JP2003130851A - Elastic parameter measuring device for material surface and coating layer - Google Patents

Elastic parameter measuring device for material surface and coating layer

Info

Publication number
JP2003130851A
JP2003130851A JP2001329167A JP2001329167A JP2003130851A JP 2003130851 A JP2003130851 A JP 2003130851A JP 2001329167 A JP2001329167 A JP 2001329167A JP 2001329167 A JP2001329167 A JP 2001329167A JP 2003130851 A JP2003130851 A JP 2003130851A
Authority
JP
Japan
Prior art keywords
wave
longitudinal
coating layer
simultaneous
transverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001329167A
Other languages
Japanese (ja)
Other versions
JP3793873B2 (en
Inventor
Mikio Fukuhara
幹夫 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP2001329167A priority Critical patent/JP3793873B2/en
Publication of JP2003130851A publication Critical patent/JP2003130851A/en
Application granted granted Critical
Publication of JP3793873B2 publication Critical patent/JP3793873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To simultaneously measure elastic characteristic near surfaces of various materials such as metal, concrete, ceramics including glass, and polymer including rubber, or specimens having coating layers of these materials, by nondestructive contact. SOLUTION: The ultrasonic wave transmitted from a vertical wave/transverse wave simultaneous transmitter 3 built in a sensor 1 is propagated to the specimen 1 through a wedge member 5, and received by two vertical wave/transverse wave simultaneous receivers 4 mounted opposite to each other in an interior angle state. A transmitting angle θ1 and a receiving angle θ2 of the wedge member 5 are determined to propagate the ultrasonic wave to the surface of the specimen 2, the data on the difference in propagation times or an acoustic pressure ratio of the ultrasonic wave on the basis of a distance between two receivers 4a, 4b is taken in a CPU13 to calculate various elastic parameters of the material surface and the coating layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属,コンクリー
ト,ガラスを含むセラミックス,ゴムを含むポリマーな
どの表面近傍またはこれらの被覆層における各種弾性パ
ラメータの測定装置に関し、超音波を利用した非破壊形
式でもって、簡便かつ絶対的な定量計測ができるように
したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring various elastic parameters near the surface of metal, concrete, ceramics including glass, polymers including rubber, or the like, or a coating layer thereof, which is non-destructive using ultrasonic waves. Therefore, it is possible to perform simple and absolute quantitative measurement.

【0002】[0002]

【従来の技術】従来、各種材料における表面部もしくは
被覆層の疲労、加工硬化、劣化などを測定する方法とし
て、断面部の硬度測定や走査型電子顕微鏡による観察、
X線照射による応力測定などが実用されている。また、
超音波を用いて各種弾性パラメータを測定する技術もす
でに確立されている。この方法は、一つの測定装置でも
ってさまざまな材料特性を計測することができるという
特長をもっている。さらに最近では、レーザ照射によ
り、超音波を励起させ、弾性率等を測定する方法も実現
されている。
2. Description of the Related Art Conventionally, as a method of measuring fatigue, work hardening, deterioration, etc. of a surface portion or a coating layer in various materials, hardness measurement of a cross section or observation by a scanning electron microscope,
Stress measurement by X-ray irradiation is practically used. Also,
Techniques for measuring various elastic parameters using ultrasonic waves have already been established. This method has the feature that various material properties can be measured with a single measuring device. More recently, a method has also been realized in which ultrasonic waves are excited by laser irradiation to measure the elastic modulus and the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながらレーザ照
射による励起方法は、同時に熱を誘起させるために融点
の低い金属やポリマーへの適用は不可能であること、被
膜の剥離や酸化を伴うこと、表面下の有効測定部分が不
明確といった欠点をもっている。さらに、装置が大がか
りで、高価なことも普及を阻んでいる要因となってい
る。
However, since the excitation method by laser irradiation simultaneously induces heat, it cannot be applied to a metal or polymer having a low melting point, peeling of a coating film or oxidation, and surface treatment. It has the drawback that the effective measurement area below is unclear. In addition, the large size and high cost of the device are also factors that prevent its widespread use.

【0004】一方、超音波を用いた測定は、従来は縦波
プローブと横波プローブを交互に被測定部に固着させる
もので、同時計測することはできなかった。しかも表面
からの測定深さが1mmを超えるものに限定されていて、
材料表面や被覆層の測定は不可能であった。
On the other hand, in the measurement using ultrasonic waves, conventionally, a longitudinal wave probe and a transverse wave probe are alternately fixed to the measured portion, and simultaneous measurement cannot be performed. Moreover, the measurement depth from the surface is limited to more than 1 mm,
It was not possible to measure the material surface or coating layer.

【0005】このようなことから、本発明者は、縦波プ
ローブと横波プローブを交互に測定部に固着させない測
定方法の開発を最大の課題として鋭意研究を行い、新た
な発想のもとに、縦波のクリーピング波と横波の剪断水
平波からなる超音波の同時送信を利用した材料表面およ
び被覆層の弾性パラメータの測定装置を完成させたので
ある。
From the above, the present inventor has conducted earnest research with the development of a measuring method in which longitudinal wave probes and transverse wave probes are not fixed to the measuring portion alternately as the greatest problem, and based on a new idea, We have completed a device for measuring the elastic parameters of the material surface and the coating layer by using simultaneous transmission of ultrasonic waves consisting of longitudinal creeping waves and shear horizontal shear waves.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の課題に
鑑みなされたもので、請求項1の発明は、金属,コンク
リート,ガラスを含むセラミックス,ゴムを含むポリマ
ーなどの各種材料またはこれらの被覆層からなる試験体
に対して、超音波の縦波・横波同時送信子(以下、送信
子という。)および縦波・横波同時受信子(以下、受信
子という。)の対機能より構成された計測用センサを固
着させることによって、表面近傍の弾性的特性を非破壊
接触にて測定できるようにしたセンサが組み込まれてな
る材料表面および被覆層の弾性パラメータ測定装置であ
って、この送信子と受信子とは互いに内角状態で対向し
て配設され、しかも縦波のクリーピング波と横波の剪断
水平波(以下、SH波という。)とからなる超音波がそ
れぞれの前面部分に配置されたくさび部材に伝搬するよ
うに送信角度および受信角度が構成されて、材料表面下
の縦波・横波音速,音速異方性係数,各種弾性率(ヤン
グ率,剛性率,体積弾性率,圧縮率,ラーメパラメー
タ),ポアソン比,デバイ温度,グリナイゼンパラメー
タ,縦波・横波減衰率,縦波・横波内部磨耗,縦波・横
波周波数,線膨張係数およびナイキスト線図が同時計測
されるように形成されていることを特徴とするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and the invention of claim 1 is various materials such as metal, concrete, ceramics including glass, polymer including rubber, or these materials. It consists of a pair of ultrasonic longitudinal wave / transverse wave simultaneous transmitter (hereinafter referred to as transmitter) and longitudinal wave / transverse wave simultaneous receiver (hereinafter referred to as receiver) for the test object consisting of the coating layer. An elastic parameter measuring device for a material surface and a coating layer in which a sensor capable of measuring elastic characteristics near the surface by non-destructive contact by fixing the measuring sensor is attached. And the receiver are arranged so as to face each other in an internal angle state, and ultrasonic waves composed of longitudinal creeping waves and shear horizontal shear waves (hereinafter referred to as SH waves) are front surfaces of the respective waves. The transmission angle and the reception angle are configured so as to propagate to the arranged wedge members, and the longitudinal and transverse wave acoustic velocities under the surface of the material, the sonic anisotropy coefficient, various elastic moduli (Young's modulus, rigidity modulus, bulk elastic modulus, Compressibility, Lame parameter), Poisson's ratio, Debye temperature, Grenaizen parameter, longitudinal wave / transverse wave attenuation rate, longitudinal wave / transverse wave internal wear, longitudinal wave / transverse wave frequency, linear expansion coefficient and Nyquist diagram It is characterized in that it is formed in.

【0007】この発明は、超音波の縦波と横波の同時送
信子および受信子を利用したことを第1の特長とするも
のである。そして、くさび部材を介して超音波を伝播さ
せ、その送信角度および受信角度を適正に設定すること
でもって被測定物の表面部を超音波が伝播するように制
御することができるようになるから、材料表面下の各種
弾性パラメータが一度に測定できるようになる。
The first feature of the present invention is to utilize the simultaneous transmitter and receiver of longitudinal and transverse waves of ultrasonic waves. Then, by propagating the ultrasonic wave through the wedge member and appropriately setting the transmitting angle and the receiving angle, the ultrasonic wave can be controlled to propagate on the surface portion of the object to be measured. , It becomes possible to measure various elastic parameters under the material surface at once.

【0008】請求項2の発明は、前記センサには2つの
受信子が内蔵されるとともに、この2つの受信子は、所
定の間隔をおいて前記送信子と結ぶ直線上に並置される
ことを特徴とする。このような配置とすることにより、
2つの受信子の間隔によってもたらされる測定値の差が
利用できるようになり、一層精度の高い測定が可能とな
る。より詳細には、受信された2つの受信波の伝播時間
差もしくは音圧比をCPUに取り込んで演算、解析処理
することにより試験体の弾性パラメータを同時計測する
ものである。
According to a second aspect of the present invention, the sensor has two built-in receivers, and the two receivers are juxtaposed on a straight line connecting the transmitter at a predetermined interval. Characterize. With this arrangement,
The difference in the measurement values caused by the distance between the two receivers can be used, and more accurate measurement can be performed. More specifically, the elastic parameter of the test body is simultaneously measured by taking in the propagation time difference or the sound pressure ratio of the two received waves received by the CPU and performing the calculation and analysis processing.

【0009】請求項3の発明は、前記送信子および受信
子は、超音波の送信および受信を制御するパルサー・レ
シーバ部に接続され、このパルサー・レシーバ部は、受
信子側からの受信波をデジタル変換するA/D変換部に
接続され、このA/D変換部は、波形表示機能を備えた
演算処理用のCPUに接続されることを特徴とする。こ
れにより、前記センサの組み込まれた完成された測定装
置が提供できるようになる。
According to a third aspect of the present invention, the transmitter and the receiver are connected to a pulsar / receiver section for controlling the transmission and reception of ultrasonic waves, and the pulsar / receiver section receives the received wave from the receiver side. It is characterized in that it is connected to an A / D conversion unit for digital conversion, and this A / D conversion unit is connected to a CPU for arithmetic processing having a waveform display function. This makes it possible to provide a complete measuring device incorporating the sensor.

【0010】請求項4の発明は、前記CPUは、パーソ
ナルコンピュータにて構成され、その集積回路のボード
に、パルサー・レシーバ部およびA/D変換部が組み込
まれることを特徴とする。これにより、パーソナルコン
ピュータは既存のものが使用でき、非常にコンパクトな
測定装置が提供できるようになる。
According to a fourth aspect of the present invention, the CPU is composed of a personal computer, and a pulser / receiver section and an A / D conversion section are incorporated in a board of an integrated circuit thereof. This makes it possible to use an existing personal computer and provide a very compact measuring device.

【0011】請求項5の発明は、前記送信子および受信
子は、縦波発生用の圧電ドメインおよび横波発生用圧電
ドメインの二種類で構成されていることを特徴とする。
これにより、従来形のように縦波と横波の圧電素子を同
心円状もしくは半月状に組み合わせて貼り付ける必要が
なくなるので、測定面への片当たりによる縦波・横波同
一送受信が不安定になるという欠点がなくなる。
According to a fifth aspect of the present invention, the transmitter and the receiver are composed of two types of piezoelectric domain for longitudinal wave generation and piezoelectric domain for transverse wave generation.
This eliminates the need to attach and combine longitudinal and transverse wave piezoelectric elements in a concentric or half-moon shape as in the conventional type, so that the same longitudinal and transverse wave transmission and reception due to one-sided contact with the measurement surface becomes unstable. There are no shortcomings.

【0012】請求項6の発明は、縦波のクリーピング波
と横波のSH波が試験体の表面下1〜5波長の深さを同
時伝搬するように前記送信角度および受信角度が設定さ
れていることを特徴とする。また、請求項7の発明は、
縦波のクリーピング波と横波のSH波の受信波形の音圧
比が1/5〜5/1の範囲にあるように前記送信角度お
よび受信角度が設定されていることを特徴とする。波長
の深さや音圧比は送信角度および受信角度の関数である
から、前記のような数値範囲となるように角度調整する
ことにより、材料表面や被覆層の測定が可能となる。
According to a sixth aspect of the present invention, the transmission angle and the reception angle are set so that the longitudinal creeping wave and the transverse SH wave propagate simultaneously at a depth of 1 to 5 wavelengths below the surface of the test body. It is characterized by being The invention of claim 7 is
The transmission angle and the reception angle are set such that the sound pressure ratio of the received waveforms of the longitudinal wave creeping wave and the transverse wave SH wave is in the range of 1/5 to 5/1. Since the wavelength depth and the sound pressure ratio are functions of the transmission angle and the reception angle, it is possible to measure the material surface and the coating layer by adjusting the angle so as to fall within the above numerical range.

【0013】請求項8の発明は、前記送信子および受信
子は、セラミックス,ポリマー,またはセラミックスと
ポリマーのコンポジットからなる圧電素子であることを
特徴とする。このうち、セラミックス圧電素子は、感度
が良好であるが衝撃に弱くて破損しやすい。ポリマー圧
電素子は、可撓性に優れてるので測定面の凹凸や粗さの
影響を受けにくく、破損にも強く、さらに高周波超音波
の送受信が可能であるという特長をもっているが、感度
は良くない。コンポジット圧電素子は、感度良好である
が、衝撃に弱く、面粗さに対する適応性も低く、かつ高
価である。かくして、用途に応じてこれら3種類の圧電
素子が使い分けられる。
The invention according to claim 8 is characterized in that the transmitter and the receiver are piezoelectric elements made of ceramics, polymers, or a composite of ceramics and polymers. Among them, the ceramic piezoelectric element has good sensitivity, but is weak against impact and easily damaged. Since the polymer piezoelectric element is excellent in flexibility, it is not easily affected by the unevenness and roughness of the measurement surface, is resistant to damage, and can transmit and receive high frequency ultrasonic waves, but its sensitivity is not good. . The composite piezoelectric element has good sensitivity, but is weak to impact, low adaptability to surface roughness, and expensive. Thus, these three types of piezoelectric elements are used properly according to the application.

【0014】請求項9の発明は、前記くさび部材にはア
クリルが用いられることを特徴とする。通常、くさび部
材は、試験体との間の音響インピーダンスの差が少な
く、超音波の伝搬特性があり、かつ耐磨耗性の良好な材
料から選定される。例えば、鉛等の金属、フリントガラ
ス等のガラス、アクリル、ポリカーボネイト、ポリイミ
ド、ポリエーテルイミド、ポリエーテルエーテルケト
ン、ポリアミドイミド、ポリアミド、ポリエーテルスル
ホン、ポリアセタール、ポリエチレンテレフタレート、
ABS樹脂、変成ポリフェニレンエーテル等のポリマ
ー、あるいはシリコンゴム、ウレタンゴム、ハイカー等
のゴムが用いられる。さらに付言すると、最も測定対象
となることの多い鋼材が試験体である場合に、縦波と横
波がほぼ同時角度で入射・受信するという理由から、ア
クリルが好適である。
The invention according to claim 9 is characterized in that acrylic is used for the wedge member. Usually, the wedge member is selected from materials having a small difference in acoustic impedance with the test body, ultrasonic wave propagation characteristics, and good wear resistance. For example, metals such as lead, glass such as flint glass, acrylic, polycarbonate, polyimide, polyetherimide, polyetheretherketone, polyamideimide, polyamide, polyethersulfone, polyacetal, polyethylene terephthalate,
Polymers such as ABS resin and modified polyphenylene ether, or rubbers such as silicone rubber, urethane rubber and hiker are used. In addition, acrylic is preferable because the longitudinal wave and the transverse wave are incident and received at substantially the same angle when the steel material that is most often measured is a test body.

【0015】請求項10の発明は、前記送信子より送信
される超音波の周波数が0.5〜100MHzであること
を特徴とする。周波数が0.5MHzよりも小さいと波長
が長くなりすぎて測定精度が低下し、反対に100MHz
を超える過度に減衰し易くなるからである。さらに測定
の信頼性を求めるならば、1〜20MHzが推奨される。
なお、超音波にはパルス波が用いられるが、これは、複
雑に干渉しあうことが少ないことや、受信波形の解析が
しやすく試験体を無限媒質の固体として取り扱える性質
があるからである。
The invention of claim 10 is characterized in that the frequency of the ultrasonic wave transmitted from the transmitter is 0.5 to 100 MHz. If the frequency is less than 0.5MHz, the wavelength becomes too long and the measurement accuracy decreases.
This is because it becomes easy to excessively exceed the limit. If more reliable measurement is required, 1 to 20 MHz is recommended.
A pulse wave is used as the ultrasonic wave, because it has a small number of interferences in a complicated manner and has a property that the received waveform can be easily analyzed and the test body can be handled as a solid of an infinite medium.

【0016】[0016]

【発明実施の形態】次に、本発明の実施の一形態につい
て、図を参照しながら説明する。図1は、この発明の測
定装置に組み込まれるセンサの概念的な説明図を示すも
ので、センサ1は、たとえば、鋼材からなる試験体2の
焼入れ時に生じる表面硬化を測定するときに使用され
る。センサ1の内部には、1つの送信子3と2つの受信
子4とが対向して備わっている。そして、送信子3に近
い側の受信子4aと、これより離れて置かれた受信子4
bは、送信子3と結ぶ直線上に所定の間隔でもって並置
される。また、この送信子3および受信子4は、縦波の
クリーピング波と横波のSH波が同時に送信および受信
することのできる同一基盤圧電素子であって、セラミッ
クス,ポリマー,またはセラミックスとポリマーのコン
ポジットからなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual explanatory view of a sensor incorporated in the measuring apparatus of the present invention. The sensor 1 is used, for example, when measuring the surface hardening that occurs when a test body 2 made of steel material is quenched. . Inside the sensor 1, one transmitter 3 and two receivers 4 are provided so as to face each other. Then, the receiver 4a on the side closer to the transmitter 3 and the receiver 4 placed apart from the receiver 4a
b are juxtaposed at predetermined intervals on a straight line connecting to the transmitter 3. The transmitter 3 and the receiver 4 are the same substrate piezoelectric element capable of simultaneously transmitting and receiving longitudinal creeping waves and transverse SH waves, and are ceramics, polymers, or composites of ceramics and polymers. It consists of

【0017】送信子3および受信子4の前面部分には、
くさび部材5が配置される。送信子3から送信された超
音波は、このくさび部材5によって回析し、試験体2の
表面直下部分を伝搬後、受信子4側のくさび部材5を経
て受信子4にて受信される。この際、送信波および受信
波が効率よく伝搬できるように、予め送信角度θ1およ
び受信角度θ2が調整され固定されている。センサ1の
外郭を構成するケース6には接続端子7が固着され、送
信子3および受信子4から延びるリード線8と同軸ケー
ブル9とを結んでいる。送信角度θ1および受信角度θ2
は、送信子3および受信子4における振動面の垂線とセ
ンサの接地面の垂線との間に形成される角度として定義
される。
In front of the transmitter 3 and the receiver 4,
The wedge member 5 is arranged. The ultrasonic wave transmitted from the transmitter 3 is diffracted by the wedge member 5, propagates through the portion directly below the surface of the test body 2, and then is received by the receiver 4 via the wedge member 5 on the receiver 4 side. At this time, the transmission angle θ1 and the reception angle θ2 are adjusted and fixed in advance so that the transmission wave and the reception wave can propagate efficiently. A connection terminal 7 is fixed to a case 6 that forms the outer shell of the sensor 1, and connects a lead wire 8 extending from the transmitter 3 and the receiver 4 and a coaxial cable 9. Transmission angle θ1 and reception angle θ2
Is defined as the angle formed between the normal to the vibrating surface at the transmitter 3 and the receiver 4 and the normal to the ground plane of the sensor.

【0018】送信子3および受信子4は100μmオー
ダーの縦波とSH波の圧電ドメインが交互に分散した同
一基盤からなり、同時送信および受信できることを特長
としている。送信子3により送信される縦波のクリーピ
ング波と横波のSH波を試験体2の表面直下部分に伝搬
させ、材料の弾性的特性を計測する。この場合の周波数
は、0.5〜100MHzのパルス波が使用されるが、よ
り測定の信頼性を高めるためには1〜20MHzが好適で
ある。また、図1には示されていないが、送信子3およ
び受信子4の背後には、測定制動用のダンパが設けら
れ、雑音ノイズのカットや受信波数の調整が行われる。
The transmitter 3 and the receiver 4 are formed of the same substrate in which piezoelectric domains of 100 μm order longitudinal waves and SH waves are alternately dispersed, and are characterized in that they can simultaneously transmit and receive. A longitudinal creeping wave and a transverse SH wave transmitted by the transmitter 3 are propagated to a portion directly below the surface of the test body 2 to measure elastic properties of the material. A pulse wave of 0.5 to 100 MHz is used as the frequency in this case, but 1 to 20 MHz is preferable in order to further improve the reliability of measurement. Although not shown in FIG. 1, a damper for measurement braking is provided behind the transmitter 3 and the receiver 4 to cut noise noise and adjust the number of received waves.

【0019】受信子4aと受信子4bとは、送信子3から
の縦波クリーピング波と横波SH波をある所定の距離だ
け離して受信するようにしたもので、この間の距離が試
料の測定箇所となる。すなわち、送信子3と受信子4a
との間と、送信子3と受信子4bとの間との伝播時間差
もしくは音圧比を同時計測することでもって、測定装置
の電気系統誤差の発生や、送信子3と受信子4aとの間
での測定に続いて送信子3と受信子4bとの間を測定す
るという従来の二度押しつけ方法からくる誤差の発生が
解消され、前記距離における精密な伝搬時間差または音
圧比の計測が可能となる。
The receiver 4a and the receiver 4b are arranged so as to receive the longitudinal wave creeping wave and the transverse SH wave from the transmitter 3 at a predetermined distance, and the distance between them is measured in the sample. It becomes a place. That is, the transmitter 3 and the receiver 4a
And the sound pressure ratio between the transmitter 3 and the receiver 4b are measured at the same time, so that an error in the electrical system of the measuring device occurs or the transmitter 3 and the receiver 4a are separated from each other. The error caused by the conventional double pressing method of measuring between the transmitter 3 and the receiver 4b subsequent to the measurement at is eliminated, and it is possible to measure the precise propagation time difference or the sound pressure ratio at the distance. Become.

【0020】受信子4aと受信子4bの間の距離は、1
mm〜100mmにあることが望ましい。1mm以下では、受
信子4aによる計測データのピーク値と受信子4bによ
る計測データのピーク値とが重なり合って分離が難しく
なる。反対に100mm以上の間隔があくと、縦波のクリ
ーピング波が減衰して計測できなくなるからである。
The distance between the receiver 4a and the receiver 4b is 1
It is desirable to be in the range of mm to 100 mm. When it is 1 mm or less, the peak value of the measurement data by the receiver 4a and the peak value of the measurement data by the receiver 4b overlap each other, which makes separation difficult. On the contrary, if there is an interval of 100 mm or more, the longitudinal creeping wave is attenuated and measurement becomes impossible.

【0021】くさび部材5は、超音波の減衰などから、
鋼材の試験体では、縦波基準で850〜6000m/s、
横波基準で500〜3000m/sの範囲が好適する。こ
れは、音速が遅いと超音波伝搬減衰が大きくなって不具
合となり、音速が速いと鋼材からなる試験体に対する超
音波入射角が得られないからである。
The wedge member 5 is designed to reduce the ultrasonic waves,
For steel specimens, the longitudinal wave standard is 850-6000 m / s,
The range of 500 to 3000 m / s on the basis of transverse wave is preferable. This is because when the sound velocity is slow, the ultrasonic wave propagation attenuation becomes large, which causes a problem, and when the sound velocity is fast, the ultrasonic wave incident angle on the test body made of steel cannot be obtained.

【0022】送信角度θ1および受信角度θ2は、縦波
および横波の超音波の入射臨界角近傍を利用する。これ
によって表面下1〜5波長の深さの情報が得られるよう
になる。さらに、受信波形の音圧比が1/5〜5/1に
あることを確認して、表面直下の計測であることの信頼
性を高める。
As the transmission angle θ1 and the reception angle θ2, the vicinity of the critical angle of incidence of longitudinal and transverse ultrasonic waves is used. This makes it possible to obtain information on the depth of 1 to 5 wavelengths below the surface. Furthermore, it is confirmed that the sound pressure ratio of the received waveform is in the range of 1/5 to 5/1, and the reliability of the measurement just below the surface is improved.

【0023】図2に示すように、同軸ケーブル9は、超
音波の送信および受信を制御するパルサー・レシーバ部
10に接続され、パルサー・レシーバ部10は前記受信
子4から送られる受信波をデジタル変換するA/D変換
部11と接続し、さらに波形表示に用いるディスプレイ
12を備えた演算処理用のCPU13と接続している。
ディスプレイ12を備えたCPU13は、パーソナルコ
ンピュータ14にて構成してもよく、この場合、集積回
路のボード(図示せず。)にパルサー・レシーバ部10
およびA/D変換部11を内蔵したものとすれば、コン
パクトな測定装置とすることができる。
As shown in FIG. 2, the coaxial cable 9 is connected to a pulsar / receiver unit 10 for controlling the transmission and reception of ultrasonic waves, and the pulsar / receiver unit 10 digitally receives the received wave sent from the receiver 4. It is connected to an A / D conversion unit 11 for conversion, and further connected to a CPU 13 for arithmetic processing, which includes a display 12 used for waveform display.
The CPU 13 including the display 12 may be configured by a personal computer 14, and in this case, the pulser / receiver unit 10 is provided on a board (not shown) of an integrated circuit.
If the A / D converter 11 is incorporated, a compact measuring device can be obtained.

【0024】センサ1は、送信面15および受信面16
を試験体2に密接して載置される。超音波は、試験体2
の表層部を介して伝搬し、パルサー・レシーバ部10の
レシーバ側で受信波として認識される。この受信波はA
/D変換部11によってデジタル信号に変換されるとと
もに、波形表示用のディスプレイ12を備えたCPU1
3によって演算処理される。CPU13では、測定結果
から、材料表面下の縦波・横波音速、音速異方性係数、
各種弾性率(ヤング率、剛性率、体積弾性率、圧縮率、
ラーメパラメータ)、ポアソン比、デバイ温度、グリナ
イゼンパラメータ、縦波・横波減衰率、縦波・横波内部
磨耗、縦波・横波周波数、線膨張係数が同時計測される
とともに、波形およびナイキスト線図のパターン解析な
どが行われる。
The sensor 1 has a transmitting surface 15 and a receiving surface 16.
Is closely attached to the test body 2. The ultrasonic wave is the test body 2
Of the pulser / receiver unit 10 is recognized as a received wave. This received wave is A
The CPU 1 which is converted into a digital signal by the / D conversion unit 11 and includes a display 12 for displaying a waveform
Calculation processing is performed by 3. The CPU 13 uses the measurement results to determine the longitudinal and transverse acoustic velocities under the surface of the material, the sonic anisotropy coefficient,
Various elastic moduli (Young's modulus, rigidity, bulk modulus, compressibility,
Lame parameter), Poisson's ratio, Debye temperature, Grenaizen parameter, longitudinal wave / transverse wave attenuation rate, longitudinal wave / transverse wave internal wear, longitudinal wave / transverse wave frequency, linear expansion coefficient, and waveform and Nyquist diagram Pattern analysis is performed.

【0025】解析データは、試験体2の標準試料におけ
る判定しきい値と相対的に比較され、材料の表面劣化、
硬化、疲労として定量的に診断される。したがって、表
面部は非破壊的に測定され、しかもSH波が縦波などの
他のモードに変換してしまうという現象もないことか
ら、前記測定要素が高精度に実測できるようになる。ま
た、標準試料に対して、診断要素および測定要素の基準
値がそれぞれ相関関係となる検量線を予め作成してお
き、これに基づき測定要素の実測値が比較判断されるよ
うにすれば、相対的な定量診断が、一層高精度に行える
ようになる。この検量線は、単に定量測定をする際にも
役立つ。
The analysis data are compared with the judgment threshold value of the standard sample of the test body 2 to determine the surface deterioration of the material,
Quantitatively diagnosed as hardening and fatigue. Therefore, since the surface portion is measured nondestructively and there is no phenomenon that the SH wave is converted into another mode such as a longitudinal wave, the measurement element can be measured with high accuracy. In addition, if a reference curve for the diagnostic element and the reference value of the measurement element are correlated with the standard sample in advance, and the measured values of the measurement element are compared and judged based on this, a relative curve is obtained. Quantitative diagnosis can be performed with higher accuracy. This calibration curve is also useful when simply making quantitative measurements.

【0026】最後に、本発明の材料表面および被覆層の
弾性パラメータ測定装置を用いた測定結果を例示する。
Finally, measurement results using the elastic parameter measuring device for the material surface and the coating layer of the present invention will be illustrated.

【表1】 [Table 1]

【発明の効果】以上のように、本発明の測定装置によれ
ば、同時送受信することのできるセンサの使用し、送信
子および受信子の前面に配置したくさび部材の送信角度
と受信角度を適正に設定することにより、金属,コンク
リート,ガラスを含むセラミックス,ゴムを含むポリマ
ーなど各種材料の表面近傍やこれらの被覆層といった、
従来の測定装置では難しかった深さの極めて浅い部分に
対して、一度の測定作業で弾性パラメータを測定するこ
とができるようになる。しかも、所定の距離を保って並
置された2つの受信子の採用により、高精度で信頼性の
高い測定を実現している。またこの測定装置は小型軽量
化されており、比較的容易かつ短時間で測定ができるの
で、工場の加工ラインのような場所での使用も可能であ
り、加工中の製品の不良チェックなど広い範囲で使用で
きる。既製のパーソナルコンピュータの利用が可能なの
で、価格面でも手頃な測定装置が提供できるようにな
る。
As described above, according to the measuring apparatus of the present invention, a sensor capable of transmitting and receiving at the same time is used, and the transmitting angle and the receiving angle of the wedge members arranged in front of the transmitter and the receiver are proper. By setting to, near the surface of various materials such as metal, concrete, ceramics including glass, polymer including rubber, and coating layers of these,
It becomes possible to measure the elasticity parameter in a single measurement operation with respect to an extremely shallow portion which is difficult with the conventional measuring device. Moreover, by adopting two receivers juxtaposed at a predetermined distance, highly accurate and highly reliable measurement is realized. In addition, this measuring device is compact and lightweight, and since it can be measured relatively easily and in a short time, it can be used in places such as factory processing lines, and it can be used for a wide range of purposes such as checking defective products during processing. Can be used in. Since it is possible to use a ready-made personal computer, it becomes possible to provide a measuring device that is affordable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態であるセンサの一部断面
を含む概念的な説明図。
FIG. 1 is a conceptual explanatory view including a partial cross section of a sensor according to an embodiment of the present invention.

【図2】本発明の実施の一形態である測定装置の概念的
な説明図。
FIG. 2 is a conceptual explanatory diagram of a measuring device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 センサ 2 試験体 3 縦波・横波同時送信子 4,4a,4b 縦波・横波同時受信子 5 くさび部材 10 パーソナル・レシーバ部 11 A/D変換部 13 CPU 14 パーソナルコンピュータ θ1 送信角度 θ2 受信角度 1 sensor 2 test bodies 3 Longitudinal wave / transverse wave simultaneous transmitter 4,4a, 4b Longitudinal wave / transverse wave simultaneous receiver 5 wedge members 10 Personal receiver section 11 A / D converter 13 CPU 14 personal computer θ1 transmission angle θ2 reception angle

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 金属,コンクリート,ガラスを含むセラ
ミックス,ゴムを含むポリマーなどの各種材料またはこ
れらの被覆層からなる試験体に対して、超音波の縦波・
横波同時送信子および縦波・横波同時受信子の対機能よ
り構成された計測用センサを固着させることによって、
表面近傍の弾性的特性を非破壊接触にて測定できるよう
にしたセンサが組み込まれてなる材料表面および被覆層
の弾性パラメータ測定装置であって、この縦波・横波同
時送信子と縦波・横波同時受信子とは互いに内角状態で
対向して配設され、しかも縦波のクリーピング波と横波
の剪断水平波とからなる超音波がそれぞれの前面部分に
配置されたくさび部材に伝搬するように送信角度および
受信角度が構成されて、材料表面下の縦波・横波音速,
音速異方性係数,各種弾性率(ヤング率,剛性率,体積
弾性率,圧縮率,ラーメパラメータ),ポアソン比,デ
バイ温度,グリナイゼンパラメータ,縦波・横波減衰
率,縦波・横波内部磨耗,縦波・横波周波数,線膨張係
数およびナイキスト線図が同時計測されるように形成さ
れていることを特徴とする材料表面および被覆層の弾性
パラメータ測定装置。
1. A longitudinal wave of ultrasonic waves is applied to a test body formed of various materials such as metal, concrete, ceramics including glass, polymer including rubber, or a coating layer thereof.
By fixing the measurement sensor composed of the pair function of the simultaneous shear wave transmitter and the simultaneous shear wave and shear wave receiver,
A device for measuring elastic parameters of a material surface and a coating layer, which incorporates a sensor capable of measuring elastic properties near the surface by non-destructive contact, including a longitudinal wave / transverse wave simultaneous transmitter and a longitudinal wave / transverse wave. The simultaneous receivers are arranged so as to face each other in an internal angle state, and furthermore, ultrasonic waves composed of longitudinal creeping waves and shear horizontal shear waves are propagated to the wedge members arranged in front of each of them. The transmission angle and the reception angle are configured, and the longitudinal and transverse wave velocities below the surface of the material,
Sonic anisotropy coefficient, various elastic moduli (Young's modulus, rigidity, bulk modulus, compressibility, Lame parameter), Poisson's ratio, Debye temperature, Grenaizen parameter, longitudinal wave / transverse wave attenuation factor, longitudinal wave / transverse wave internal wear An elastic parameter measuring device for a material surface and a coating layer, which is formed so that the longitudinal and transverse wave frequencies, the linear expansion coefficient and the Nyquist diagram can be measured simultaneously.
【請求項2】 前記センサには2つの縦波・横波同時受
信子が内蔵されるとともに、この2つの縦波・横波同時
受信子は、所定の間隔をおいて前記縦波・横波同時送信
子と結ぶ直線上に並置されることを特徴とする請求項1
に記載の材料表面および被覆層の弾性パラメータ測定装
置。
2. The sensor is provided with two longitudinal wave / transverse wave simultaneous receivers, and the two longitudinal wave / transverse wave simultaneous receivers are provided at predetermined intervals. 2. The electrodes are juxtaposed on a straight line connecting with
The elastic parameter measuring device for the material surface and coating layer according to.
【請求項3】 前記縦波・横波同時送信子および縦波・
横波同時受信子は、超音波の送信および受信を制御する
パルサー・レシーバ部に接続され、このパルサー・レシ
ーバ部は、縦波・横波同時受信子側からの受信波をデジ
タル変換するA/D変換部に接続され、このA/D変換
部は、波形表示機能を備えた演算処理用のCPUに接続
されることを特徴とする請求項1または請求項2に記載
の材料表面および被覆層の弾性パラメータ測定装置。
3. A longitudinal wave / transverse wave simultaneous transmitter and a longitudinal wave.
The transverse wave simultaneous receiver is connected to a pulser / receiver unit that controls the transmission and reception of ultrasonic waves, and this pulser / receiver unit performs A / D conversion to digitally convert the wave received from the longitudinal wave / transverse wave simultaneous receiver side. 3. The elasticity of the material surface and the coating layer according to claim 1 or 2, wherein the A / D converter is connected to a CPU for arithmetic processing having a waveform display function. Parameter measuring device.
【請求項4】 前記CPUは、パーソナルコンピュータ
にて構成され、その集積回路のボードに、パルサー・レ
シーバ部およびA/D変換部が組み込まれることを特徴
とする請求項1〜請求項3のいずれかに記載の材料表面
および被覆層の弾性パラメータ測定装置。
4. The CPU is composed of a personal computer, and a pulser / receiver section and an A / D conversion section are incorporated in a board of an integrated circuit thereof. An elastic parameter measuring device for the surface of the material and the coating layer.
【請求項5】 前記縦波・横波同時送信子および縦波・
横波同時受信子は、縦波発生用の圧電ドメインおよび横
波発生用圧電ドメインの二種類で構成されていることを
特徴とする請求項1〜請求項4のいずれかに記載の材料
表面および被覆層の弾性パラメータ測定装置。
5. A longitudinal wave / transverse wave simultaneous transmitter and a longitudinal wave.
The transverse wave simultaneous receiver is composed of two types of piezoelectric domain for longitudinal wave generation and piezoelectric domain for transverse wave generation, and the material surface and coating layer according to any one of claims 1 to 4. Elastic parameter measuring device.
【請求項6】 縦波のクリーピング波と横波の剪断水平
波が試験体の表面下1〜5波長の深さを同時伝搬するよ
うに前記送信角度および受信角度が設定されていること
を特徴とする請求項1〜請求項5のいずれかに記載の材
料表面および被覆層の弾性パラメータ測定装置。
6. The transmission angle and the reception angle are set so that a longitudinal creeping wave and a shear horizontal shear wave propagate simultaneously at a depth of 1 to 5 wavelengths below the surface of the test body. The elastic parameter measuring device for the material surface and the coating layer according to any one of claims 1 to 5.
【請求項7】 縦波のクリーピング波と横波の剪断水平
波の受信波形の音圧比が1/5〜5/1の範囲にあるよ
うに前記送信角度および受信角度が設定されていること
を特徴とする請求項1〜請求項6のいずれかに記載の材
料表面および被覆層の弾性パラメータ測定装置。
7. The transmission angle and the reception angle are set such that the sound pressure ratio of the received waveforms of the longitudinal creeping wave and the shear horizontal shear wave is in the range of 1/5 to 5/1. The elastic parameter measuring device for a material surface and a coating layer according to any one of claims 1 to 6.
【請求項8】 前記縦波・横波同時送信子および縦波・
横波同時受信子は、セラミックス,ポリマー,またはセ
ラミックスとポリマーのコンポジットからなる圧電素子
であることを特徴とする請求項1〜請求項7のいずれか
に記載の材料表面および被覆層の弾性パラメータ測定装
置。
8. The longitudinal wave / transverse wave simultaneous transmitter and the longitudinal wave.
8. The elastic parameter measuring device for a material surface and a coating layer according to claim 1, wherein the shear wave simultaneous receiver is a piezoelectric element made of ceramics, polymer, or composite of ceramics and polymer. .
【請求項9】 前記くさび部材にはアクリルが用いられ
ることを特徴とする請求項1〜請求項8のいずれかに記
載の材料表面および被覆層の弾性パラメータ測定装置。
9. The elastic parameter measuring device for a material surface and a coating layer according to claim 1, wherein acrylic is used for the wedge member.
【請求項10】 前記縦波・横波同時送信子より送信さ
れる超音波の周波数が0.5〜100MHzであることを
特徴とする請求項1〜請求項9のいずれかに記載の材料
表面および被覆層の弾性パラメータ測定装置。
10. The material surface according to claim 1, wherein the frequency of the ultrasonic wave transmitted from the longitudinal wave / transverse wave simultaneous transmitter is 0.5 to 100 MHz. Device for measuring elastic parameter of coating layer.
JP2001329167A 2001-10-26 2001-10-26 Apparatus for measuring elastic parameters of material surfaces and coating layers Expired - Lifetime JP3793873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001329167A JP3793873B2 (en) 2001-10-26 2001-10-26 Apparatus for measuring elastic parameters of material surfaces and coating layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001329167A JP3793873B2 (en) 2001-10-26 2001-10-26 Apparatus for measuring elastic parameters of material surfaces and coating layers

Publications (2)

Publication Number Publication Date
JP2003130851A true JP2003130851A (en) 2003-05-08
JP3793873B2 JP3793873B2 (en) 2006-07-05

Family

ID=19145109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001329167A Expired - Lifetime JP3793873B2 (en) 2001-10-26 2001-10-26 Apparatus for measuring elastic parameters of material surfaces and coating layers

Country Status (1)

Country Link
JP (1) JP3793873B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057327A (en) * 2005-08-23 2007-03-08 Fuji Electric Systems Co Ltd Polymer material deterioration diagnosis method
JP2007078384A (en) * 2005-09-12 2007-03-29 Tohoku Univ METHOD OF FINDING RELATIONSHIP AMONG LEAKED SURFACE ACOUSTIC WAVE VELOCITY, CHEMICAL COMPOSITION RATIO AND LINEAR EXPANSION COEFFICIENT OF MATERIAL WITH STRIAE, AND METHOD OF MEASURING TiO2 CONCENTRATION IN TiO2-SiO2 GLASS AND METHOD OF MEASURING LINEAR EXPANSION COEFFICIENT USING THE RELATIONSHIP
JP2012230053A (en) * 2011-04-27 2012-11-22 Institute For Laser Technology Crack depth measuring device and measuring method
JP2015206782A (en) * 2013-12-24 2015-11-19 株式会社神戸製鋼所 Residual stress evaluation method and residual stress evaluation device
CN107727747A (en) * 2017-11-08 2018-02-23 中国石油集团渤海石油装备制造有限公司 A kind of big chip twin crystal longitudinal wave probe of high-frequency
JP2019132748A (en) * 2018-02-01 2019-08-08 株式会社神戸製鋼所 Ultrasonic probe
JP2020112431A (en) * 2019-01-11 2020-07-27 富士電機株式会社 Deterioration evaluating method and deterioration evaluating device of resin material
CN111948289A (en) * 2020-08-24 2020-11-17 四川升拓检测技术股份有限公司 Concrete cold joint quality detection method, device and system based on impact elastic wave
CN114088815A (en) * 2021-11-18 2022-02-25 吉林大学 Holographic testing arrangement of high temperature material mechanical properties elastic modulus and damage

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057327A (en) * 2005-08-23 2007-03-08 Fuji Electric Systems Co Ltd Polymer material deterioration diagnosis method
JP2007078384A (en) * 2005-09-12 2007-03-29 Tohoku Univ METHOD OF FINDING RELATIONSHIP AMONG LEAKED SURFACE ACOUSTIC WAVE VELOCITY, CHEMICAL COMPOSITION RATIO AND LINEAR EXPANSION COEFFICIENT OF MATERIAL WITH STRIAE, AND METHOD OF MEASURING TiO2 CONCENTRATION IN TiO2-SiO2 GLASS AND METHOD OF MEASURING LINEAR EXPANSION COEFFICIENT USING THE RELATIONSHIP
JP2012230053A (en) * 2011-04-27 2012-11-22 Institute For Laser Technology Crack depth measuring device and measuring method
JP2015206782A (en) * 2013-12-24 2015-11-19 株式会社神戸製鋼所 Residual stress evaluation method and residual stress evaluation device
CN107727747A (en) * 2017-11-08 2018-02-23 中国石油集团渤海石油装备制造有限公司 A kind of big chip twin crystal longitudinal wave probe of high-frequency
WO2019150953A1 (en) * 2018-02-01 2019-08-08 株式会社神戸製鋼所 Ultrasonic probe
JP2019132748A (en) * 2018-02-01 2019-08-08 株式会社神戸製鋼所 Ultrasonic probe
JP7074488B2 (en) 2018-02-01 2022-05-24 株式会社神戸製鋼所 Ultrasonic probe
JP2020112431A (en) * 2019-01-11 2020-07-27 富士電機株式会社 Deterioration evaluating method and deterioration evaluating device of resin material
JP7286973B2 (en) 2019-01-11 2023-06-06 富士電機株式会社 Resin material deterioration evaluation method and deterioration evaluation device
CN111948289A (en) * 2020-08-24 2020-11-17 四川升拓检测技术股份有限公司 Concrete cold joint quality detection method, device and system based on impact elastic wave
CN111948289B (en) * 2020-08-24 2023-07-21 四川升拓检测技术股份有限公司 Concrete cold joint quality detection method, device and system based on shock elastic waves
CN114088815A (en) * 2021-11-18 2022-02-25 吉林大学 Holographic testing arrangement of high temperature material mechanical properties elastic modulus and damage
CN114088815B (en) * 2021-11-18 2023-08-01 吉林大学 Holographic testing device for mechanical property elastic modulus and damage of high-temperature material

Also Published As

Publication number Publication date
JP3793873B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
Gachagan et al. Characterization of air-coupled transducers
CN1654950B (en) Method of measuring the adhesion of a coating to a substrate
US7389693B2 (en) Methods and apparatus for porosity measurement
KR101955440B1 (en) Dynamic modulus and residual stress measurement test evaluation device using ultrasonic sound velocity difference
Theobald et al. Couplants and their influence on AE sensor sensitivity
Bustamante et al. Hybrid laser and air-coupled ultrasonic defect detection of aluminium and CFRP plates by means of Lamb mode
Goujon et al. Behaviour of acoustic emission sensors using broadband calibration techniques
Kirk et al. Ultrasonic arrays for monitoring cracks in an industrial plant at high temperatures
CN113029880B (en) Phased array ultrasonic evaluation method of grain size
US10620166B1 (en) In-plane modulus testing of materials by an ultrasonic same-side method
CN114910565B (en) Method for correcting relative nonlinear coefficient in nonlinear ultrasonic detection
JP3793873B2 (en) Apparatus for measuring elastic parameters of material surfaces and coating layers
Papadakis Absolute measurements of ultrasonic attenuation using damped nondestructive testing transducers
CN112432998B (en) Ultrasonic nondestructive testing method for bonding defect of rubber plate with acoustic cavity structure
Zhang et al. Parameter measurement of thin elastic layers using low-frequency multi-mode ultrasonic lamb waves
Dixon et al. The analysis of adhesive bonds using electromagnetic acoustic transducers
JPH11211699A (en) Measuring sensor for diagnosing various material and various solution, diagnosing device, and diagnosing method
Da Costa et al. Defect detection in aluminum bars using impedance and ultrasonic attenuation
Theobald et al. Acoustic emission transducers—development of a facility for traceable out-of-plane displacement calibration
Kays et al. Air-coupled ultrasonic non-destructive testing of aerospace components
JP2004245598A (en) Probe and material evaluation test method using the same
JPH095309A (en) Sensor for diagnosing surface deterioration and fatigue, device for diagnosing surface deterioration and fatigue and its diagnostic method
US6497151B1 (en) Non-destructive testing method and apparatus to determine microstructure of ferrous metal objects
JP2659236B2 (en) Ultrasonic probe
Titov et al. Measurements of velocity and attenuation of leaky waves using an ultrasonic array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Ref document number: 3793873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150421

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term