度はこれらの2種類の集合組織に比較し
て多少低いが,未再結晶状態では(123)<634>
集合組織が存在していることが分かっている。再結晶前
後の材料に対し,X線で測定された(111)極点図を
図7に,単一の集合組織の材料に対する極点図を図8に
示す。これより,再結晶の前後で上記関係があることが
容易に理解される。集合組織のある材料は,結晶粒がラ
ンダムに配向した等方的な結晶粒群と,集合組織で決ま
る特定の配向を持つ単結晶群との混合体と考えて,その
結晶性を評価することができる。等方体群の材料では,
超音波の伝搬速度は超音波の伝搬方向に依存しない。一
方,特定の配向を持つ結晶群の材料では,単結晶のアル
ミニウム板中の音速の方向依存性を反映し,伝搬方向で
音速が変化する音速異方性を示す。この単結晶中の超音
波の伝搬速度の音速異方性の計算結果を利用し,アルミ
ニウム板の再結晶の集合組織に現れる上記方位に単結晶
が配向した場合,板幅方向(Z方向)の断面内に超音波
が伝搬する時のZ方向に対する伝搬角度と超音波の音速
とを板の圧延方向(X方向),X方向に対して直交する
方向(Y方向)及びX方向に対して45°傾いた方向の
3方向について極点図表示した結果を図9に示す。ただ
し,横波は振動方向で2種類の音速を持つ超音波が存在
するが,図中には超音波の探触子を水浸法で励起したと
きに材料中に励起される成分についてのみ記載してい
る。
[Step 3] A refraction angle of 20 ° is selected from a plurality of multiple reflection echoes of transverse waves having different orders of multiple reflection.
A reflected wave in the range of 6060 ° (corresponding to a multiple reflected wave with a predetermined refraction angle) is extracted, and its propagation time is measured. by the way,
In the case of a hot-rolled aluminum sheet, when recrystallized, (100) <0 on the pole figure showing the orientation distribution of crystal grains contained in the material.
01> predominates, but in the non-recrystallized state, the (110) <001> texture predominates. This means that the degree of accumulation is somewhat lower than those of the two types of textures, but in the unrecrystallized state, (123) <634>
It is known that a texture exists. FIG. 7 shows a (111) pole figure measured by X-rays for the material before and after recrystallization, and FIG. 8 shows a pole figure for a material having a single texture. From this, it is easily understood that the above relationship exists before and after recrystallization. Materials with texture should be evaluated as a mixture of isotropic crystal grains with randomly oriented crystal grains and single crystals with a specific orientation determined by texture. Can be. In the material of the isotropic group,
The propagation speed of the ultrasonic wave does not depend on the propagation direction of the ultrasonic wave. On the other hand, the material of a crystal group having a specific orientation exhibits a sound velocity anisotropy in which the sound speed changes in the propagation direction, reflecting the direction dependence of the sound speed in a single-crystal aluminum plate. Using the calculation result of the sound velocity anisotropy of the ultrasonic wave propagation velocity in this single crystal, if the single crystal is oriented in the above-mentioned direction that appears in the recrystallization texture of the aluminum plate, The propagation angle with respect to the Z direction and the sound speed of the ultrasonic wave when the ultrasonic wave propagates in the cross section are set to 45 degrees with respect to the rolling direction (X direction) of the sheet, the direction orthogonal to the X direction (Y direction), and the X direction. FIG. 9 shows the results of pole figure display in three directions of inclination. However, transverse waves include ultrasonic waves having two types of sound velocities in the vibration direction. In the figure, only the components that are excited in the material when the ultrasonic probe is excited by the water immersion method are described. ing.

【0014】また,上記のような集合組織を有する材料
では,この単結晶の速度異方性と等方体の音速分布とが
集合組織の集積の程度で混合した異方性を示すと考えら
れる。再結晶した場合をまず考えるが,この場合は極点
図上(100)<001>集合組織を持つ。それを(1
00)<001>方位を持つ結晶がある割合だけ均質体
中にばらまかれていると仮定する。すると板内のある方
向の音速は等方体結晶の音速と(100)<001>成
分の注目する方向の音速との中間の値を示すことにな
る。この値は混合比で加算平均したものとして近似でき
る。従って,超音波をX−Z断面内に伝搬させた場合,
板面と伝搬方向との角度をパラメータとして音速を表現
するとすれば,絶対値は混合比により変化する。この場
合,図7と同様な異方性を示すはずである。次に,図9
と同様に,アルミニウム材の再結晶組織である(11
0)<001>集合組織と(123)<634>集合組
織の場合の3方向について極点図表示した結果を図1
0,図11に示す。これらの図9〜11から,再結晶材
の場合と未再結晶の場合とについて,X方向,Y方向及
びX方向に対し45°傾いた方向の合計3つの方向に,
例えばZ方向から40°傾いたX−Z断面方向に超音波
を伝搬させた場合の遅延時間を求める。これは伝搬距離
を音速で割れば導出できる。この遅延時間と,破壊検査
により抽出した未再結晶率との関係を図12に示す。こ
の図から,再結晶材と未再結晶材とではそれぞれの方向
で遅延時間が異なっていることがわかる。従って,それ
ぞれに方向に伝搬させたZ方向から40°傾いた方向の
多重反射波の遅延時間を測定すると,未再結晶の程度を
評価することができる。
Further, in the material having the above-mentioned texture, it is considered that the velocity anisotropy of the single crystal and the sound velocity distribution of the isotropic material show anisotropy in which the degree of texture accumulation is mixed. . First, consider the case of recrystallization, which has a (100) <001> texture on the pole figure. (1
00) It is assumed that crystals having a <001> orientation are dispersed in a homogenous body by a certain ratio. Then, the sound speed in a certain direction in the plate indicates an intermediate value between the sound speed of the isotropic crystal and the sound speed of the (100) <001> component in the direction of interest. This value can be approximated by adding and averaging the mixture ratio. Therefore, when the ultrasonic wave is propagated in the XZ section,
If the speed of sound is expressed using the angle between the plate surface and the propagation direction as a parameter, the absolute value changes depending on the mixture ratio. In this case, anisotropy similar to FIG. 7 should be exhibited. Next, FIG.
Similarly to the recrystallization structure of the aluminum material (11)
FIG. 1 shows the results of pole figure display in three directions in the case of (0) <001> texture and (123) <634> texture.
0, shown in FIG. From these FIGS. 9 to 11, from the case of the recrystallized material and the case of the non-recrystallized material, the X direction, the Y direction, and the direction inclined by 45 ° with respect to the X direction, a total of three directions,
For example, a delay time when an ultrasonic wave is propagated in the XZ section direction inclined by 40 ° from the Z direction is obtained. This can be derived by dividing the propagation distance by the speed of sound. FIG. 12 shows the relationship between the delay time and the unrecrystallized rate extracted by the destructive inspection. From this figure, it can be seen that the delay time differs between the recrystallized material and the non-recrystallized material in each direction. Therefore, the degree of unrecrystallization can be evaluated by measuring the delay time of the multiple reflected waves in the direction inclined by 40 ° from the Z direction propagated in the respective directions.

【0015】更に,X方向の遅延時間をτL,X方向に
対して45°傾いた方向の遅延時間をτC,Y方向の遅
延時間をτNとし,未再結晶の評価値φを以下のように
定義する。 φ=(τL−τC)+(τN−τC) …(1) 上記(1)式で与えられる未再結晶の評価値φと破壊試
験により抽出した未再結晶率との関係を図13に示す。
この図より未再結晶の評価値が45nsec以上の場合は再
結晶していると判定できる。ここで,超音波の入射点間
距離をL,反射の次数をn,板厚をt,音速をCとする
と遅延時間τは以下の式で表すことができる。 τ=4n√(L/4n)2 +t2 /C …(2) 上記(2)式より,遅延時間τは反射の次数n及び板厚
tが異なると大きく異なってくることが分かる。従っ
て,1方向の遅延時間のみで判断すると測定精度が低く
なる。このため,本実施例では同一の被測定板について
3方向の遅延時間を同時に測定し,その相対的な時間差
(X方向,Y方向及びX方向に対し45°傾いた方向の
遅延時間の大小関係)を比較し判定している。この場
合,板厚tは方向によって同じであるため,反射の次数
nの変化の仕方は方向による差がなくなる。従って,板
厚tの公差内の変化により生ずる誤差が軽減され,測定
精度が向上する。また,この遅延時間τの測定では,超
音波が板の表裏面間を多重反射しながら伝搬しているた
め,伝搬距離が長くとれ,一つの方向の音速は平均化さ
れて測定のバラツキが小さくなり,これによっても測定
精度が向上する。この時実際に受信された波形は前記図
4に示した通りであるが,更に詳しく説明する。図中の
次数は板の表裏面で超音波が反射した回数である。反射
の次数が1〜3のものは,反射の次数による伝搬距離の
差が小さいため,分離して計測できていない。しかし,
反射の次数が4次以降の次数のものは分離して計測され
ている。また,反射の次数が7次以降の場合は観察され
ていないが,これは小さい屈折角で入射する超音波の送
受効率が低いためである。
Further, the delay time in the X direction is τL, the delay time in the direction inclined by 45 ° with respect to the X direction is τC, the delay time in the Y direction is τN, and the evaluation value φ of the unrecrystallized crystal is as follows. Define. φ = (τL−τC) + (τN−τC) (1) FIG. 13 shows the relationship between the evaluation value φ of unrecrystallized given by the above equation (1) and the unrecrystallized rate extracted by the destructive test. .
From this figure, it can be determined that recrystallization has occurred when the evaluation value of unrecrystallized is 45 nsec or more. Here, assuming that the distance between incident points of ultrasonic waves is L, the order of reflection is n, the plate thickness is t, and the sound speed is C, the delay time τ can be expressed by the following equation. τ = 4n√ (L / 4n) 2 + t 2 / C (2) From the above equation (2), it can be seen that the delay time τ is greatly different when the order n of reflection and the plate thickness t are different. Therefore, if the judgment is made based only on the delay time in one direction, the measurement accuracy is lowered. For this reason, in the present embodiment, the delay time in three directions is measured simultaneously for the same plate to be measured, and the relative time difference (the magnitude relationship of the delay times in the X direction, the Y direction, and the direction inclined at 45 ° with respect to the X direction) is measured. ) Are compared. In this case, since the plate thickness t is the same depending on the direction, there is no difference in the manner of changing the order n of reflection depending on the direction. Therefore, an error caused by a change in the thickness t within the tolerance is reduced, and the measurement accuracy is improved. In the measurement of the delay time τ, since the ultrasonic wave propagates while being reflected multiple times between the front and back surfaces of the plate, the propagation distance can be long, the sound speed in one direction is averaged, and the measurement dispersion is small. This also improves the measurement accuracy. The waveform actually received at this time is as shown in FIG. 4, but will be described in more detail. The order in the figure is the number of times the ultrasonic wave is reflected on the front and back surfaces of the plate. Reflection orders of 1 to 3 cannot be measured separately because the difference in propagation distance due to the order of reflection is small. However,
Reflection orders of order 4 and higher are measured separately. In the case where the order of reflection is 7th or higher, no observation is made, because the transmission / reception efficiency of ultrasonic waves incident at a small refraction angle is low.

【0016】[工程4] また,図4において,波形が次数によって変化している
ことが分かる。ちなみに音速を正確に測定する方法とし
て,所定の基準波形との相関を用いる方法が知られてい
るが,波形が異なると伝搬の遅延時間の測定誤差は低下
する。そこで,基準とする仮定として再結晶が済んだ同
じ厚さの標準試験品4の板幅方向(Z方向)から20゜
〜60゜傾いたX−Z断面方向に伝搬する波形を基準と
して相関法により遅延時間を求める。ここで,角度20
゜〜60゜の範囲でしか測定できない理由は,図5に示
すように角度20゜以下では横波の往復通過率が大幅に
減少するためである(日刊工業新聞社発行「超音波探傷
法」P.38 図2.44(b)参照)。但し,参照図
とは各説明の便宜上,角度表記の仕方を変更している。
従って,この場合は,減衰が大きすぎ,角度20゜以上
でないと測定することは不可能である。一方,角度60
゜以上では横波と同時に縦波も伝搬するため,縦波と分
離することが難しく,角度60゜以下でないと測定する
ことが困難である。従って,角度20゜〜60゜の範囲
でしか測定することはできない。このように,標準試験
品4での超音波の伝搬波形を予め設定しておき,その波
形と測定波形との相関を用いることにより,精度良く伝
搬時間を測定できる。
[Step 4] In FIG. 4, it can be seen that the waveform changes depending on the order. Incidentally, as a method for accurately measuring the sound velocity, a method using a correlation with a predetermined reference waveform is known. However, if the waveforms are different, the measurement error of the propagation delay time decreases. Therefore, as a reference assumption, the correlation method is based on a waveform propagating in the XZ sectional direction inclined by 20 ° to 60 ° from the plate width direction (Z direction) of the recrystallized standard test specimen 4 of the same thickness. To obtain the delay time. Here, the angle 20
The reason why the measurement can be performed only in the range of ゜ to 60 ° is that as shown in FIG. 5, when the angle is 20 ° or less, the reciprocal passage rate of the shear wave is greatly reduced. .38 (see Figure 2.44 (b)). However, the notation of the angle is changed from that of the reference diagram for convenience of explanation.
Therefore, in this case, it is impossible to make a measurement unless the attenuation is too large and the angle is not more than 20 °. On the other hand, the angle 60
Above ゜, the longitudinal wave propagates simultaneously with the transverse wave, so it is difficult to separate from the longitudinal wave, and it is difficult to measure the angle unless the angle is less than 60 °. Therefore, measurement can be performed only in the range of angles of 20 ° to 60 °. As described above, the propagation time of the ultrasonic wave in the standard test article 4 is set in advance, and the propagation time can be accurately measured by using the correlation between the waveform and the measured waveform.

【0017】[工程5] 更に図6には,熱延板2と超音波探触子1,1,1
との間隔を変化させて測定した時の反射板5からのエ
コーの遅延時間を示す。図から,反射板5により反射し
た超音波の遅延時間は板と探触子との間の距離と直線関
係にあることがわかる。この関係を利用し,測定する板
の反り等で生じる誤差を補正することができる。即ち,
超音波探触子1,1,1と熱延板2との間の距離
の変化による遅延時間の差を反射板5からの遅延時間か
ら求め,これにより材料中を伝搬するエコーの遅延時間
の変化を補正することができる。反射板5からの遅延時
間は,具体的には,平坦な板の場合の反射板5からの遅
延時間を基準として,測定する板の場合の遅延時間を求
めている。この場合,入射超音波は,一部,板面で反射
されるが,その反射波を再度熱延板2の方向に反射する
反射板5を,熱延板2と平行に探触子と一体関係で配置
している。このように,超音波探触子1,1,1
と熱延板2との間隔との変化に起因する各入力入射点と
反射点との間隔の変化による多重反射波の遅延時間の変
化を補正することによっても,より精度良く遅延時間を
測定することができる。本実施例では,超音波探触子1
,1,1の発信周波数としては,10MHzの高
帯域の探触子を使用した。これは,探触子の周波数が低
くなると,波長が長くなるため,板の表裏面間で多重反
射した超音波の遅延時間の分離が悪くなるからである。
一方,周波数が高くなりすぎると,超音波の減衰が大き
くなり伝搬距離が長くとれる。このため多重反射の回数
の多い反射波の遅延時間を測定することが困難となる。
このような観点から波長が板厚と同程度で且つ減衰が小
さい周波数を用いる必要があるためである。
[Step 5] Further, FIG. 6 shows the hot rolled plate 2 and the ultrasonic probes 1 a , 1 b , 1
changing the distance between the c indicating the delay time of the echo of the reflection plate 5 or these when measured. From the figure, it can be seen that the delay time of the ultrasonic wave reflected by the reflector 5 has a linear relationship with the distance between the plate and the probe. By utilizing this relationship, it is possible to correct errors caused by warpage of the plate to be measured. That is,
The difference in the delay time due to the change in the distance between the ultrasonic probes 1 a , 1 b , 1 c and the hot rolled plate 2 is determined from the delay time from the reflection plate 5, whereby the echo propagating through the material is determined. The change in the delay time can be corrected. More specifically, the delay time from the reflector 5 is determined based on the delay time from the reflector 5 for a flat plate as a reference. In this case, although the incident ultrasonic wave is partially reflected on the plate surface, a reflecting plate 5 that reflects the reflected wave again in the direction of the hot rolled plate 2 is integrated with the probe in parallel with the hot rolled plate 2. Are arranged in a relationship. Thus, the ultrasonic probes 1 a , 1 b , 1 c
The delay time can be measured more accurately by compensating for the change in the delay time of the multiple reflected wave due to the change in the distance between each input point of incidence and the reflection point due to the change in the distance between the sheet and the hot rolled sheet 2. be able to. In this embodiment, the ultrasonic probe 1
a, as the oscillation frequency of the 1 b, 1 c, it was used probe 10MHz high bandwidth. This is because the lower the frequency of the probe, the longer the wavelength, so that the separation of the delay time of the multiple reflected ultrasonic waves between the front and back surfaces of the plate becomes poor.
On the other hand, if the frequency is too high, the attenuation of the ultrasonic waves increases, and the propagation distance can be increased. For this reason, it is difficult to measure the delay time of a reflected wave having a large number of multiple reflections.
From such a viewpoint, it is necessary to use a frequency whose wavelength is approximately equal to the plate thickness and whose attenuation is small.

【0018】次に,X方向,Y方向及びX方向に対して
45゜傾いた方向の3方向の受信された超音波を超音波
探触子3,3,3により電気信号に変換し,それ
らの信号をデジタルオシロ6によりデジタル化してメモ
リ7に記憶し用いる。メモリ7に記憶された信号を計算
機8に入力し,注目する屈折角例えばZ方向に対し40
゜傾いた断面方向に伝搬する超音波の遅延時間を抽出す
る。これら3方向の遅延時間の結果から未再結晶の評価
値を計算する。この値を基準値(未再結晶が判明してい
る試料を同様の測定方法で測定し,それぞれの未再結晶
率での評価値を求めた値)と比較し,被測定板の未再結
晶率を導出する。このようにして熱延板2の結晶性を測
定することができる。ここでは計算機8が,結晶性測定
段の役割を果たす。
Next, the received ultrasonic waves in three directions, that is, the X direction, the Y direction, and the direction inclined at 45 ° with respect to the X direction, are converted into electric signals by the ultrasonic probes 3 a , 3 b , and 3 c. Then, those signals are digitized by the digital oscilloscope 6 and stored in the memory 7 for use. The signal stored in the memory 7 is input to a computer 8, and a refraction angle of interest, for example, 40
遅 延 Extract the delay time of the ultrasonic wave propagating in the inclined section direction. An evaluation value of unrecrystallized is calculated from the result of the delay time in these three directions. This value is compared with a reference value (a value obtained by measuring the unrecrystallized sample using the same measurement method and calculating the evaluation value at each unrecrystallized rate). Derive the rate. Thus, the crystallinity of the hot rolled sheet 2 can be measured. Here is the calculator 8 serves crystalline measuring <br/> hand stage.

【0019】[工程6] 更に熱延板2の結晶性測定結果に基づいて計算機8によ
り予めファイル9に記憶しておいたデータと比較するこ
とにより熱延板2の耳率を測定する。ここでは,アルミ
ニウム材について考える。即ち,塑性加工時の滑り面が
極点図上の(111)面であることから,集合組織によ
り耳率が決まる。例えば,(100)<001>集合組
織では,(111)面が配向しているX方向に対して4
5゜傾いた方向の変形が生じやすい。そのため,その方
向の耳率が大きくなり,(110)<001>集合組織
では,X方向の耳率が大きくなる。ここで耳率はX方向
に対して45゜傾いた方向に耳が平均高さより高い場合
を正の耳率,X方向に対して傾いた方向の耳が平均高さ
より低い場合を負の耳率と定義されている。従って,未
再結晶率の高い(110)<001>組織では,の耳
率となる。一方,未再結晶率が低く,(100)<00
1>集合組織が発達してくると,の耳率となる。この
ように,耳率は集合組織に敏感であり,集合組織が分か
れば耳率が評価できることが推定できる。アルミニウム
材では,前記したように3つの主要の集合組織からなる
が,その割合を評価できれば耳率が分かる。Z方向に対
して20゜〜60゜傾いた方向に伝搬する横波の音速
を,X方向,X方向に対して45゜傾いた方向及びY方
向の音速をそれぞれCL,CC,CNとすると,以下の
3つの式で表すことができる。 CL=(1−r)×Cm+r1×C1+r2×C2+r3×C3…(3) CC=(1−r)×Cm+r1×C1+r2×C2+r3×C3…(4) CN=(1−r)×Cm+r1×C1+r2×C2+r3×C3…(5) ここに,Cm:等方体の音速 C1〜3:注目する方位の単結晶の音速 r1〜3:注目する方位の単結晶の割合 r=r1+r2+r3 である。このように上記3つの連立方程式を立てること
ができるので,3つの集合組織の割合が分かる。
[Step 6] Further, the ear ratio of the hot-rolled sheet 2 is measured by comparing the crystallinity of the hot-rolled sheet 2 with the data previously stored in the file 9 by the computer 8 based on the measurement result. Here, consider aluminum materials. That is, since the sliding surface at the time of plastic working is the (111) plane on the pole figure, the ear ratio is determined by the texture. For example, in the (100) <001> texture, the (111) plane is oriented four times in the X direction.
Deformation in the direction inclined by 5 ° easily occurs. Therefore, the ear ratio in that direction increases, and in the (110) <001> texture, the ear ratio in the X direction increases. Here, the ear ratio is a positive ear ratio when the ear is higher than the average height in a direction inclined by 45 ° with respect to the X direction, and a negative ear ratio when the ear in the direction tilted with respect to the X direction is lower than the average height. It is defined as Therefore, the (110) <001> structure having a high unrecrystallized ratio has a positive ear ratio. On the other hand, the unrecrystallization ratio is low, and (100) <00.
1> As the texture develops, the ear rate becomes negative . As described above, the ear ratio is sensitive to the texture, and it can be estimated that the ear ratio can be evaluated if the texture is known. As described above, the aluminum material is composed of three main textures, but if the ratio can be evaluated, the ear ratio can be determined. Assuming that the sound velocity of a transverse wave propagating in a direction inclined by 20 ° to 60 ° with respect to the Z direction is CL, CC, and CN, respectively, the sound velocity in the X direction, the direction inclined by 45 ° with respect to the X direction, and the Y direction are CL, CC, and CN, respectively. Can be represented by the following three equations. CL = (1−r) × Cm + r1 × C1 + r2 × C2 + r3 × C3 (3) CC = (1−r) × Cm + r1 × C1 + r2 × C2 + r3 × C3 (4) CN = (1−r) × Cm + r1 × C1 + r2 × C2 + r3 × C3 (5) Here, Cm: sound velocity of an isotropic body C1-3: sound velocity of a single crystal in a direction of interest r1-3: ratio of a single crystal in a direction of interest r = r1 + r2 + r3. As described above, since the above three simultaneous equations can be established, the ratio of the three textures can be determined.

【0020】上記で述べた未再結晶の評価値と破壊検査
により抽出した耳率の評価値との関係を図14に示す。
図より,耳率の評価値と未再結晶の評価値とはほぼ比例
していることがわかる。これより未再結晶の評価値から
耳率を判定できることが分かる。つまり,この方法によ
って,被測定板に上記3方向に超音波を伝搬させ,遅延
時間を測定し,未再結晶の評価値を計算することによっ
て3つの集合組織の割合が分かり,耳率を判定すること
ができる。このように耳率測定を行うことができる。こ
こでは,計算機8が耳率測定手段の役割を果たす。また
以上の操作命令等の入力と,結果の出力とは計算機8に
接続された入出力装置10により行う。尚,上記実施例
では,超音波波形の収集にデジタルオシロ6を使用し,
また計算機8により遅延時間を演算等するとしたが,実
使用に際しては,専用の信号処理回路を使用することも
考えられる。更に,上記実施例は,熱延板であるアルミ
ニウム板の未再結晶率の計測だけでなく,例えば鋼板の
集合組織の違いを測定することにも応用できるものと考
えられる。このことは,鉄の単結晶の音速の異方性の計
算結果を示す図15より容易に理解される。
FIG. 14 shows the relationship between the evaluation value of the above-mentioned unrecrystallized crystal and the evaluation value of the ear ratio extracted by the destructive inspection.
From the figure, it can be seen that the evaluation value of the ear ratio and the evaluation value of the non-recrystallized are almost proportional. This shows that the ear ratio can be determined from the evaluation value of the non-recrystallized crystal. In other words, by this method, ultrasonic waves are propagated to the plate to be measured in the above three directions, the delay time is measured, and the evaluation value of the non-recrystallized is calculated, whereby the proportion of the three textures can be determined, and the ear ratio is determined. can do. In this way, the ear ratio can be measured. Here, the computer 8 plays a role of ear ratio measuring means. The input of the operation command and the output of the result are performed by the input / output device 10 connected to the computer 8. In the above embodiment, the digital oscilloscope 6 is used to collect the ultrasonic waveform.
In addition, although the delay time is calculated by the computer 8, a dedicated signal processing circuit may be used for actual use. Furthermore, it is considered that the above embodiment can be applied not only to measurement of the unrecrystallized ratio of an aluminum plate as a hot-rolled plate, but also to measurement of, for example, difference in texture of a steel plate. This can be easily understood from FIG. 15 showing the calculation result of the anisotropy of the sound velocity of the iron single crystal.

【0021】[0021]

【発明の効果】本発明に係るアルミニウム圧延材の耳率
測定方法及びその装置は,上記したように構成されてい
るため,以下の効果を奏する。アルミニウム圧延材のよ
うに集合組織のある材料では,結晶がランダムに配向し
た等方的な結晶粒群と,集合組織で決まる特定の配向を
持つ単結晶粒群との混合体と考えられる。この内等方的
な結晶粒群の材料中では超音波の伝搬速度は超音波の伝
搬方向によらず一定である。一方,特定の配向を持つ単
結晶粒群の材料中では,超音波の伝搬方向による音速が
変化する音速異方性を示す。この音速異方性を圧延方向
に対し0゜,45゜,及び90゜をなす方向において
めることにより,アルミニウム圧延材の結晶性を高精度
に測定することができる。更に,このようにして測定さ
れたアルミニウム圧延材の結晶性に基づいて該アルミニ
ウム圧延材の耳率が測定される。即ち,上記アルミニウ
圧延材の結晶性は当該材料の集合組織の違いを表すた
め,この違いにより耳率の測定を容易に行うことができ
る。その結果,迅速に,客観的にしかも信頼性のある
ルミニウム圧延材の耳率測定を行い得る方法並びにその
装置を得ることができる。
The method and apparatus for measuring the ear ratio of a rolled aluminum material according to the present invention have the following effects because they are constructed as described above. In a material having a texture such as a rolled aluminum material, it is considered to be a mixture of a group of isotropic crystal grains in which crystals are randomly oriented and a group of single crystal grains having a specific orientation determined by the texture. The propagation speed of the ultrasonic wave is constant in the material of the crystal group of the isotropic crystal regardless of the propagation direction of the ultrasonic wave. On the other hand, in the material of a single crystal grain group having a specific orientation, the material exhibits a sound velocity anisotropy in which the sound speed changes depending on the propagation direction of the ultrasonic wave. The speed of sound anisotropy rolling direction
0 ° to 45 °, and by seeking <br/> Mel in the direction forming 90 °, it can be measured crystallinity of the aluminum rolled material with high accuracy. Furthermore, the based on the crystallinity of the thus be measured aluminum rolled material Arumini
Ear ratio of Um rolled material is measured. That is, the above aluminum
Since the crystallinity of the rolled material indicates the difference in the texture of the material, the ear ratio can be easily measured based on the difference. A As a result, quickly, objectively yet reliable
It is possible to obtain a method and an apparatus capable of measuring ear ratio of rolled luminium .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る結晶性及び耳率測定
装置の概略構成を示す模式図。
FIG. 1 is a schematic diagram showing a schematic configuration of a crystallinity and ear ratio measuring apparatus according to one embodiment of the present invention.

【図2】 探触子部の配置図。FIG. 2 is a layout diagram of a probe unit.

【図3】 超音波の拡散を示す説明図。FIG. 3 is an explanatory diagram showing diffusion of ultrasonic waves.

【図4】 検出された多重反射エコー群を示す図。FIG. 4 is a diagram showing a detected multiple reflection echo group.

【図5】 圧延方向からの角度に対する超音波の往復透
過率の変化を示す図。
FIG. 5 is a diagram showing a change in reciprocal transmittance of ultrasonic waves with respect to an angle from a rolling direction.

【図6】 板と探触子との距離と遅延時間との関係を示
す図。
FIG. 6 is a diagram showing a relationship between a distance between a plate and a probe and a delay time.

【図7】 再結晶材と未再結晶材との極点図。FIG. 7 is a pole figure of a recrystallized material and a non-recrystallized material.

【図8】 アルミニウム板で生じ得る集合組織の(11
1)極点図。
FIG. 8 shows a texture (11) that can be formed in an aluminum plate.
1) Pole figure.

【図9】 (100)<001>単結晶の音速異方性を
示す説明図。
FIG. 9 is an explanatory diagram showing sound velocity anisotropy of a (100) <001> single crystal.

【図10】 (110)<001>単結晶の音速異方性
を示す説明図
FIG. 10 is an explanatory diagram showing sound velocity anisotropy of a (110) <001> single crystal.

【図11】 (123)<634>単結晶の音速異方性
を示す説明図。
FIG. 11 is an explanatory diagram showing the sound velocity anisotropy of a (123) <634> single crystal.

【図12】 破壊試験による未再結晶率と本装置による
測定値との比較結果を示す図。
FIG. 12 is a view showing a comparison result between a non-recrystallization rate by a destructive test and a value measured by the present apparatus.

【図13】 未再結晶率と音速異方性の評価値との関係
を示す図。
FIG. 13 is a graph showing a relationship between a non-recrystallization ratio and an evaluation value of sound velocity anisotropy.

【図14】 耳率と音速異方性の評価値との関係を示す
図。
FIG. 14 is a diagram showing a relationship between ear ratio and evaluation value of sound velocity anisotropy.

【図15】 鉄の単結晶についての音速の異方性計算結
果を示す図。
FIG. 15 is a diagram showing a calculation result of anisotropy of a sound velocity for a single crystal of iron.

【図16】 薄板の深絞り状態と加工結果とを示す図。FIG. 16 is a view showing a deep drawing state of a thin plate and a processing result.

【符号の説明】[Explanation of symbols]

a ,1b ,1c …集束型超音波探触子(超音波発信手
段に相当) 2…熱延板(圧延材に相当) 3a ,3b ,3c …集束型超音波探触子(超音波受信手
段に相当) 4…標準試験品(基準材に相当) 5…反射板(再反射面に相当) 8…計算機(結晶性測定手段,伝搬時間演算手段,補正
手段,耳率測定手段等に相当)
1 a, 1 b, 1 c ... focused ultrasonic probe (corresponding to ultrasonic wave transmission unit) 2 ... hot-rolled sheet (corresponding to the rolling member) 3 a, 3 b, 3 c ... focused ultrasonic feeler Element (corresponding to ultrasonic receiving means) 4 ... Standard test product (corresponding to reference material) 5 ... Reflector (corresponding to re-reflecting surface) 8 ... Computer (crystallinity measuring means, propagation time calculating means, correcting means, ear ratio (Equivalent to measuring means, etc.)

フロントページの続き (72)発明者 柳井 敏志 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (72)発明者 小川 岳夫 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (72)発明者 森本 勉 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (56)参考文献 特開 平2−236450(JP,A) 特開 平2−296147(JP,A) 特開 平2−210258(JP,A) 特開 平1−301162(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 29/00 - 29/28 Continuation of the front page (72) Inventor Toshishi Yanai 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel, Ltd. Kobe Research Institute (72) Inventor Takeo Ogawa 1 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel, Ltd.Kobe Institute of Technology, Kobe Steel, Ltd. (72) Inventor Tsutomu Morimoto 1-5-5, Takatsukadai, Nishi-ku, Kobe, Hyogo, Japan Kobe Steel, Ltd.Kobe Institute of Technology, (56) References JP-A-2-236450 (JP, A) JP-A-2-296147 (JP, A) JP-A-2-210258 (JP, A) JP-A-1-301162 (JP, A) (58) Survey Field (Int.Cl. 6 , DB name) G01N 29/00-29/28

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 集束された超音波をアルミニウム圧延材
圧延方向に対し0゜,45゜,及び90゜をなす方向
から該アルミニウム圧延材の表面に所定角度傾けてそれ
ぞれ入射し, 上記それぞれ入射された超音波より発散され,上記アル
ミニウム圧延材の表裏面間で多重反射しながら伝搬する
超音波に含まれる所定の屈折角の多重反射波をそれぞれ
受信し, 上記それぞれ受信された多重反射波の伝搬時間に基づい
て得られた評価値φによって上記アルミニウム圧延材の
結晶性を測定し, 上記測定されたアルミニウム圧延材の結晶性に基づいて
アルミニウム圧延材の耳率を測定するアルミニウム
延材の耳率測定方法。ここで,φ=(τL−τC)+(τN−τC) 但し,τL:圧延方向の遅延時間 τC:圧延方向に対して45゜傾いた方向の遅延時間 τN:圧延方向に対して90゜傾いた方向の遅延時間
1. A focused ultrasound to 0 ° to the rolling direction of the aluminum rolled material, 45 °, and respectively incident from a direction forming a 90 ° inclined a predetermined angle to the surface of the aluminum rolled material, the respective incident diverged from ultrasonic waves, the Al
Receives multiple reflected waves of a predetermined refraction angle included in the ultrasonic wave propagating while being multiple reflected between the front and back surfaces of the rolled minium, and based on the propagation times of the received multiple reflected waves.
Measuring the crystallinity of the aluminum rolled material by an evaluation value φ obtained Te, aluminum pressure <br/> rolled material for measuring the ear rate of the aluminum rolled material based on crystalline aluminum rolled material which is the measurement Ear rate measurement method. Here, [phi] = ([tau] L- [tau] C) + ([tau] N- [tau] C) [tau] L: delay time in the rolling direction [tau] C: delay time in the direction inclined by 45 [ deg.] To the rolling direction [tau] N: inclined 90 [deg.] To the rolling direction. Delay time
【請求項2】 集束された超音波をアルミニウム圧延材
圧延方向に対し0゜,45゜,及び90゜をなす方向
から該アルミニウム圧延材の表面に所定角度傾けてそれ
ぞれ入射する超音波発信手段と, 上記それぞれ入射された超音波より発散され,上記アル
ミニウム圧延材の表裏面間で多重反射しながら伝搬する
超音波に含まれる所定の屈折角の多重反射波をそれぞれ
受信する超音波受信手段と, 上記それぞれ受信された多重反射波の伝搬時間に基づい
て得られた評価値φによって上記アルミニウム圧延材の
結晶性を測定する結晶性測定手段と, 上記測定されたアルミニウム圧延材の結晶性に基づいて
アルミニウム圧延材の耳率を測定する耳率測定手段と
を具備してなるアルミニウム圧延材の耳率測定装置。ここで,φ=(τL−τC)+(τN−τC) 但し,τL:圧延方向の遅延時間 τC:圧延方向に対して45゜傾いた方向の遅延時間 τN:圧延方向に対して90゜傾いた方向の遅延時間
Wherein 0 ° focused ultrasound to the rolling direction of the aluminum rolled material, 45 °, and ultrasonic wave emitting means from a direction forming 90 ° incident respectively inclined at a predetermined angle to the surface of the aluminum rolled material If, diverged from ultrasonic waves above are respectively incident, the Al
Ultrasonic receiving means for receiving multiple reflected waves having a predetermined refraction angle included in the ultrasonic waves propagating while being multiply reflected between the front and back surfaces of the rolled minium, and based on the propagation times of the received multiple reflected waves.
A crystalline measuring means for measuring the crystallinity of the aluminum rolled material by an evaluation value φ obtained Te, ear measurement for measuring the ear rate of the aluminum rolled material based on crystalline aluminum rolled material which is the measurement And a means for measuring an ear ratio of a rolled aluminum material. Here, [phi] = ([tau] L- [tau] C) + ([tau] N- [tau] C) [tau] L: delay time in the rolling direction [tau] C: delay time in the direction inclined by 45 [ deg.] To the rolling direction [tau] N: inclined 90 [deg.] To the rolling direction. Delay time
JP6109583A 1994-05-24 1994-05-24 Method and apparatus for measuring ear ratio of rolled aluminum material Expired - Fee Related JP2912159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6109583A JP2912159B2 (en) 1994-05-24 1994-05-24 Method and apparatus for measuring ear ratio of rolled aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6109583A JP2912159B2 (en) 1994-05-24 1994-05-24 Method and apparatus for measuring ear ratio of rolled aluminum material

Publications (2)

Publication Number Publication Date
JPH07318540A JPH07318540A (en) 1995-12-08
JP2912159B2 true JP2912159B2 (en) 1999-06-28

Family

ID=14513953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6109583A Expired - Fee Related JP2912159B2 (en) 1994-05-24 1994-05-24 Method and apparatus for measuring ear ratio of rolled aluminum material

Country Status (1)

Country Link
JP (1) JP2912159B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147586A3 (en) * 2017-02-09 2018-11-15 주식회사 엘지화학 System for non-destructively inspecting and determining sealing of aluminum pouch by using ultrasonic waves

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324586B (en) * 2021-12-21 2023-12-26 北京星航机电装备有限公司 Ultrasonic detection method for texture of metal material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147586A3 (en) * 2017-02-09 2018-11-15 주식회사 엘지화학 System for non-destructively inspecting and determining sealing of aluminum pouch by using ultrasonic waves
US10921294B2 (en) 2017-02-09 2021-02-16 Lg Chem, Ltd. System for non-destructively inspecting and determining sealing of aluminum pouch by using ultrasonic waves

Also Published As

Publication number Publication date
JPH07318540A (en) 1995-12-08

Similar Documents

Publication Publication Date Title
US7900516B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
US6532821B2 (en) Apparatus and method for evaluating the physical properties of a sample using ultrasonics
US11635409B2 (en) Multi-material inspection system and velocity measurement method of critically refracted longitudinal wave based on single-angle wedges
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
US20230061816A1 (en) Air-coupled Ultrasonic Detection Method and Device Based on Defect Probability Reconstruction Algorithm
Arguelles et al. Mode-converted ultrasonic scattering in polycrystals with elongated grains
CN113029880B (en) Phased array ultrasonic evaluation method of grain size
EP2426490A2 (en) Ultrasonic testing method
JP2912159B2 (en) Method and apparatus for measuring ear ratio of rolled aluminum material
WO2019111381A1 (en) Ultrasonic flaw detection device
EP1818674B1 (en) Method and apparatus for ultrasonic inspection of steel pipes
JPH07301622A (en) Rolled material crystallinity measuring and material property evaluating method, and device therefor
JP2003130851A (en) Elastic parameter measuring device for material surface and coating layer
Sun et al. Feasibility of using Lamb waves for corrosion detection in layered aluminium aircraft structures
CN111047547B (en) Combined defect quantification method based on multi-view TFM
CN112268959A (en) Method for measuring ultrasonic plate wave attenuation coefficients at different temperatures
US9366654B2 (en) Method of measuring a crystallographic orientation of an object
Titov et al. Measurements of velocity and attenuation of leaky waves using an ultrasonic array
JPH1164309A (en) Method and apparatus for measuring material characteristic of roll material
JP3389599B2 (en) Ultrasonic flaw detection method for steel pipe and ultrasonic flaw detection apparatus for steel pipe
CN116626167A (en) Ultrasonic transverse wave attenuation coefficient measuring device and working method
CN213398351U (en) System for measuring ultrasonic board wave attenuation coefficients at different temperatures
JP2883051B2 (en) Ultrasonic critical angle flaw detector
Kachanov et al. Measurement of the velocity of ultrasound in concrete by means of a plane focusing algorithm without the use of samples
JP3037897B2 (en) Ear ratio measurement method for thin metal plates

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees