JP2004245598A - Probe and material evaluation test method using the same - Google Patents

Probe and material evaluation test method using the same Download PDF

Info

Publication number
JP2004245598A
JP2004245598A JP2003032664A JP2003032664A JP2004245598A JP 2004245598 A JP2004245598 A JP 2004245598A JP 2003032664 A JP2003032664 A JP 2003032664A JP 2003032664 A JP2003032664 A JP 2003032664A JP 2004245598 A JP2004245598 A JP 2004245598A
Authority
JP
Japan
Prior art keywords
specimen
test object
wave
probe
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003032664A
Other languages
Japanese (ja)
Other versions
JP4144699B2 (en
Inventor
Yasukazu Yokono
泰和 横野
Yoshihiro Nagano
芳浩 長野
Yoshitoshi Yotsutsuji
美年 四辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Engineering Co Ltd
Non Destructive Inspection Co Ltd
Original Assignee
Idemitsu Engineering Co Ltd
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Engineering Co Ltd, Non Destructive Inspection Co Ltd filed Critical Idemitsu Engineering Co Ltd
Priority to JP2003032664A priority Critical patent/JP4144699B2/en
Publication of JP2004245598A publication Critical patent/JP2004245598A/en
Application granted granted Critical
Publication of JP4144699B2 publication Critical patent/JP4144699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe allowing a specimen to be evaluated for deterioration/damage without being affected by surface reflected wave and a material evaluation test method using the probe. <P>SOLUTION: This probe comprises a transmitter 3 and a receiver 4 having delaying materials 11 and 12 and a holding body 15 for installing a contact medium W between the opposed faces 14 of the delaying materials 11 and 12 to a specimen and the surface 101 of the specimen. The thickness D of the holding body 15 is set so that the waveform of the surface reflected wave reflected on the surface 101 of the specimen and the waveform of multiplex reflected wave generated between the surface 101 of the specimen and the opposed faces of the delaying materials 11 and 12 on the specimen side can be identified. Also, a sound isolating body 16 for cutting off the multiplex reflected wave or crosstalk generated between the surface 101 of the specimen and the delaying materials 11 and 12 is installed on the opposed face 14 on the specimen side between the pair of delaying materials 11 and 12. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、超音波による材料評価試験に用いる探触子及びその材料評価試験方法に関する。さらに詳しくは、石油・石油化学プラント、火力発電プラント等で用いる機器及び装置類のように、高温又は高圧環境で使用される機器類の劣化・損傷評価に適し、例えば、精油所の加熱炉管、発電所におけるボイラの蒸気管等の劣化・損傷評価に用いることの可能な探触子およびその評価試験方法に関する。
【0002】
【従来の技術】
例えば、石油化学プラントや火力発電プラント等で用いられる加熱炉管は、外表面に対して直接バーナー等で加熱するため、配管火陥側にはボイドやフィッシャ等のクリープ損傷が生じやすく、係る劣化・損傷を評価する必要がある。
【0003】
従来、このような材料の劣化・損傷を評価する手法として、後述の特許文献1にみられるように漏洩弾性波(LASW)を用いて評価する方法が知られている(漏洩弾性波法)。同方法によれば、図1(a)に示すように、超音波の浸透深さが1波長程度であるため、評価の対象となるのは試験体の極表層部に限られ、1波長より深い部分のデータを取得することができなかった。
【0004】
【特許文献1】
特開2000−131297号公報
【0005】
一方、図1(b)に示す一振動子型垂直探触子を用いて、ボイド等の劣化・損傷部で後方散乱された超音波を捉えることで材料の劣化・損傷を評価する方法が知られている。同方法によれば、試験体深部の劣化・損傷等は把握することができる。しかし、探触子を試験体に直接接触させた場合(直接接触法)には送信パルスを、探触子と試験体の間に水を介在させた場合(水浸法)には試験体表面で反射する表面反射波を受信してしまうために、これらの信号と試験体表面近傍で後方散乱された信号とが交錯し、両者を識別することが困難であった。
【0006】
このように、漏洩弾性波法と後方散乱波法を併用して材料評価試験を行った場合であっても、試験体表面近傍における深さ数mm部分が不感帯となっていた。
【0007】
【発明が解決しようとする課題】
かかる従来の実状に鑑みて、本発明の目的は、表面反射波等の影響を受けずに試験体の劣化・損傷等を評価することが可能な探触子及びこれを用いた材料評価試験方法を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明にかかる探触子の第一の特徴構成は、試験体に超音波を送信すると共に試験体からの後方散乱波を受信することにより試験体の評価を行うためのものであって、各々が遅延材を有する送信子及び受信子を設け、これら遅延材の前記試験体側対向面と前記試験体表面との間に接触媒質を介在させるための保持体を設け、前記試験体の対象深さからの後方散乱波の波形と、前記試験体表面で反射した表面反射波の波形及び前記試験体表面並びに前記遅延材の前記試験体側対向面の間で発生する多重反射波の波形とが識別可能となるように前記保持体厚みを設定したことにある。
【0009】
同特徴構成によれば、接触媒質が超音波の送受信精度を向上させる。そして、保持体により接触媒質の厚みを常時一定の微少厚さに維持することができるので、微少な後方散乱波を検出することができる。また、この接触媒質の微少厚さを維持する機構を設け、送信子及び受信子を別体としたことにより、試験体内で発生する後方散乱波と試験体表面で反射した表面反射波及び多重反射波の受信子への到達時刻を異ならせることができる。
【0010】
また、本発明にかかる探触子の第二の特徴構成は、試験体に超音波を送信すると共に試験体からの後方散乱波を受信することにより試験体の評価を行うためのものであって、各々が遅延材を有する送信子及び受信子を設け、これら遅延材の前記試験体側対向面と前記試験体表面との間に接触媒質を介在させるための保持体を設け、前記一対の遅延材間における前記試験体側対向面に、前記試験体表面と前記遅延材との間で発生する多重反射波又はクロストークを遮断するための音響隔離体を設けたことにある。
【0011】
同特徴構成によれば、接触媒質内で発生した多重反射波又はクロストークは音響遮蔽体により遮断させられる。したがって、多重反射波やクロストークによる害乱を防止して上述の試験体不感帯部分からの信号を確実に受信することができる。
【0012】
上記いずれかの特徴構成において、前記接触媒質の厚みが1mm以上であることが望ましい。
【0013】
さらには、上記いずれかの特徴構成において、前記保持体として、例えばリング状の弾性部材を用いるとよい。同特徴構成によれば、弾性部材を用いることにより、試験体表面における凹凸形状等の表面粗さに対しても適度な弾性変形により、送受信子の姿勢を一定に維持することができる。また、試験体表面に傷を生じさせることもない。
【0014】
本発明にかかる材料評価試験方法の特徴は、上記いずれかの特徴構成を有する探触子を用いて試験体に超音波を送信すると共に試験体からの後方散乱波を受信することにより試験体の評価を行うことにある。
【0015】
【発明の効果】
上記本発明の特徴によれば、試験体に起因する後方散乱波と、試験体表面で反射した表面反射波及び多重反射波との交錯を防止し、試験体表面近傍における深さ数mm位置での劣化・損傷等を正確に評価することが可能となった。
【0016】
なお、本発明のその他の目的、構成、作用、効果については、以下に示す「発明の実施の形態」の項で明らかになるであろう。
【0017】
【発明の実施の形態】
次に、図1〜5を参照しながら、本発明の実施形態についてさらに詳細に説明する。本発明は、試験体100の表面101近傍における深さH=数mm程度の位置(以下、「対象深さH」という。)に発生する結晶粒界や水素侵食によるボイド等のクリープ損傷の評価に適している。本実施形態では、試験体100として厚さ数mmの平板状鋼板を用いる。
【0018】
図2は評価装置1の概略を示す論理ブロック図である。この評価装置1は、送信子3から試験体100に対して超音波パルスを発生させるパルサー31と、受信子4からの受信波を受信するレシーバー32とを有する。このレシーバー32からの音響信号は、アンプ33により増幅され、フィルター34で低周波及び高周波ノイズが除去された後、A/Dコンバーター35でA/D変換されてデジタル信号化される。そして、パーソナルコンピュータ36内のRAMやハードディスクなどのメモリーに記憶される。パーソナルコンピューター36はパルサー31に対して送信を指示する指示手段と、A/Dコンバータ35からのデータを解析する解析手段を含む。パーソナルコンピュータ36における処理結果は、図6,7,8に示す如きものであり、表示器37により表示され、プリンター38により用紙に出力することもできる。
【0019】
送受信子2は、大略、ハウジング10に送信子3及び受信子4を収納し、この送受信子2の試験体側対向面14の周縁に保持体15を設けてなる。ハウジング10内では、音響隔離面13により送信子3と受信子4は音響的に隔離してある。
【0020】
送信子3及び受信子4は、アクリル樹脂の遅延材11,12と、これらの上面にそれぞれ貼り付けた振動子11a,12aとを備えている。また、この遅延材11、12の試験体側対向面14はハウジングで覆わずに露出させてある。
【0021】
本明細書において、「表面反射波」とは、送信子3から送信され試験体表面101で反射した後、直ちに受信子4に至る反射波のことを、「多重反射波」とは、送信子3から送信され試験体表面101で反射した後、遅延材11,12の下面14及び試験体表面101での反射を繰り返した反射波のことをいう。
【0022】
これらの送信子3及び受信子4は図3に示すように、送信子中心軸Xと受信子中心軸Yの交点Pが特定深さhに位置するように振動子11a、12aをそれぞれ試験体表面101に対してそれぞれ傾斜させて上述の対象深さHの範囲内に照準を合わせてある。本実施形態では、送信子3、受信子4は互いに試験体表面101の法線面に対して面対称となるように配置してある。なお、本発明は、後方散乱波を捉える点で、底面エコーを捉える垂直探傷とは異なっている。
【0023】
送受信子2における遅延材11,12の下面14周縁に沿ってシリコンゴム等の弾性部材よりなるリング状の保持体15を設けてある。この保持体15により、送受信子2と試験体表面101との間に下向き凹部17が形成され、この凹部17に接触媒質Wを充填させる。この保持体15により送受信子2と試験体表面101との距離を一定に保つことができる。また、この保持体15を弾性部材としたことにより、試験体表面101における凹凸等の表面粗さに対しても、適当な弾性変形により保持体15と試験体表面101は密着した状態となる。なお、保持体15は弾性体であるため、保持体15の厚さと接触媒質Wの厚さとは試験体表面101接触時のものとして扱うとよい。
【0024】
接触媒質Wとしては、例えば、グリセリン、水、マシン油などを用いる。これらの接触媒質Wは超音波の伝達効率を低下させることなく、試験体100に超音波を伝播させることができると共に、微少な後方散乱波S3を受信することができる。
【0025】
送信子3から送信された超音波はこの接触媒質Wを介して試験体100内に入射することとなるが、図4に示すように、一部は試験体100の表面101と遅延材11,12の下面14との間で多重反射を繰り返すこととなる。この多重反射波S2及び直達波(クロストーク)が受信子4に到達することを防ぐため、図5(b)に示すように、接触媒質Wを送信子3側と受信子4側とで二分するよう面状の音響隔離体16を設ける。本実施形態では、この音響隔離体16をハウジング10内の音響隔離面13直下に直線的に配置してある。なお、音響隔離体16は音響隔離面13の一部を下方に延長させて構成してもよい。
【0026】
図3、4に示すように、接触媒質Wとして水を用いた場合、鋼材中での縦波音速は接触媒質内の音速の約4倍であることが知られており、接触媒質中の1mmが鋼材中における4mmの移動速度に相当する。よって、鋼板表面から4mm深さ近傍を評価しようとすると、接触媒質の厚さを1mm以上、望ましくは1.5mm以上とすることで、後方散乱波S3と表面反射波S1及び多重反射波S2の受信子4到達時刻を異ならせ、これらの信号が互いに交錯することを防止できる。係る原理により、接触媒質Wの厚みD及び音響隔離体16と相まって、上述の不感帯の評価を精度良く行うことができる。
【0027】
【実施例】
本実施例では、試験体100として、肉厚10mmの炭素鋼板を用いて評価試験を行った。送受信子2として、周波数10MHzのものを使用した。また、接触媒質Wの厚さDは、表面反射波S1の立ち上がり時間が8μsとなるように調整した。受信子4で得られた受信信号は、5MHzのハイパスフィルターにてフィルタリングを行い、100MHzサンプリングのデジタル信号として記憶させて波形解析を行った。また、保持体としてゴム製のOリング15を用いると共に、凹部17に充填する接触媒質Wとしてグリセリンを用いた。
【0028】
本評価試験では、凹部17内に音響隔離体16を設けない場合と設けた場合の2通りの試験を行った。図6、図7は、各々の試験で得られた受信波形のグラフであり、縦軸は出力信号の振幅を、横軸は時間を示す。図6は、図5(a)に示す音響遮蔽体16を設けなかった場合の受信波形であって、(a)はゲインを0dBとした場合、(b)はゲインを6dBにした場合のグラフである。同グラフに示すように、表面反射波群S1と多重反射波群S2の間に後方散乱波群S3が観測され、これらの波が互いに交錯することなく識別可能であることが確かめられた。
【0029】
一方、図7は、図5(b)に示す音響遮蔽体16を設けた場合の受信波形を示すグラフであって、(a)はゲインを0dBとした場合、(b)はゲインを6dBにした場合、(c)はゲインを12dBにした場合のグラフである。同グラフでは、多重反射波S2は観測されず、表面反射波群S1と後方散乱波群S3も互いに交錯することなく識別可能であることが確かめられた。また、図6に示す音響隔離体16を設けなかった場合の振幅分布に比べ、表面反射波S1の振幅が大幅に減衰していることがわかる。
【0030】
最後に、本発明のその他の実施形態の可能性について言及する。なお、以下の各実施形態を適宜組み合わせて実施することもできる。
上述の評価試験に加え、図1(b)に示す一振動子型探触子を用いた評価試験及び図1(a)に示す漏洩弾性波法を用いた評価試験を適宜併用することで、板厚方向の劣化・損傷分布を評価することができる。発明者らの実験によれば、表面下0.8mmまでは漏洩弾性波法で、表面下1.5〜4mmまでを本発明に係る探触子2を用いた方法で、表面下4mmよりも深部は一振動子型探触子を用いた水浸法で各々評価することにより、板厚方向の劣化・損傷分布を評価することができた。
【0031】
上記実施形態では、後方散乱波振幅の時系列データから試験体100の劣化・損傷を評価したが、これに加え、図示しないタイマーと連携して各時間ゲート毎にサンプリングされた信号からFFT手段等を用いて周波数スペクトラムを求めることで試験体100を評価することもできる(スペクトロスコピー法)。散乱により高周波成分は減衰することから、試験体における劣化・損傷の度合いが強い程、後方散乱波のスペクトラム分布は低周波側にシフトすると共に、低周波側のスペクトラム強度が増加する。図8(b)は、健全な試験体と、内部にクリープ損傷を有する試験体とで、後方散乱波のスペクトラム強度の周波数分布を比較したものである。クリープ損傷を有する試験体のスペクトラム分布は、健全な試験体と比べ、低周波側にシフトし、低周波側ではスペクトラム強度が増加していることがわかる。
【0032】
上記実施形態では、試験体表面101に送受信子2を配置して評価試験を行ったが、図示しないモーターコントローラーにより送受信体2を試験体表面に沿ってスキャンさせるようにしてもよい。また、試験体100として平板状鋼板に限らず、例えば、配管のように曲面である試験体表面に本発明に係る探触子を配置し、材料評価試験を行うこともできる。その際、モーターコントローラにより探触子を移動させることで、管周方向及び管軸方向に渡って試験体表面近傍の劣化・損傷分布を評価することができる。そして、各点で得られたデータを図8(c)に示すように上述の表示器37等を用いて色調表示させる。同図は、管軸方向及び管周方向にそれぞれ50mmの範囲を1mmピッチで走査したものであり、各走査位置における後方散乱波振幅及び周波数スペクトラムの低周波成分(5〜8MHz)の部分積分値B1を色調表示したものである。
【0033】
上述の実施例等では、試験体100として鋼材を用いた。しかし、試験体100は鋼材に限られず、保持体15の厚みDも試験体100及び保持体15の音響インピーダンスとの相対的関係で求められる。
【0034】
なお、特許請求の範囲の項に記入した符号は、あくまでも図面との対照を便利にするためのものにすぎず、この記入により本発明は添付図面の構成に限定されるものではない。
【図面の簡単な説明】
【図1】本発明と従来技術を比較した図であって、(a)は漏洩弾性波(LSAW)法による場合、(b)は一振動子型探触子を用いて後方散乱波を捉える場合、(c)は本発明に係る探触子を用いて後方散乱波を捉える場合を示す。
【図2】本発明に係る探触子を用いた評価装置の論理ブロック図である。
【図3】送信側中心軸及び受信側中心軸を含む断面での送受信子と試験体との関係を示す断面図である。
【図4】表面反射波及び多重反射波の軌跡を及びその受信波形を模式的に示す図である。
【図5】送信子、受信子、保持体及び音響隔離体の関係を示す図であって、(a)は保持体を備える場合の送受信子の断面図及びそのA−A断面図を、(b)は保持体と音響隔離体を備える場合の送受信子の断面図及びそのA−A断面図を示す。
【図6】音響隔離体が介在しない場合の受信波形であり、(a)はゲインを0dB、(b)は6dBとした場合に相当する。
【図7】音響隔離体を介在させた場合の図6相当図であり、(a)はゲインを0dB、(b)は6dB、(c)は12dBにした場合に相当する。
【図8】本発明に係る探触子を用いて得られたデータであって、(a)は振幅の時系列分布を、(b)はスペクトラム強度の周波数分布を、(c)スキャンの色調表示を示す。
【符号の説明】
1:評価装置、2:送受信子、3:送信子、4:受信子、10:ハウジング、11,12:音響遅延材、11a:送信側振動子、12a:受信側振動子、13:音響隔離面、14:下面(試験体側対向面)、15:保持体、16:音響隔離体、17:凹部、31:パルサー、32:レシーバー、33:アンプ、34:フィルター、35:A/Dコンバーター、36:パーソナルコンピュータ、37:表示器、38:プリンター、100:試験体、101:試験体表面、P:交点、S1:表面反射波、S2:多重反射波、S3:後方散乱波、W:接触媒質、X:送信子中心軸、Y:受信子中心軸
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a probe used for a material evaluation test using ultrasonic waves, and a method for evaluating the material. More specifically, it is suitable for deterioration and damage evaluation of equipment used in high-temperature or high-pressure environments, such as equipment and equipment used in petroleum / petrochemical plants and thermal power plants. The present invention relates to a probe that can be used for evaluating deterioration and damage of a steam pipe or the like of a boiler in a power plant, and an evaluation test method thereof.
[0002]
[Prior art]
For example, heating furnace tubes used in petrochemical plants and thermal power plants are heated directly on the outer surface by a burner, etc., so that creep damage such as voids and fishers is likely to occur on the pipe fire side, and such deterioration・ It is necessary to evaluate damage.
[0003]
Conventionally, as a method for evaluating such deterioration / damage of a material, there is known a method of evaluating using a leaky elastic wave (LASW) as described in Patent Document 1 described below (leakage elastic wave method). According to this method, as shown in FIG. 1 (a), since the penetration depth of the ultrasonic wave is about one wavelength, the object to be evaluated is limited to the extreme surface layer portion of the test specimen, and The data in the deep part could not be obtained.
[0004]
[Patent Document 1]
JP 2000-131297 A
On the other hand, there is a known method for evaluating the deterioration / damage of a material by capturing ultrasonic waves scattered back at a deteriorated / damaged portion such as a void by using a single-element vertical probe shown in FIG. 1 (b). Have been. According to this method, deterioration, damage, etc. of the deep part of the test piece can be grasped. However, when the probe is brought into direct contact with the specimen (direct contact method), a transmission pulse is applied, and when water is interposed between the probe and the specimen (water immersion method), the surface of the specimen is exposed. Since these signals are received by the surface reflected waves reflected at the surface, these signals intersect with the signals backscattered in the vicinity of the surface of the test sample, and it is difficult to distinguish between the two.
[0006]
As described above, even when the material evaluation test was performed using both the leaky elastic wave method and the backscattered wave method, the dead zone at a depth of several mm near the surface of the test piece was found.
[0007]
[Problems to be solved by the invention]
In view of such a conventional situation, an object of the present invention is to provide a probe capable of evaluating deterioration and damage of a test body without being affected by surface reflected waves and the like, and a material evaluation test method using the same. Is to provide.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, a first characteristic configuration of the probe according to the present invention is to transmit a ultrasonic wave to a test object and to evaluate the test object by receiving a backscattered wave from the test object. Wherein a transmitter and a receiver each having a delay member are provided, and a holder for interposing a couplant between the specimen-side facing surface of the delay member and the specimen surface is provided, The waveform of the backscattered wave from the target depth of the specimen, the waveform of the surface reflected wave reflected on the surface of the specimen, and multiple reflections generated between the specimen surface and the specimen-facing surface of the delay member. The thickness of the holder is set so that the waveform of the wave can be identified.
[0009]
According to the characteristic configuration, the couplant improves the transmission and reception accuracy of the ultrasonic wave. Then, since the thickness of the couplant can be always maintained at a constant minute thickness by the holding member, a minute backscattered wave can be detected. In addition, a mechanism for maintaining the very small thickness of the couplant is provided, and the transmitter and receiver are separated, so that the backscattered wave generated in the specimen, the surface reflected wave reflected on the surface of the specimen and the multiple reflection The arrival times of the waves at the receiver can be different.
[0010]
Further, a second characteristic configuration of the probe according to the present invention is to perform evaluation of the test object by transmitting ultrasonic waves to the test object and receiving backscattered waves from the test object. , A transmitter and a receiver each having a delay member, a holder for interposing a couplant between the surface of the delay member facing the specimen and the surface of the specimen is provided, and the pair of delay members An acoustic isolator for blocking multiple reflected waves or crosstalk generated between the surface of the test object and the delay member is provided on the opposing surface on the test object side between the two.
[0011]
According to this feature, the multiple reflection waves or crosstalk generated in the couplant are blocked by the acoustic shield. Therefore, it is possible to prevent the harm caused by multiple reflected waves and crosstalk and to reliably receive the signal from the above-described dead zone of the test object.
[0012]
In any one of the above features, it is preferable that the thickness of the couplant is 1 mm or more.
[0013]
Furthermore, in any one of the above-described features, for example, a ring-shaped elastic member may be used as the holder. According to this characteristic configuration, by using the elastic member, the posture of the transmitter / receiver can be kept constant by appropriate elastic deformation even with respect to the surface roughness such as the uneven shape on the surface of the test body. Further, the surface of the specimen is not damaged.
[0014]
The feature of the material evaluation test method according to the present invention is that a probe having any one of the above-described features transmits ultrasonic waves to the specimen and receives backscattered waves from the specimen, thereby obtaining The point is to make an evaluation.
[0015]
【The invention's effect】
According to the features of the present invention, the backscattered wave caused by the test specimen, and the intersection of the surface reflected wave and the multiple reflected waves reflected on the surface of the test specimen are prevented, and at a depth of several mm near the surface of the test specimen. It is now possible to accurately evaluate deterioration, damage, etc.
[0016]
Other objects, configurations, operations, and effects of the present invention will be apparent in the following “Embodiments of the invention”.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in more detail with reference to FIGS. The present invention evaluates creep damage such as voids due to grain boundaries and hydrogen erosion generated at a depth H of about several mm (hereinafter referred to as “target depth H”) near the surface 101 of the specimen 100. Suitable for. In the present embodiment, a flat steel plate having a thickness of several mm is used as the test body 100.
[0018]
FIG. 2 is a logical block diagram schematically showing the evaluation device 1. The evaluation device 1 includes a pulsar 31 that generates an ultrasonic pulse from the transmitter 3 to the test body 100 and a receiver 32 that receives a reception wave from the receiver 4. The acoustic signal from the receiver 32 is amplified by an amplifier 33, and low-frequency and high-frequency noise is removed by a filter 34, and then A / D converted by an A / D converter 35 to be converted into a digital signal. Then, it is stored in a memory such as a RAM or a hard disk in the personal computer 36. The personal computer 36 includes instruction means for instructing the pulsar 31 to transmit, and analysis means for analyzing data from the A / D converter 35. The processing results in the personal computer 36 are as shown in FIGS. 6, 7, and 8, and are displayed on the display 37 and can be output to paper by the printer 38.
[0019]
The transmitter / receiver 2 generally includes a transmitter 10 and a receiver 4 housed in a housing 10, and a holder 15 is provided on the periphery of the test object side facing surface 14 of the transmitter / receiver 2. In the housing 10, the transmitter 3 and the receiver 4 are acoustically isolated by an acoustic isolation surface 13.
[0020]
The transmitter 3 and the receiver 4 include delay members 11 and 12 made of acrylic resin, and vibrators 11a and 12a attached to the upper surfaces of the delay members 11 and 12, respectively. The test piece side facing surfaces 14 of the delay members 11 and 12 are exposed without being covered with the housing.
[0021]
In the present specification, the “surface reflected wave” refers to a reflected wave transmitted from the transmitter 3 and immediately reflected by the surface 101 of the test object and immediately reaching the receiver 4. 3 is a reflected wave that is repeatedly reflected on the lower surfaces 14 of the delay members 11 and 12 and the test object surface 101 after being reflected from the test object surface 101 and transmitted from the test object surface 101.
[0022]
As shown in FIG. 3, the transmitters 3 and the receivers 4 respectively test the vibrators 11a and 12a such that the intersection P of the transmitter center axis X and the receiver center axis Y is located at a specific depth h. It is aimed at the above-mentioned range of the target depth H by being inclined with respect to the surface 101, respectively. In the present embodiment, the transmitter 3 and the receiver 4 are arranged so as to be symmetrical with each other with respect to the normal to the surface 101 of the test object. Note that the present invention differs from vertical flaw detection in which a bottom echo is captured in that a backscattered wave is captured.
[0023]
A ring-shaped holder 15 made of an elastic member such as silicone rubber is provided along the periphery of the lower surface 14 of the delay members 11 and 12 in the transmitter / receiver 2. The holder 15 forms a downward recess 17 between the transmitter / receiver 2 and the specimen surface 101, and the recess 17 is filled with the couplant W. The distance between the transmitter / receiver 2 and the test object surface 101 can be kept constant by the holder 15. Further, by using the elastic member as the holding member 15, the holding member 15 and the test object surface 101 are brought into close contact with each other by appropriate elastic deformation even with respect to the surface roughness such as unevenness on the test object surface 101. Since the holding body 15 is an elastic body, the thickness of the holding body 15 and the thickness of the couplant W may be treated as those at the time of contact with the test object surface 101.
[0024]
As the couplant W, for example, glycerin, water, machine oil, or the like is used. These couplants W can transmit the ultrasonic waves to the test body 100 without lowering the transmission efficiency of the ultrasonic waves, and can receive the minute backscattered waves S3.
[0025]
The ultrasonic wave transmitted from the transmitter 3 is incident on the specimen 100 via the couplant W, but as shown in FIG. 4, a part of the surface 101 of the specimen 100 and the delay material 11, The multiple reflection is repeated between the lower surface 12 and the lower surface 14 of the light source 12. In order to prevent the multiple reflected wave S2 and the direct wave (crosstalk) from reaching the receiver 4, as shown in FIG. 5B, the couplant W is divided between the transmitter 3 side and the receiver 4 side. A planar acoustic isolator 16 is provided so as to perform In the present embodiment, the acoustic isolator 16 is linearly arranged directly below the acoustic isolating surface 13 in the housing 10. The acoustic isolator 16 may be configured by extending a part of the acoustic isolating surface 13 downward.
[0026]
As shown in FIGS. 3 and 4, when water is used as the couplant W, it is known that the longitudinal sound velocity in the steel material is about four times as high as the sound velocity in the couplant. Corresponds to a moving speed of 4 mm in the steel material. Therefore, when trying to evaluate the vicinity of a depth of 4 mm from the surface of the steel sheet, the thickness of the couplant is set to 1 mm or more, preferably 1.5 mm or more, so that the backscattered wave S3, the surface reflected wave S1, and the multiple reflected wave S2 can be formed. The arrival times of the receivers 4 can be made different to prevent these signals from crossing each other. According to such a principle, the above-described dead zone can be accurately evaluated in combination with the thickness D of the couplant W and the acoustic separator 16.
[0027]
【Example】
In this example, an evaluation test was performed using a carbon steel sheet having a thickness of 10 mm as the test body 100. The transceiver 2 used had a frequency of 10 MHz. The thickness D of the couplant W was adjusted so that the rise time of the surface reflected wave S1 was 8 μs. The received signal obtained by the receiver 4 was filtered by a 5 MHz high-pass filter, stored as a digital signal of 100 MHz sampling, and subjected to waveform analysis. In addition, a rubber O-ring 15 was used as the holder, and glycerin was used as the couplant W to be filled in the recess 17.
[0028]
In this evaluation test, two types of tests were performed: a case where the acoustic isolator 16 was not provided in the recess 17 and a case where the acoustic isolator 16 was provided. 6 and 7 are graphs of the received waveform obtained in each test, where the vertical axis indicates the amplitude of the output signal and the horizontal axis indicates time. 6A and 6B are reception waveforms when the acoustic shield 16 shown in FIG. 5A is not provided. FIG. 6A is a graph when the gain is 0 dB, and FIG. 6B is a graph when the gain is 6 dB. It is. As shown in the graph, a backscattered wave group S3 was observed between the surface reflected wave group S1 and the multiple reflected wave group S2, and it was confirmed that these waves could be identified without intersecting each other.
[0029]
On the other hand, FIGS. 7A and 7B are graphs showing reception waveforms when the acoustic shield 16 shown in FIG. 5B is provided. FIG. 7A shows a case where the gain is set to 0 dB, and FIG. 7B shows a case where the gain is set to 6 dB. (C) is a graph when the gain is set to 12 dB. In this graph, the multiple reflected wave S2 was not observed, and it was confirmed that the surface reflected wave group S1 and the backscattered wave group S3 could be identified without intersecting each other. Further, it can be seen that the amplitude of the surface reflected wave S1 is greatly attenuated as compared with the amplitude distribution when the acoustic isolator 16 shown in FIG. 6 is not provided.
[0030]
Finally, reference is made to the possibilities of other embodiments of the present invention. It is to be noted that the following embodiments can be combined as appropriate.
In addition to the above-described evaluation test, an evaluation test using a one-element transducer shown in FIG. 1B and an evaluation test using a leaky elastic wave method shown in FIG. The deterioration / damage distribution in the thickness direction can be evaluated. According to the experiments by the inventors, the leakage acoustic wave method is used up to 0.8 mm below the surface, and the method using the probe 2 according to the present invention is used up to 1.5 to 4 mm below the surface. The deep part was evaluated by the water immersion method using a single element type probe, and the deterioration / damage distribution in the thickness direction was able to be evaluated.
[0031]
In the above embodiment, the deterioration / damage of the test specimen 100 was evaluated from the time-series data of the backscattered wave amplitude. In addition, in addition to this, the FFT means etc. The specimen 100 can also be evaluated by calculating the frequency spectrum using (spectroscopy method). Since the high frequency component is attenuated by the scattering, as the degree of deterioration or damage in the test body increases, the spectrum distribution of the backscattered wave shifts to the lower frequency side and the spectrum intensity on the lower frequency side increases. FIG. 8B compares the frequency distribution of the spectrum intensity of the backscattered wave between the sound test piece and the test piece having creep damage inside. It can be seen that the spectrum distribution of the specimen having creep damage shifts to a lower frequency side as compared with a healthy specimen, and the spectrum intensity increases at the lower frequency side.
[0032]
In the above embodiment, the transmitter / receiver 2 is arranged on the surface 101 of the test object to perform the evaluation test. However, the transmitter / receiver 2 may be scanned along the surface of the test object by a motor controller (not shown). In addition, the test body 100 is not limited to a flat steel plate. For example, the probe according to the present invention can be disposed on a curved test body surface such as a pipe to perform a material evaluation test. At this time, by moving the probe by the motor controller, it is possible to evaluate the deterioration / damage distribution near the surface of the test specimen in the pipe circumferential direction and the pipe axial direction. Then, as shown in FIG. 8C, the data obtained at each point is displayed in a color tone using the above-described display 37 or the like. The figure is obtained by scanning a range of 50 mm in each of the tube axis direction and the tube circumferential direction at a pitch of 1 mm, and a partial integrated value of the backscattered wave amplitude and the low frequency component (5 to 8 MHz) of the frequency spectrum at each scanning position. B1 is a color tone display.
[0033]
In the above-described examples and the like, a steel material was used as the test body 100. However, the test body 100 is not limited to a steel material, and the thickness D of the holder 15 is also determined by a relative relationship with the acoustic impedance of the test body 100 and the holder 15.
[0034]
It should be noted that the reference numerals entered in the claims are merely for convenience of comparison with the drawings, and the present invention is not limited to the configuration of the attached drawings by this entry.
[Brief description of the drawings]
FIGS. 1A and 1B are diagrams comparing the present invention with a conventional technology, wherein FIG. 1A shows a case where a leaky elastic wave (LSAW) method is used, and FIG. 1B shows a case where a backscattered wave is captured using a single element type probe. Case (c) shows a case in which a backscattered wave is captured using the probe according to the present invention.
FIG. 2 is a logical block diagram of an evaluation device using a probe according to the present invention.
FIG. 3 is a cross-sectional view illustrating a relationship between a transmitter / receiver and a test body in a cross section including a transmission-side central axis and a reception-side central axis.
FIG. 4 is a diagram schematically illustrating a locus of a surface reflected wave and a multiple reflected wave, and a received waveform thereof.
5A and 5B are diagrams showing a relationship among a transmitter, a receiver, a holder, and an acoustic isolator. FIG. 5A is a cross-sectional view of a transmitter and a receiver having a holder, and FIG. b) shows a cross-sectional view of the transmitter / receiver in the case where the holder and the acoustic isolator are provided, and a cross-sectional view taken along line AA.
6A and 6B are reception waveforms when no acoustic isolator is interposed. FIG. 6A shows a case where the gain is 0 dB, and FIG. 6B shows a case where the gain is 6 dB.
7 is a diagram corresponding to FIG. 6 when an acoustic isolator is interposed, wherein (a) corresponds to a case where the gain is set to 0 dB, (b) corresponds to a case where the gain is set to 6 dB, and (c) corresponds to a case where the gain is set to 12 dB.
8A and 8B are data obtained by using the probe according to the present invention, wherein FIG. 8A shows a time series distribution of amplitude, FIG. 8B shows a frequency distribution of spectrum intensity, and FIG. Show the display.
[Explanation of symbols]
1: Evaluation device, 2: Transmitter / receiver, 3: Transmitter, 4: Receiver, 10: Housing, 11, 12: Acoustic delay material, 11a: Transmitter oscillator, 12a: Receiver oscillator, 13: Acoustic isolation Surface, 14: lower surface (surface facing the specimen side), 15: holder, 16: acoustic isolator, 17: recess, 31: pulser, 32: receiver, 33: amplifier, 34: filter, 35: A / D converter, 36: Personal computer, 37: Display, 38: Printer, 100: Specimen, 101: Specimen surface, P: Intersection, S1: Surface reflected wave, S2: Multiple reflected wave, S3: Backscattered wave, W: Contact Medium, X: center axis of transmitter, Y: center axis of receiver

Claims (5)

試験体(100)に超音波を送信すると共に試験体(100)からの後方散乱波(S3)を受信することにより試験体(100)の評価を行うための探触子であって、
各々が遅延材(11,12)を有する送信子(3)及び受信子(4)を設け、
これら遅延材(11,12)の前記試験体側対向面(14)と前記試験体表面(101)との間に接触媒質(W)を介在させるための保持体(15)を設け、
前記試験体(100)の対象深さ(H)からの後方散乱波の波形(S3)と、前記試験体表面(101)で反射した表面反射波の波形(S1)及び前記試験体表面(101)並びに前記遅延材(11,12)の前記試験体側対向面(14)の間で発生する多重反射波の波形(S2)とが識別可能となるように前記保持体(15)厚み(D)を設定したことを特徴とする探触子。
A probe for evaluating the test object (100) by transmitting ultrasonic waves to the test object (100) and receiving the backscattered wave (S3) from the test object (100),
Providing a transmitter (3) and a receiver (4) each having a delay material (11,12);
A holder (15) for interposing a couplant (W) is provided between the specimen-side facing surface (14) of the retarder (11, 12) and the specimen surface (101),
The waveform (S3) of the backscattered wave from the target depth (H) of the specimen (100), the waveform (S1) of the surface reflected wave reflected on the specimen surface (101), and the specimen surface (101) ) And the thickness (D) of the holder (15) such that the waveform (S2) of the multiple reflection wave generated between the opposing surfaces (14) of the delay members (11, 12) can be distinguished. A probe characterized by setting.
試験体(100)に超音波を送信すると共に試験体(100)からの後方散乱波(S3)を受信することにより試験体(100)の評価を行うための探触子であって、
各々が遅延材(11,12)を有する送信子(3)及び受信子(4)を設け、
これら遅延材(11,12)の前記試験体側対向面(14)と前記試験体表面(101)との間に接触媒質(W)を介在させるための保持体(15)を設け、
前記一対の遅延材(11,12)間における前記試験体側対向面(14)に、前記試験体表面(101)と前記遅延材(11,12)との間で発生する多重反射波(S2)又はクロストークを遮断するための音響隔離体(16)を設けたことを特徴とする探触子。
A probe for evaluating the test object (100) by transmitting ultrasonic waves to the test object (100) and receiving the backscattered wave (S3) from the test object (100),
Providing a transmitter (3) and a receiver (4) each having a delay material (11,12);
A holder (15) for interposing a couplant (W) is provided between the specimen-side facing surface (14) of the retarder (11, 12) and the specimen surface (101),
A multiple reflection wave (S2) generated between the surface (101) of the test object and the delay members (11, 12) on the surface (14) facing the test object between the pair of delay members (11, 12). Alternatively, a probe provided with an acoustic isolator (16) for blocking crosstalk.
前記接触媒質(W)の厚み(D)が1mm以上であることを特徴とする請求項1又は2に記載の探触子。3. The probe according to claim 1, wherein the thickness (D) of the couplant (W) is 1 mm or more. 4. 前記保持体(15)がリング状の弾性部材からなることを特徴とする請求項1〜3のいずれかに記載の探触子。The probe according to any one of claims 1 to 3, wherein the holder (15) is made of a ring-shaped elastic member. 請求項1〜4のいずれかに記載の探触子を用いて試験体(100)に超音波を送信すると共に試験体(100)からの後方散乱波(S3)を受信することにより試験体(100)の評価を行う材料評価試験方法。An ultrasonic wave is transmitted to the test object (100) using the probe according to any one of claims 1 to 4, and a backscatter wave (S3) from the test object (100) is received. 100) A material evaluation test method for evaluation.
JP2003032664A 2003-02-10 2003-02-10 Probe and material evaluation test method using the same Expired - Lifetime JP4144699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003032664A JP4144699B2 (en) 2003-02-10 2003-02-10 Probe and material evaluation test method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003032664A JP4144699B2 (en) 2003-02-10 2003-02-10 Probe and material evaluation test method using the same

Publications (2)

Publication Number Publication Date
JP2004245598A true JP2004245598A (en) 2004-09-02
JP4144699B2 JP4144699B2 (en) 2008-09-03

Family

ID=33018948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032664A Expired - Lifetime JP4144699B2 (en) 2003-02-10 2003-02-10 Probe and material evaluation test method using the same

Country Status (1)

Country Link
JP (1) JP4144699B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110900A1 (en) * 2006-03-24 2007-10-04 Ihi Corporation Defect inspecting device, and defect inspecting method
JP2009069153A (en) * 2007-09-10 2009-04-02 Krohne Ag Ultrasonic sensor
JP2013068504A (en) * 2011-09-22 2013-04-18 Mitsubishi Heavy Ind Ltd Flaw detector for blade groove part of rotor disc
JP2013127400A (en) * 2011-12-19 2013-06-27 Toyota Central R&D Labs Inc Ultrasonic inspection device
KR101403216B1 (en) 2012-11-15 2014-06-03 재단법인 포항산업과학연구원 Apparatus and method of detecting surface defect of wire rod using ultrasonic wave
KR101558922B1 (en) 2008-12-19 2015-10-12 재단법인 포항산업과학연구원 Dual type ultrasonic sensor for adjusting beam width
CN105445380A (en) * 2015-11-23 2016-03-30 南京航空航天大学 Asymmetrical dual-wafer set ultrasonic wave probe applicable to large complex structure damage detection and operation method thereof
JP2016184030A (en) * 2015-03-25 2016-10-20 コニカミノルタ株式会社 Toner amount detection device and image forming apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110900A1 (en) * 2006-03-24 2007-10-04 Ihi Corporation Defect inspecting device, and defect inspecting method
JP4821848B2 (en) * 2006-03-24 2011-11-24 株式会社Ihi Defect inspection apparatus and defect inspection method
US8175820B2 (en) 2006-03-24 2012-05-08 Ihi Corporation Defect inspection apparatus and defect inspection method
JP2009069153A (en) * 2007-09-10 2009-04-02 Krohne Ag Ultrasonic sensor
KR101558922B1 (en) 2008-12-19 2015-10-12 재단법인 포항산업과학연구원 Dual type ultrasonic sensor for adjusting beam width
JP2013068504A (en) * 2011-09-22 2013-04-18 Mitsubishi Heavy Ind Ltd Flaw detector for blade groove part of rotor disc
JP2013127400A (en) * 2011-12-19 2013-06-27 Toyota Central R&D Labs Inc Ultrasonic inspection device
KR101403216B1 (en) 2012-11-15 2014-06-03 재단법인 포항산업과학연구원 Apparatus and method of detecting surface defect of wire rod using ultrasonic wave
JP2016184030A (en) * 2015-03-25 2016-10-20 コニカミノルタ株式会社 Toner amount detection device and image forming apparatus
CN105445380A (en) * 2015-11-23 2016-03-30 南京航空航天大学 Asymmetrical dual-wafer set ultrasonic wave probe applicable to large complex structure damage detection and operation method thereof

Also Published As

Publication number Publication date
JP4144699B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
CN102422123B (en) Apparatus and method for measuring material thickness
RU2723368C1 (en) Ultrasonic inspection method of metal article defectiveness
JP2006162614A (en) Ultrasonic probe, and inspection method and system
Young et al. A comparison of impulse response modification techniques for time reversal with application to crack detection
JP4144699B2 (en) Probe and material evaluation test method using the same
EP3844530A1 (en) Continuous wave ultrasound or acoustic non-destructive testing
JP3635453B2 (en) Ultrasonic shear wave oblique angle flaw detection method and apparatus
JP2010054497A (en) Ultrasonic flaw detection sensitivity setting method and ultrasonic flaw detector
US20210278373A1 (en) Ultrasonic probe
Chang et al. Reliable estimation of virtual source position for SAFT imaging
US20220099629A1 (en) Method and device for non-destructive testing of a plate material
JP2007003197A (en) Ultrasonic material diagnosis method and apparatus
JP6479478B2 (en) Ultrasonic flaw detection method
KR100542651B1 (en) Nondestructive Acoustic Evaluation Device and Method by using Nonlinear Acoustic Responses
JP2003130851A (en) Elastic parameter measuring device for material surface and coating layer
KR101826917B1 (en) Multi-channel ultrasonic diagnostic method for long distance piping
KR100343598B1 (en) Ultrasonic system for evaluating quality of fruits and vegetables
JP3241519B2 (en) Ultrasonic flaw detection method and apparatus
JP2006023215A (en) Ultrasonic inspection method, ultrasonic inspection device and guide wave transducer for the ultrasonic inspection device
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
KR20040056821A (en) Ultrasonic evaluation system for internal deposit layer in a pipe
Edwards et al. Detection of corrosion in offshore risers using guided ultrasonic waves
WO2018135242A1 (en) Inspection method
KR100344144B1 (en) Medical ultrasonic probe using conductive epoxy
RU2644438C1 (en) Method of ultrasonic controlling surface and subsurface defects of metal products and device for its implementation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080513

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080516

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080611

R150 Certificate of patent or registration of utility model

Ref document number: 4144699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

EXPY Cancellation because of completion of term