JP2013127400A - Ultrasonic inspection device - Google Patents

Ultrasonic inspection device Download PDF

Info

Publication number
JP2013127400A
JP2013127400A JP2011276902A JP2011276902A JP2013127400A JP 2013127400 A JP2013127400 A JP 2013127400A JP 2011276902 A JP2011276902 A JP 2011276902A JP 2011276902 A JP2011276902 A JP 2011276902A JP 2013127400 A JP2013127400 A JP 2013127400A
Authority
JP
Japan
Prior art keywords
ultrasonic
inspection object
inspection
transmission
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011276902A
Other languages
Japanese (ja)
Inventor
Takahiro Onda
高弘 恩田
Morimasa Murase
守正 村瀬
Koji Kitayama
綱次 北山
Yutaka Adachi
裕 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyota Auto Body Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyota Auto Body Co Ltd
Priority to JP2011276902A priority Critical patent/JP2013127400A/en
Publication of JP2013127400A publication Critical patent/JP2013127400A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To precisely inspect an end of an object of inspection by suppressing a diffracted wave bypassing the object of inspection and reaching an ultrasonic reception device.SOLUTION: An ultrasonic wave shield member 54 having a plate-like member 56 and an elastic member 58 is provided in contact with an end face of an object 30 of inspection more on an outer peripheral side than an ultrasonic wave transmission position. The elastic member 58 comes into contact with the end face of the object 30 of inspection while elastically deforming so as to prevent an ultrasonic wave from leaking through a gap between the end face of the object 30 of inspection and the elastic member 58. The ultrasonic wave shield member 54 in contact with the end face of the object 30 of inspection can suppress an ultrasonic wave transmitted from an ultrasonic wave transmission surface 12 from bypassing the object 30 of inspection and reaching an ultrasonic wave reception surface 22 as a diffracted wave.

Description

本発明は、超音波を用いて検査対象物の検査を行う超音波検査装置に関する。   The present invention relates to an ultrasonic inspection apparatus that inspects an inspection object using ultrasonic waves.

材料の非破壊評価を行うための手段として、放射線や電磁気、超音波等を利用した手法が用途に合わせて利用されている。その中でも超音波は、人体への影響が少なく、材料内部の検査が行えるため、生産現場等において導入しやすい方法として広く活用されている。   As means for performing non-destructive evaluation of materials, techniques using radiation, electromagnetics, ultrasonic waves, and the like are used according to applications. Among them, ultrasonic waves are widely used as a method that can be easily introduced at production sites and the like because they have little influence on the human body and can inspect materials.

しかし、超音波を固体材料内へ入射し、固体材料内からの超音波を受信するためには、従来は、材料と超音波センサ間に水やジェル等のカップリング剤を用いなければならなかった。そのため、製造ライン中の検査であっても、検査対象物全体を水に浸したり(水浸法)、超音波センサと検査対象物間のみに水を吹きかけたり(部分水浸法)する必要があり、その適用は一部に鉄鋼ライン等に限られていた。   However, in order to receive ultrasonic waves from inside the solid material and to receive ultrasonic waves from the inside of the solid material, conventionally, a coupling agent such as water or gel must be used between the material and the ultrasonic sensor. It was. Therefore, even for inspections on the production line, it is necessary to immerse the entire inspection object in water (water immersion method) or to spray water between the ultrasonic sensor and the inspection object only (partial immersion method). Yes, its application was limited to steel lines.

近年、空中に強力な超音波を伝搬させ材料内へ入射し、材料内を伝搬した後、材料から漏洩する超音波を感度よく受信できる空中超音波センサが開発された(空中超音波法に関する下記特許文献1〜6参照)。空中では高周波ほど減衰が大きいため、水浸法等で利用できる周波数帯(1MHz〜100MHz)よりも低い周波数帯に制限されるが、検査分解能を向上させるためにできるだけ高い周波数帯を用いることが望ましく、開発されている空中超音波センサの周波数帯は50kHz〜1MHz程度となっている。水浸法ほどの高い空間分解能は期待できないものの、非接触で検査が可能となるため、ライン中での全数検査への適用が十分期待できる。   In recent years, an aerial ultrasonic sensor has been developed that can receive high-accuracy ultrasonic waves in the air, enter the material, propagate through the material, and then receive the ultrasonic waves leaking from the material with high sensitivity (see below for the aerial ultrasonic method). Patent References 1 to 6). In the air, the higher the frequency, the higher the attenuation. Therefore, the frequency band is limited to a frequency band lower than the frequency band (1 MHz to 100 MHz) that can be used by the water immersion method, but it is desirable to use a frequency band as high as possible in order to improve inspection resolution. The frequency band of the developed aerial ultrasonic sensor is about 50 kHz to 1 MHz. Although high spatial resolution as high as the water immersion method cannot be expected, it is possible to inspect without contact, so it can be expected to be applied to 100% inspection in the line.

特開2008−128965号公報JP 2008-128965 A 特開2002−195987号公報JP 2002-195987 A 特許第4120969号公報Japanese Patent No. 4120969 特開2006−138818号公報JP 2006-138818 A 特開2009−150692号公報JP 2009-150692 A 特開2010−25817号公報JP 2010-25817 A 特開平8−21892号公報JP-A-8-21892 特許第3484031号公報Japanese Patent No. 3480311 特許第3036632号公報Japanese Patent No. 3036632 特開平8−313502号公報JP-A-8-313502 特開昭64−73250号公報JP-A-64-73250

超音波を用いて検査対象物の検査を行う手法として、例えば特許文献1のように、検査対象物の表面側に配置された超音波送信装置から超音波を送信し、検査対象物中を透過した超音波を検査対象物の裏面側に配置された超音波受信装置で受信する透過法がある。しかし、透過法により検査対象物の端部の検査を行う場合は、超音波受信装置で受信される超音波には、検査対象物中を透過して超音波受信装置に到達する透過波だけでなく、検査対象物を迂回して超音波受信装置に到達する回折波も存在する。この回折波は、透過波とほぼ同時刻に超音波受信装置で受信され、さらに、超音波送信装置及び超音波受信装置を検査対象物の側面に近づけるほど、超音波受信装置での受信レベルが大きくなりやすい。検査対象物の端部の検査を精度よく行うためには、検査対象物中を透過して超音波受信装置に到達する透過波の振幅を超音波受信装置での受信信号から精度よく検出する必要があり、そのためには、検査対象物を迂回して超音波受信装置に到達する回折波を抑制することが望ましい。   As a technique for inspecting an inspection object using ultrasonic waves, for example, as in Patent Document 1, ultrasonic waves are transmitted from an ultrasonic transmission device arranged on the surface side of the inspection object, and transmitted through the inspection object. There is a transmission method in which the ultrasonic wave is received by an ultrasonic receiving device arranged on the back side of the inspection object. However, when the end of the inspection object is inspected by the transmission method, the ultrasonic wave received by the ultrasonic receiver is only transmitted waves that pass through the inspection object and reach the ultrasonic receiver. There is also a diffracted wave that bypasses the inspection target and reaches the ultrasonic receiver. This diffracted wave is received by the ultrasonic receiving device at approximately the same time as the transmitted wave, and further, the closer the ultrasonic transmitting device and the ultrasonic receiving device are to the side surface of the inspection object, the higher the reception level at the ultrasonic receiving device. Easy to grow. In order to accurately inspect the end of the inspection object, it is necessary to accurately detect the amplitude of the transmitted wave that passes through the inspection object and reaches the ultrasonic receiver from the received signal at the ultrasonic receiver. For this purpose, it is desirable to suppress diffracted waves that reach the ultrasonic receiving device by bypassing the inspection object.

本発明は、検査対象物を迂回して超音波受信装置に到達する回折波を抑制することで、検査対象物の端部の検査を精度よく行うことを目的とする。   An object of the present invention is to accurately inspect an end portion of an inspection object by suppressing a diffracted wave that reaches the ultrasonic receiving device by bypassing the inspection object.

本発明に係る超音波検査装置は、上述した目的を達成するために以下の手段を採った。   The ultrasonic inspection apparatus according to the present invention employs the following means in order to achieve the above-described object.

本発明に係る超音波検査装置は、検査対象物の表面端部と対向配置される超音波送信面であって、超音波を検査対象物の表面端部へ送信する超音波送信面を含む超音波送信装置と、検査対象物を介して超音波送信面と対向するよう検査対象物の裏面端部と対向配置される超音波受信面であって、超音波送信面から送信され且つ検査対象物中を透過した超音波を受信する超音波受信面を含む超音波受信装置と、検査対象物における超音波透過位置より外周側の端面に密着する超音波遮蔽部材であって、超音波送信面から送信された超音波が検査対象物を迂回して超音波受信面に到達するのを抑制するための超音波遮蔽部材と、を備えることを要旨とする。   An ultrasonic inspection apparatus according to the present invention is an ultrasonic transmission surface that is disposed opposite to a surface end portion of an inspection object, and includes an ultrasonic transmission surface that transmits ultrasonic waves to the surface end portion of the inspection object. An ultrasonic wave receiving device and an ultrasonic wave receiving surface that is arranged to face the back surface end of the inspection object so as to face the ultrasonic wave transmission surface through the inspection object, and is transmitted from the ultrasonic transmission surface and inspected An ultrasonic receiving device including an ultrasonic receiving surface that receives ultrasonic waves transmitted through the inside, and an ultrasonic shielding member that is in close contact with the end surface on the outer peripheral side of the ultrasonic transmission position in the inspection object, from the ultrasonic transmitting surface The gist of the present invention is to include an ultrasonic shielding member for suppressing the transmitted ultrasonic wave from reaching the ultrasonic wave reception surface by bypassing the inspection object.

本発明の一態様では、超音波遮蔽部材における検査対象物の前記端面に密着する部分は、弾性変形可能であることが好適である。   In one aspect of the present invention, it is preferable that the portion of the ultrasonic shielding member that is in close contact with the end face of the inspection object is elastically deformable.

本発明の一態様では、超音波遮蔽部材における超音波の透過率は、検査対象物における超音波の透過率より低いことが好適である。   In one embodiment of the present invention, it is preferable that the ultrasonic transmittance of the ultrasonic shielding member is lower than the ultrasonic transmittance of the inspection object.

本発明の一態様では、超音波遮蔽部材を検査対象物の前記端面へ押し付ける押付機構を備えることが好適である。   In one aspect of the present invention, it is preferable to include a pressing mechanism that presses the ultrasonic shielding member against the end surface of the inspection object.

本発明の一態様では、検査対象物における超音波透過位置を移動させるように、超音波送信装置及び超音波受信装置を移動させる走査装置を備え、超音波遮蔽部材は、検査対象物における超音波透過位置の移動範囲全体に渡ってその外周側の端面に密着することが好適である。   In one aspect of the present invention, a scanning device that moves an ultrasonic transmission device and an ultrasonic reception device so as to move an ultrasonic transmission position in an inspection object is provided, and the ultrasonic shielding member includes an ultrasonic wave in the inspection object. It is preferable to make close contact with the outer peripheral end surface over the entire movement range of the transmission position.

本発明の一態様では、検査対象物における超音波透過位置を移動させるように、超音波送信装置及び超音波受信装置を移動させる走査装置を備え、走査装置は、超音波遮蔽部材が検査対象物における超音波透過位置より外周側の端面に密着する状態を維持するように、超音波遮蔽部材を超音波送信装置及び超音波受信装置とともに移動させることが好適である。   In one aspect of the present invention, the scanning device includes a scanning device that moves the ultrasonic transmitting device and the ultrasonic receiving device so as to move the ultrasonic transmission position in the inspection target, and the ultrasonic shielding member is the inspection target. It is preferable to move the ultrasonic shielding member together with the ultrasonic transmission device and the ultrasonic reception device so as to maintain a state of being in close contact with the end face on the outer peripheral side from the ultrasonic transmission position.

本発明の一態様では、検査対象物は、第1板状部材と第2板状部材が端部において接着層を介して接合されており、超音波送信面は、第1板状部材の表面端部と対向配置され、超音波を第1板状部材を介して接着層へ送信し、超音波受信面は、第1板状部材と接着層と第2板状部材を介して超音波送信面と対向するよう第2板状部材の裏面端部と対向配置され、超音波送信面から送信され且つ第1板状部材と接着層と第2板状部材を透過した超音波を受信し、超音波遮蔽部材は、第1板状部材における超音波透過位置より外周側の端面及び第2板状部材における超音波透過位置より外周側の端面のいずれか1つ以上に密着することが好適である。   In one aspect of the present invention, the inspection object is such that the first plate-like member and the second plate-like member are bonded to each other through the adhesive layer at the end, and the ultrasonic transmission surface is the surface of the first plate-like member. The ultrasonic wave is transmitted to the adhesive layer through the first plate member, and the ultrasonic wave receiving surface is ultrasonically transmitted through the first plate member, the adhesive layer, and the second plate member. The ultrasonic wave transmitted from the ultrasonic transmission surface and transmitted through the first plate member, the adhesive layer, and the second plate member is received so as to face the back surface end of the second plate member so as to face the surface, It is preferable that the ultrasonic shielding member is in close contact with one or more of an end face on the outer peripheral side from the ultrasonic transmission position in the first plate member and an end face on the outer peripheral side from the ultrasonic transmission position in the second plate member. is there.

本発明によれば、検査対象物の端部の検査を行う場合に、超音波送信面から送信された超音波が検査対象物を迂回して超音波受信面に回折波として到達するのを抑制することができるので、検査対象物中を透過して超音波受信面に到達する透過波の振幅を超音波受信面での受信信号から精度よく検出することができる。その結果、検査対象物の端部の検査を精度よく行うことができる。   According to the present invention, when the end of the inspection object is inspected, the ultrasonic wave transmitted from the ultrasonic transmission surface is prevented from bypassing the inspection object and reaching the ultrasonic reception surface as a diffracted wave. Therefore, the amplitude of the transmitted wave that passes through the inspection object and reaches the ultrasonic wave reception surface can be accurately detected from the reception signal on the ultrasonic wave reception surface. As a result, the end of the inspection object can be inspected with high accuracy.

本発明の実施形態に係る超音波検査装置の概略構成を示す図である。1 is a diagram showing a schematic configuration of an ultrasonic inspection apparatus according to an embodiment of the present invention. 本発明の実施形態に係る超音波検査装置の概略構成を示す図である。1 is a diagram showing a schematic configuration of an ultrasonic inspection apparatus according to an embodiment of the present invention. 本発明の実施形態に係る超音波検査装置の概略構成を示す図である。1 is a diagram showing a schematic configuration of an ultrasonic inspection apparatus according to an embodiment of the present invention. 超音波送信面から超音波受信面までにおける超音波の伝搬経路を説明する図である。It is a figure explaining the propagation path of the ultrasonic wave from an ultrasonic transmission surface to an ultrasonic reception surface. 超音波送信面及び超音波受信面を移動させて焦点の位置xを変化させながら、超音波送信面から送信された超音波を超音波受信面で受信した場合に、計測された超音波信号の振幅最大値の分布を示す図である。When the ultrasonic wave transmitted from the ultrasonic wave transmitting surface is received by the ultrasonic wave receiving surface while moving the ultrasonic wave transmitting surface and the ultrasonic wave receiving surface to change the focal position x, the measured ultrasonic signal It is a figure which shows distribution of an amplitude maximum value. 検査対象物に対する焦点の位置xを説明する図である。It is a figure explaining the position x of the focus with respect to a test subject. 超音波送信面及び超音波受信面を移動させて焦点の位置xを変化させながら、超音波送信面から送信された超音波を超音波受信面で受信した場合に、計測された超音波信号波形の一例を示す図である。The ultrasonic signal waveform measured when the ultrasonic wave transmitted from the ultrasonic wave transmitting surface is received by the ultrasonic wave receiving surface while moving the ultrasonic wave transmitting surface and the ultrasonic wave receiving surface to change the focal point position x. It is a figure which shows an example. 超音波送信面及び超音波受信面を移動させて焦点の位置xを変化させながら、超音波送信面から送信された超音波を超音波受信面で受信した場合に、計測された超音波信号波形の一例を示す図である。The ultrasonic signal waveform measured when the ultrasonic wave transmitted from the ultrasonic wave transmitting surface is received by the ultrasonic wave receiving surface while moving the ultrasonic wave transmitting surface and the ultrasonic wave receiving surface to change the focal point position x. It is a figure which shows an example. 本発明の実施形態に係る超音波検査装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the ultrasonic inspection apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る超音波検査装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the ultrasonic inspection apparatus which concerns on embodiment of this invention.

以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1〜3は本発明の実施形態に係る超音波検査装置の概略構成を示す図であり、図1,2は装置全体の概略構成を示し、図3は超音波送信センサ10及び超音波受信センサ20の概略構成を示す。本実施形態に係る超音波検査装置は、超音波送信センサ10と、超音波受信センサ20と、超音波遮蔽部材54と、走査装置40と、超音波信号供給部41と、信号処理部42と、画像処理部44と、表示装置46と、検査判定部48と、を備える。   1 to 3 are diagrams showing a schematic configuration of an ultrasonic inspection apparatus according to an embodiment of the present invention, FIGS. 1 and 2 show a schematic configuration of the entire apparatus, and FIG. 3 is an ultrasonic transmission sensor 10 and an ultrasonic reception. A schematic configuration of the sensor 20 is shown. The ultrasonic inspection apparatus according to this embodiment includes an ultrasonic transmission sensor 10, an ultrasonic reception sensor 20, an ultrasonic shielding member 54, a scanning device 40, an ultrasonic signal supply unit 41, and a signal processing unit 42. , An image processing unit 44, a display device 46, and an inspection determination unit 48.

検査対象物30は、板状部材である鋼板32,34と、鋼板32,34同士を端部において接合するための接着層36とを含んで構成され、鋼板32の裏面端部32bと鋼板34の表面端部34aが接着層36を介して接合されている。鋼板32,34間における接着層36が設けられていない領域は空隙となっている。以下の説明では、本実施形態に係る超音波検査装置を用いた検査対象物30の検査の適用例として、鋼板32,34の接着層36による密着性を評価する場合について説明する。   The inspection object 30 is configured to include steel plates 32 and 34 that are plate-like members and an adhesive layer 36 for joining the steel plates 32 and 34 at the ends, and the back end portion 32b of the steel plate 32 and the steel plate 34. The surface end portion 34 a of the first and second surfaces are joined through an adhesive layer 36. A region where the adhesive layer 36 is not provided between the steel plates 32 and 34 is a gap. In the following description, as an application example of the inspection of the inspection object 30 using the ultrasonic inspection apparatus according to the present embodiment, a case where the adhesion by the adhesive layer 36 of the steel plates 32 and 34 is evaluated will be described.

超音波送信センサ10は、鋼板32を介して接着層36と対向するよう検査対象物30(鋼板32)の表面端部32aと対向配置される超音波送信面12と、送信側超音波遮蔽キャップ14とを含んで構成される。超音波送信面12は、例えば圧電素子等により構成することが可能である。超音波送信センサ10には、超音波信号供給部41からの超音波信号が供給される。超音波送信センサ10は、超音波信号供給部41から供給された超音波信号に基づいて、超音波送信面12から超音波を鋼板32の表面端部32aへ送信する。超音波送信面12から送信された超音波は、図1の矢印61に示すように、空中を伝搬して鋼板32の表面端部32aに入射する。鋼板32の表面端部32aに入射した超音波は、図1の矢印62に示すように、鋼板32を透過して接着層36に到達し、さらに、接着層36及び鋼板34を透過して検査対象物30(鋼板34)の裏面側に到達する。図1,3に示す例では、超音波送信センサ10はフォーカス型センサであり、超音波送信面12は、検査対象物30中(接着層36)に焦点38が位置する凹曲面形状であり、超音波送信面12から送信された超音波は、焦点38(接着層36)へ集束する。なお、送信側超音波遮蔽キャップ14の構成の説明については後述する。   The ultrasonic transmission sensor 10 includes an ultrasonic transmission surface 12 disposed to face the surface end portion 32a of the inspection object 30 (steel plate 32) so as to face the adhesive layer 36 through the steel plate 32, and a transmission-side ultrasonic shielding cap. 14. The ultrasonic transmission surface 12 can be constituted by, for example, a piezoelectric element. An ultrasonic signal from the ultrasonic signal supply unit 41 is supplied to the ultrasonic transmission sensor 10. The ultrasonic transmission sensor 10 transmits an ultrasonic wave from the ultrasonic transmission surface 12 to the surface end portion 32 a of the steel plate 32 based on the ultrasonic signal supplied from the ultrasonic signal supply unit 41. The ultrasonic wave transmitted from the ultrasonic transmission surface 12 propagates in the air and enters the surface end portion 32a of the steel plate 32 as indicated by an arrow 61 in FIG. The ultrasonic wave incident on the surface end portion 32a of the steel plate 32 passes through the steel plate 32 and reaches the adhesive layer 36, and further passes through the adhesive layer 36 and the steel plate 34 for inspection as shown by the arrow 62 in FIG. It reaches the back side of the object 30 (steel plate 34). In the example shown in FIGS. 1 and 3, the ultrasonic transmission sensor 10 is a focus type sensor, and the ultrasonic transmission surface 12 has a concave curved surface shape in which the focal point 38 is located in the inspection object 30 (adhesive layer 36). The ultrasonic waves transmitted from the ultrasonic transmission surface 12 are focused on the focal point 38 (adhesive layer 36). The configuration of the transmission side ultrasonic shielding cap 14 will be described later.

超音波受信センサ20は、検査対象物30(鋼板32と接着層36と鋼板34)を介して超音波送信面12と対向するよう検査対象物30(鋼板34)の裏面端部34bと対向配置される超音波受信面22と、受信側超音波遮蔽キャップ24とを含んで構成される。超音波受信面22も、例えば圧電素子等により構成することが可能である。検査対象物30(鋼板34)の裏面側に到達した超音波は、図1の矢印63に示すように、空中を伝搬して超音波受信面22に到達する。超音波受信センサ20は、超音波送信面12から送信され且つ検査対象物30(鋼板32と接着層36と鋼板34)を透過した超音波を超音波受信面22で受信する。図1,3に示す例では、超音波受信センサ20もフォーカス型センサであり、超音波受信面22も、検査対象物30中(接着層36)に焦点38が位置する凹曲面形状であり、焦点38に集束した超音波は、超音波受信面22全体に拡散して到達する。なお、受信側超音波遮蔽キャップ24の構成の説明については後述する。   The ultrasonic receiving sensor 20 is disposed so as to face the back end 34b of the inspection object 30 (steel plate 34) so as to face the ultrasonic transmission surface 12 via the inspection object 30 (steel plate 32, adhesive layer 36, and steel plate 34). An ultrasonic receiving surface 22 and a receiving-side ultrasonic shielding cap 24 are configured. The ultrasonic receiving surface 22 can also be configured by, for example, a piezoelectric element. The ultrasonic wave that has reached the back side of the inspection object 30 (steel plate 34) propagates in the air and reaches the ultrasonic wave receiving surface 22 as indicated by an arrow 63 in FIG. The ultrasonic reception sensor 20 receives ultrasonic waves transmitted from the ultrasonic transmission surface 12 and transmitted through the inspection object 30 (the steel plate 32, the adhesive layer 36, and the steel plate 34) by the ultrasonic reception surface 22. In the example shown in FIGS. 1 and 3, the ultrasonic reception sensor 20 is also a focus type sensor, and the ultrasonic reception surface 22 has a concave curved surface shape in which the focal point 38 is located in the inspection object 30 (adhesive layer 36). The ultrasonic waves focused on the focal point 38 diffuse and reach the entire ultrasonic receiving surface 22. The configuration of the reception-side ultrasonic shielding cap 24 will be described later.

走査装置40は、超音波送信センサ10及び超音波受信センサ20(超音波送信面12及び超音波受信面22)を、鋼板32,34の板面方向と平行に2次元的に移動走査させる。これによって、検査対象物30に対して超音波送信面12及び超音波受信面22の焦点38を鋼板32,34の板面方向と平行に2次元的に移動走査させることができ、検査対象物30に対する超音波透過位置(密着性評価位置)を鋼板32,34の板面方向と平行に2次元的に移動走査させることができる。鋼板32,34の接着層36による密着性を評価する際には、走査装置40により検査対象物30に対する超音波透過位置を2次元的に移動走査しながら、超音波送信センサ10から超音波を送信し、検査対象物30中を透過した超音波を超音波受信センサ20で受信する。その際に、超音波送信センサ10及び超音波受信センサ20をフォーカス型センサとすることで、検査対象物30に対する密着性評価位置の空間分解能を向上させることが可能となる。   The scanning device 40 causes the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 (the ultrasonic transmission surface 12 and the ultrasonic reception surface 22) to move and scan two-dimensionally in parallel with the plate surface directions of the steel plates 32 and 34. Thereby, the focal point 38 of the ultrasonic transmission surface 12 and the ultrasonic reception surface 22 can be moved and scanned two-dimensionally in parallel with the plate surface direction of the steel plates 32 and 34 with respect to the inspection target object 30. The ultrasonic transmission position (adhesion evaluation position) with respect to 30 can be moved and scanned two-dimensionally in parallel with the plate surface direction of the steel plates 32 and 34. When evaluating the adhesion of the steel plates 32 and 34 by the adhesive layer 36, ultrasonic waves are transmitted from the ultrasonic transmission sensor 10 while two-dimensionally moving and scanning the ultrasonic transmission position with respect to the inspection object 30 by the scanning device 40. The ultrasonic wave reception sensor 20 receives the ultrasonic wave transmitted and transmitted through the inspection object 30. At that time, by using the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 as focus type sensors, the spatial resolution of the adhesion evaluation position with respect to the inspection object 30 can be improved.

信号処理部42は、超音波受信センサ20(超音波受信面22)で受信された、各超音波透過位置(密着性評価位置)に対応する超音波信号の振幅を検出する。画像処理部44は、信号処理部42で検出された超音波信号の振幅を、各超音波透過位置と対応付けて2次元面に画像化し、その2次元画像を表示装置46に表示させる。検査判定部48は、信号処理部42で検出された、各超音波透過位置に対応する超音波信号の振幅に基づいて、鋼板32,34の接着層36による密着性を評価することで、検査対象物30の検査を行う。例えば鋼板32(あるいは鋼板34)と接着層36との界面に剥離がある場合は、剥離が無い場合と比較して、検査対象物30(鋼板32と接着層36と鋼板34)を透過して超音波受信面22で受信される超音波信号のレベルが低下する。したがって、超音波受信面22で受信された、各超音波透過位置に対応する超音波の振幅を調べることで、鋼板32,34の接着層36による密着性を評価することが可能となる。   The signal processing unit 42 detects the amplitude of the ultrasonic signal corresponding to each ultrasonic transmission position (adhesion evaluation position) received by the ultrasonic reception sensor 20 (ultrasonic reception surface 22). The image processing unit 44 images the amplitude of the ultrasonic signal detected by the signal processing unit 42 in a two-dimensional plane in association with each ultrasonic transmission position, and causes the display device 46 to display the two-dimensional image. The inspection determination unit 48 evaluates the adhesion of the steel plates 32 and 34 by the adhesive layer 36 based on the amplitude of the ultrasonic signal corresponding to each ultrasonic transmission position detected by the signal processing unit 42. The object 30 is inspected. For example, when there is peeling at the interface between the steel plate 32 (or the steel plate 34) and the adhesive layer 36, the inspection object 30 (the steel plate 32, the adhesive layer 36, and the steel plate 34) is transmitted through compared with the case where there is no peeling. The level of the ultrasonic signal received by the ultrasonic receiving surface 22 decreases. Therefore, it is possible to evaluate the adhesion of the steel plates 32 and 34 by the adhesive layer 36 by examining the amplitude of the ultrasonic wave received by the ultrasonic wave receiving surface 22 and corresponding to each ultrasonic wave transmitting position.

鋼板32,34端部での接着層36による密着性を評価する場合は、超音波送信面12から超音波を鋼板32の表面端部32aへ向けて送信し、鋼板34の裏面端部34bからの超音波を超音波受信面22で受信する。その際に、超音波送信センサ10(フォーカス型センサ)から送信される超音波エネルギーのほとんどは、図4の矢印61,62に示すように、焦点38に向かって集束するが、一部は、図4の矢印64に示すように、センサより広がる方向に空中を伝搬する回折波となり、図4の矢印65,66に示すように、検査対象物30を迂回して超音波受信面22に到達する。その結果、超音波受信面22で受信される超音波には、図4の矢印61〜63に示すように、検査対象物30中(鋼板32と接着層36と鋼板34)を透過して超音波受信面22に到達する透過波だけでなく、実際には、図4の矢印64〜66に示すように、検査対象物30(鋼板32と接着層36と鋼板34)を迂回して超音波受信面22に到達する回折波も存在する。この回折波は、透過波とほぼ同時刻に超音波受信面22で受信され、さらに、超音波送信面12及び超音波受信面22を検査対象物30の端面(鋼板32,34の端面32c,34c)に近づけるほど、超音波受信面22での受信レベルが大きくなりやすい。鋼板32,34端部での接着層36による密着性を精度よく評価するためには、検査対象物30中を透過して超音波受信面22に到達する透過波の振幅を超音波受信面22での受信信号から精度よく検出する必要があり、そのためには、検査対象物30を迂回して超音波受信面22に到達する回折波を抑制することが望ましい。特に、検査対象物30が鋼板32と接着層36と鋼板34のような3層構造では、その領域を透過する超音波のエネルギーが非常に小さくなるため、超音波受信面22での受信信号にわずかなエネルギーの回折波が混入しても、密着性評価に大きな影響を与えることになる。   When evaluating the adhesion by the adhesive layer 36 at the ends of the steel plates 32 and 34, the ultrasonic wave is transmitted from the ultrasonic transmission surface 12 toward the surface end portion 32a of the steel plate 32, and from the back end portion 34b of the steel plate 34. Are received by the ultrasonic wave receiving surface 22. At that time, most of the ultrasonic energy transmitted from the ultrasonic transmission sensor 10 (focus type sensor) is focused toward the focal point 38 as shown by arrows 61 and 62 in FIG. As shown by an arrow 64 in FIG. 4, a diffracted wave propagates in the air in a direction spreading from the sensor, and as shown by arrows 65 and 66 in FIG. To do. As a result, the ultrasonic wave received by the ultrasonic wave receiving surface 22 is transmitted through the inspection object 30 (the steel plate 32, the adhesive layer 36, and the steel plate 34) as shown by arrows 61 to 63 in FIG. In addition to the transmitted wave reaching the sound wave receiving surface 22, in practice, as shown by arrows 64 to 66 in FIG. 4, the ultrasonic wave bypasses the inspection object 30 (the steel plate 32, the adhesive layer 36 and the steel plate 34). There is also a diffracted wave that reaches the receiving surface 22. This diffracted wave is received by the ultrasonic wave receiving surface 22 at substantially the same time as the transmitted wave, and further, the ultrasonic wave transmitting surface 12 and the ultrasonic wave receiving surface 22 are passed through the end surfaces of the inspection object 30 (the end surfaces 32c of the steel plates 32 and 34, 34c), the reception level at the ultrasonic wave receiving surface 22 tends to increase. In order to accurately evaluate the adhesion due to the adhesive layer 36 at the ends of the steel plates 32 and 34, the amplitude of the transmitted wave that passes through the inspection object 30 and reaches the ultrasonic receiving surface 22 is defined as the ultrasonic receiving surface 22. Therefore, it is desirable to suppress the diffracted wave that reaches the ultrasonic wave receiving surface 22 by bypassing the inspection object 30. In particular, when the inspection object 30 has a three-layer structure such as the steel plate 32, the adhesive layer 36, and the steel plate 34, the energy of the ultrasonic wave that passes through the region becomes very small. Even if a diffracted wave with a slight energy is mixed, the adhesion evaluation is greatly affected.

そこで、本実施形態では、超音波送信面12から送信された超音波が検査対象物30を迂回して超音波受信面22に回折波として到達するのを抑制するために、検査対象物30における超音波透過位置(密着性評価位置)より外周側の端面に、板状の超音波遮蔽部材54を密着させて設けている。超音波遮蔽部材54は、板状部材56と、板状部材56の一端面に設けられた弾性変形可能な弾性部材58とを含んで構成される。板状部材56の一端面(弾性部材58)は、検査対象物30における超音波透過位置(密着性評価位置)の移動範囲71より外周側の端面形状に沿って形成され、弾性部材58が検査対象物30における超音波透過位置の移動範囲71全体に渡ってその外周側の端面(鋼板32,34の端面32c,34c)に密着する。その際には、弾性部材58が弾性変形しながら検査対象物30の端面に密着することで、超音波が検査対象物30の端面と弾性部材58との隙間を通過して漏洩するのが防止される。板状部材56の他端面には押付機構としてのばね60が設けられ、超音波遮蔽部材54がばね60を介して治具70に支持される。ばね60の付勢力によって超音波遮蔽部材54が検査対象物30の端面へ押し付けられることで、検査対象物30の端面と弾性部材58との間に密着力を安定して発生させることができる。図1に示す例では、弾性部材58が鋼板32,34における超音波透過位置より外周側の端面32c,34cの両方に密着しているが、弾性部材58が鋼板32における超音波透過位置より外周側の端面32cだけに密着していてもよいし、弾性部材58が鋼板34における超音波透過位置より外周側の端面34cだけに密着していてもよい。   Therefore, in the present embodiment, in order to suppress the ultrasonic wave transmitted from the ultrasonic transmission surface 12 from reaching the ultrasonic reception surface 22 by bypassing the inspection target 30, A plate-like ultrasonic shielding member 54 is provided in close contact with the end face on the outer peripheral side from the ultrasonic transmission position (adhesion evaluation position). The ultrasonic shielding member 54 includes a plate-like member 56 and an elastically deformable elastic member 58 provided on one end surface of the plate-like member 56. One end face (elastic member 58) of the plate-like member 56 is formed along the end face shape on the outer peripheral side from the moving range 71 of the ultrasonic transmission position (adhesion evaluation position) in the inspection object 30, and the elastic member 58 is inspected. The ultrasonic wave transmission position moving range 71 of the object 30 is in close contact with the outer peripheral end surfaces (end surfaces 32c, 34c of the steel plates 32, 34). At that time, the elastic member 58 is in close contact with the end surface of the inspection object 30 while being elastically deformed, thereby preventing ultrasonic waves from leaking through the gap between the end surface of the inspection object 30 and the elastic member 58. Is done. A spring 60 as a pressing mechanism is provided on the other end surface of the plate-like member 56, and the ultrasonic shielding member 54 is supported by the jig 70 via the spring 60. The ultrasonic shielding member 54 is pressed against the end surface of the inspection object 30 by the urging force of the spring 60, so that an adhesion force can be stably generated between the end surface of the inspection object 30 and the elastic member 58. In the example shown in FIG. 1, the elastic member 58 is in close contact with both of the end faces 32 c and 34 c on the outer peripheral side from the ultrasonic transmission position in the steel plates 32 and 34, but the elastic member 58 is in the outer periphery from the ultrasonic transmission position in the steel plate 32. The elastic member 58 may be in close contact with only the end surface 34c on the outer peripheral side of the ultrasonic wave transmitting position in the steel plate 34.

検査対象物30を迂回する回折波成分を抑えるためには、超音波遮蔽部材54における超音波の透過率を低くすることが好ましく、例えば超音波遮蔽部材54における超音波の透過率が検査対象物30における超音波の透過率より低いことが好ましい。超音波遮蔽部材54における超音波の透過率を低くするためには、音響インピーダンスの高い素材を超音波遮蔽部材54に用いることや、超音波の減衰率の高い素材を超音波遮蔽部材54に用いることや、超音波遮蔽部材54の厚さを厚くすることが好ましい。また、超音波送信面12から検査対象物30及び超音波遮蔽部材54を迂回して超音波受信面22に到る経路が、超音波送信面12と超音波受信面22間の距離と比較して、十分長くなる(例えば2倍以上になる)ように、超音波遮蔽部材54の幅を決定することが好ましい。   In order to suppress the diffracted wave component that bypasses the inspection object 30, it is preferable to reduce the ultrasonic transmittance of the ultrasonic shielding member 54. For example, the ultrasonic transmittance of the ultrasonic shielding member 54 is the inspection object. It is preferably lower than the transmittance of ultrasonic waves at 30. In order to reduce the ultrasonic transmittance of the ultrasonic shielding member 54, a material with high acoustic impedance is used for the ultrasonic shielding member 54, or a material with a high ultrasonic attenuation rate is used for the ultrasonic shielding member 54. In addition, it is preferable to increase the thickness of the ultrasonic shielding member 54. Further, the path from the ultrasonic transmission surface 12 to the ultrasonic reception surface 22 bypassing the inspection object 30 and the ultrasonic shielding member 54 is compared with the distance between the ultrasonic transmission surface 12 and the ultrasonic reception surface 22. Therefore, it is preferable to determine the width of the ultrasonic shielding member 54 so as to be sufficiently long (for example, twice or more).

さらに、超音波送信センサ10及び超音波受信センサ20には、超音波を遮蔽するための送信側超音波遮蔽キャップ14及び受信側超音波遮蔽キャップ24がそれぞれ設けられている。図1,3に示すように、送信側超音波遮蔽キャップ14は、超音波送信面12の周囲を全周に渡って取り囲み、超音波送信面12の周囲より検査対象物30(鋼板32)の表面端部32aへ全周に渡って突出して設けられており、超音波送信面12から鋼板32の表面端部32aへ超音波を空中伝搬させるための貫通穴14cが超音波送信面12側の端部から鋼板32の表面側の端部にかけて形成されている。送信側超音波遮蔽キャップ14の先端面14bと検査対象物30(鋼板32)の表面端部32aとの間には、僅かな(例えば3〜4mm程度の)空隙が形成される。あるいは、送信側超音波遮蔽キャップ14の先端面14bを鋼板32の表面端部32aに接触させることも可能である。   Further, the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 are respectively provided with a transmission-side ultrasonic shielding cap 14 and a reception-side ultrasonic shielding cap 24 for shielding ultrasonic waves. As shown in FIGS. 1 and 3, the transmission-side ultrasonic shielding cap 14 surrounds the entire circumference of the ultrasonic transmission surface 12, and the inspection object 30 (steel plate 32) is surrounded by the periphery of the ultrasonic transmission surface 12. A through-hole 14c for propagating ultrasonic waves in the air from the ultrasonic transmission surface 12 to the surface end portion 32a of the steel plate 32 is provided on the ultrasonic transmission surface 12 side. It is formed from the end portion to the end portion on the surface side of the steel plate 32. A slight gap (for example, about 3 to 4 mm) is formed between the distal end surface 14b of the transmission-side ultrasonic shielding cap 14 and the surface end portion 32a of the inspection object 30 (steel plate 32). Alternatively, the front end surface 14 b of the transmission-side ultrasonic shielding cap 14 can be brought into contact with the surface end portion 32 a of the steel plate 32.

広がる回折波成分を抑えて焦点38へ集束する成分のみを超音波受信面22から精度よく取り出すためには、送信側超音波遮蔽キャップ14の厚さを厚くすることで、送信側超音波遮蔽キャップ14中での超音波の減衰量を増加させることが好ましい。さらに、送信側超音波遮蔽キャップ14の貫通穴14cの内周面14aを、焦点38へ集束する成分を遮らないように、超音波送信面12の外周と焦点38とを結ぶ円錐面12aより外周側に配置するとともに、円錐面12aと内周面14aとの距離を短くすることが好ましい。そのためには、送信側超音波遮蔽キャップ14の内径(貫通穴14cの直径)は、検査対象物30(鋼板32)の表面側(図1,3の下側)が超音波送信面12側(図1,3の上側)より小さいことが好ましい。その際には、例えば図3に示すように、内周面14aを円錐面12aに近接配置するように、超音波送信面12側から検査対象物30の表面側へ向かうにつれて、送信側超音波遮蔽キャップ14の内径(貫通穴14cの直径)を徐々に小さくすることも可能であるし、超音波送信面12側から検査対象物30の表面側へ向かうにつれて、送信側超音波遮蔽キャップ14の内径を段階的に小さくすることも可能である。また、広がった回折波成分が送信側超音波遮蔽キャップ14の内部(内周面14a)で多重反射するとノイズの原因となる。回折波の内周面14aでの多重反射を抑えるためには、送信側超音波遮蔽キャップ14の音響インピーダンスは、検査対象物30(鋼板32,34)の音響インピーダンスより低いことが好ましい。例えば、送信側超音波遮蔽キャップ14の素材を、金属材料に比べて音響インピーダンスの低い樹脂製(例えばポリアセタール等)やゴム製とすることが可能である。   In order to accurately extract only the component focused on the focal point 38 while suppressing the spreading diffracted wave component from the ultrasonic wave receiving surface 22, the transmission side ultrasonic wave shielding cap 14 is increased by increasing the thickness of the transmission side ultrasonic wave shielding cap 14. It is preferable to increase the attenuation amount of the ultrasonic wave in 14. Further, the inner peripheral surface 14a of the through hole 14c of the transmission-side ultrasonic shielding cap 14 has an outer periphery than the conical surface 12a that connects the outer periphery of the ultrasonic transmission surface 12 and the focal point 38 so as not to block the component that is focused on the focal point 38. It is preferable that the distance between the conical surface 12a and the inner peripheral surface 14a is shortened. For this purpose, the inner diameter of the transmission-side ultrasonic shielding cap 14 (the diameter of the through-hole 14c) is such that the surface side of the inspection object 30 (steel plate 32) (the lower side in FIGS. 1 and 3) is the ultrasonic transmission surface 12 side ( It is preferably smaller than the upper side of FIGS. In that case, for example, as shown in FIG. 3, as the inner circumferential surface 14 a is disposed close to the conical surface 12 a, the transmission-side ultrasonic wave is moved from the ultrasonic transmission surface 12 side toward the surface side of the inspection object 30. The inner diameter of the shielding cap 14 (the diameter of the through hole 14c) can be gradually reduced, and the transmission-side ultrasonic shielding cap 14 moves from the ultrasonic transmission surface 12 side toward the surface side of the inspection object 30. It is also possible to reduce the inner diameter in steps. Further, when the spread diffracted wave component is subjected to multiple reflection inside the transmission side ultrasonic shielding cap 14 (inner peripheral surface 14a), it causes noise. In order to suppress the multiple reflection of the diffracted wave on the inner peripheral surface 14a, it is preferable that the acoustic impedance of the transmission side ultrasonic shielding cap 14 is lower than the acoustic impedance of the inspection object 30 (steel plates 32, 34). For example, the material of the transmission-side ultrasonic shielding cap 14 can be made of resin (for example, polyacetal) or rubber having a lower acoustic impedance than a metal material.

図1,3に示すように、受信側超音波遮蔽キャップ24は、超音波受信面22の周囲を全周に渡って取り囲み、超音波受信面22の周囲より検査対象物30(鋼板34)の裏面端部34bへ全周に渡って突出して設けられており、超音波受信面22から鋼板34の裏面端部34bへ超音波を空中伝搬させるための貫通穴24cが超音波受信面22側の端部から鋼板34の裏面側の端部にかけて形成されている。受信側超音波遮蔽キャップ24の先端面24bと検査対象物30(鋼板34)の表面端部34bとの間には、僅かな(例えば3〜4mm程度の)空隙が形成される。あるいは、受信側超音波遮蔽キャップ24の先端面24bを鋼板34の表面端部34bに接触させることも可能である。   As shown in FIGS. 1 and 3, the reception-side ultrasonic shielding cap 24 surrounds the entire circumference of the ultrasonic reception surface 22, and the inspection object 30 (steel plate 34) is surrounded by the periphery of the ultrasonic reception surface 22. A through hole 24c for propagating ultrasonic waves in the air from the ultrasonic wave receiving surface 22 to the back surface edge portion 34b of the steel plate 34 is provided on the ultrasonic wave receiving surface 22 side. It is formed from the end portion to the end portion on the back surface side of the steel plate 34. A slight gap (for example, about 3 to 4 mm) is formed between the front end surface 24b of the reception-side ultrasonic shielding cap 24 and the surface end portion 34b of the inspection object 30 (steel plate 34). Alternatively, the front end surface 24 b of the reception-side ultrasonic shielding cap 24 can be brought into contact with the surface end portion 34 b of the steel plate 34.

検査対象物30を迂回する回折波成分を抑えて焦点38から拡散する成分のみを超音波受信面22から精度よく取り出すためには、受信側超音波遮蔽キャップ24の厚さを厚くすることで、受信側超音波遮蔽キャップ24中での超音波の減衰量を増加させることが好ましい。さらに、受信側超音波遮蔽キャップ24の貫通穴24cの内周面24aを、焦点38から拡散する成分を遮らないように、超音波受信面22の外周と焦点38とを結ぶ円錐面22aより外周側に配置するとともに、円錐面22aと内周面24aとの距離を短くすることが好ましい。そのためには、受信側超音波遮蔽キャップ24の内径(貫通穴24cの直径)は、検査対象物30(鋼板34)の裏面側(図1,3の上側)が超音波受信面22側(図1,3の下側)より小さいことが好ましい。その際には、例えば図3に示すように、内周面24aを円錐面22aに近接配置するように、受音波送信面22側から検査対象物30の裏面側へ向かうにつれて、受信側超音波遮蔽キャップ24の内径(貫通穴24cの直径)を徐々に小さくすることも可能であるし、超音波受信面22側から検査対象物30の裏面側へ向かうにつれて、受信側超音波遮蔽キャップ24の内径を段階的に小さくすることも可能である。また、超音波が受信側超音波遮蔽キャップ24の内部(内周面24a)で多重反射するとノイズの原因となる。超音波の内周面24aでの多重反射を抑えるためには、受信側超音波遮蔽キャップ24の音響インピーダンスも、検査対象物30(鋼板32,34)の音響インピーダンスより低いことが好ましい。例えば、受信側超音波遮蔽キャップ24の素材も、金属材料に比べて音響インピーダンスの低い樹脂製(例えばポリアセタール等)やゴム製とすることが可能である。   In order to accurately extract only the component that diffuses from the focal point 38 while suppressing the diffracted wave component that bypasses the inspection object 30, by increasing the thickness of the reception-side ultrasonic shielding cap 24, It is preferable to increase the attenuation amount of ultrasonic waves in the reception-side ultrasonic shielding cap 24. Further, the inner peripheral surface 24a of the through hole 24c of the reception-side ultrasonic shielding cap 24 is more peripheral than the conical surface 22a that connects the outer periphery of the ultrasonic reception surface 22 and the focal point 38 so as not to block components diffusing from the focal point 38. It is preferable that the distance between the conical surface 22a and the inner peripheral surface 24a is shortened. For this purpose, the inner diameter of the reception-side ultrasonic shielding cap 24 (the diameter of the through hole 24c) is such that the back side (upper side of FIGS. 1 and 3) of the inspection object 30 (steel plate 34) is the ultrasonic reception surface 22 side (see FIG. It is preferable to be smaller than (lower side of 1, 3). In that case, for example, as shown in FIG. 3, the reception-side ultrasonic wave is advanced from the sound-receiving / transmission surface 22 side toward the back surface side of the inspection object 30 so that the inner peripheral surface 24 a is disposed close to the conical surface 22 a. The inner diameter of the shielding cap 24 (the diameter of the through hole 24c) can be gradually reduced, and the reception-side ultrasonic shielding cap 24 moves from the ultrasonic receiving surface 22 side toward the back surface side of the inspection object 30. It is also possible to reduce the inner diameter in steps. In addition, if the ultrasonic waves are multiple-reflected inside the reception-side ultrasonic shielding cap 24 (inner peripheral surface 24a), it causes noise. In order to suppress the multiple reflection of the ultrasonic wave at the inner peripheral surface 24a, it is preferable that the acoustic impedance of the reception-side ultrasonic shielding cap 24 is also lower than the acoustic impedance of the inspection object 30 (steel plates 32 and 34). For example, the material of the reception-side ultrasonic shielding cap 24 can also be made of resin (for example, polyacetal) or rubber having a lower acoustic impedance than a metal material.

超音波送信面12及び超音波受信面22を移動させて焦点38の位置xを変化させながら、超音波送信面12から送信された超音波を超音波受信面22で受信した場合に、計測された超音波信号の振幅最大値の分布を図5に示す。図5においては、検査対象物30の端面を位置x=0mm、検査対象物30の外側を位置x>0mm、検査対象物30の内側を位置x<0mmとし(図6参照)、計測を開始してから100μs〜150μs間における超音波信号の振幅最大値の分布を位置x=−3mm〜17mmの範囲で示している。図5において、(a)は超音波遮蔽部材54が設けられていない場合の結果を示し、(b)はアクリル樹脂製の板状部材56の一端面にニトリルゴム(NBR、硬さショアA66)を設けた場合の結果を示し、(c)はアクリル樹脂製の板状部材56の一端面に粘弾性エラストマー(硬さアスカーF65)を設けた場合の結果を示し、(d)はアクリル樹脂製の板状部材56の一端面にクロロプレンゴムスポンジ(硬さアスカーC20)を設けた場合の結果を示す。また、(a)の場合における位置x=−3mm,17mmでの超音波信号波形を図7の(a)−1,(a)−2に示し、(b)の場合における位置x=−3mm,1mm,17mmでの超音波信号波形を図7の(b)−1,(b)−2,(b)−3に示し、(c)の場合における位置x=−3mm,4mm,17mmでの超音波信号波形を図8の(c)−1,(c)−2,(c)−3に示し、(d)の場合における位置x=−3mm,4mm,17mmでの超音波信号波形を図8の(d)−1,(d)−2,(d)−3に示す。   Measured when the ultrasonic wave transmitted from the ultrasonic wave transmitting surface 12 is received by the ultrasonic wave receiving surface 22 while moving the ultrasonic wave transmitting surface 12 and the ultrasonic wave receiving surface 22 to change the position x of the focal point 38. The distribution of the maximum amplitude value of the ultrasonic signal is shown in FIG. In FIG. 5, the end face of the inspection object 30 is set to a position x = 0 mm, the outside of the inspection object 30 is set to a position x> 0 mm, and the inside of the inspection object 30 is set to a position x <0 mm (see FIG. 6). Then, the distribution of the maximum amplitude value of the ultrasonic signal between 100 μs and 150 μs is shown in the range of position x = −3 mm to 17 mm. In FIG. 5, (a) shows the result when the ultrasonic shielding member 54 is not provided, and (b) shows nitrile rubber (NBR, hardness Shore A66) on one end face of the acrylic resin plate-like member 56. (C) shows the result when a viscoelastic elastomer (hardness Asker F65) is provided on one end face of the acrylic resin plate-like member 56, and (d) shows the result made of acrylic resin. The result when a chloroprene rubber sponge (hardness Asker C20) is provided on one end surface of the plate-like member 56 is shown. Further, the ultrasonic signal waveforms at the position x = −3 mm and 17 mm in the case of (a) are shown in FIG. 7 (a) -1 and (a) -2, and the position x = −3 mm in the case of (b). , 1 mm, and 17 mm are shown in FIG. 7 (b) -1, (b) -2, and (b) -3, and in the case of (c), the position x = −3 mm, 4 mm, and 17 mm. (C) -1, (c) -2, and (c) -3 in FIG. 8, and the ultrasonic signal waveforms at positions x = -3 mm, 4 mm, and 17 mm in the case of (d). Are shown in (d) -1, (d) -2, and (d) -3 in FIG.

超音波遮蔽部材54が無い(a)の場合は、図5,7に示すように、焦点38が検査対象物30(接着層36)内に位置するx=−3mmにおいて、検査対象物30中(鋼板32と接着層36と鋼板34)を透過した波形に回折波が重畳して観測され、検査対象物30中の透過波に比べて遅い時刻に回折波が大きく現れた。そして、焦点38が検査対象物30の端面(位置x=0)に近づくにつれて、回折波の影響を大きく受けて超音波信号の振幅が増大し、円錐台型の超音波遮蔽キャップ14,24の先端がすべて検査対象物30の端面から外に現れた位置x>4mmでは、計測された超音波信号波形が図7の(a)−2に示すような飽和した波形となった。   In the case of (a) where the ultrasonic shielding member 54 is not provided, as shown in FIGS. 5 and 7, in the inspection object 30 at x = −3 mm where the focal point 38 is located in the inspection object 30 (adhesive layer 36). A diffracted wave was observed superimposed on the waveform transmitted through (the steel plate 32, the adhesive layer 36, and the steel plate 34), and the diffracted wave appeared greatly at a later time than the transmitted wave in the inspection object 30. Then, as the focal point 38 approaches the end face (position x = 0) of the inspection object 30, the amplitude of the ultrasonic signal is greatly influenced by the diffracted wave, and the frustoconical ultrasonic shielding caps 14 and 24 are increased. At a position x> 4 mm where all the tips appeared outside from the end face of the inspection object 30, the measured ultrasonic signal waveform became a saturated waveform as shown in FIG.

ニトリルゴムを設けた(b)の場合は、ニトリルゴムと検査対象物30の端面との間に隙間が形成され、その隙間を通過する波が測定された。例えば図7の(b)−1における150μs以上の時間帯や図7の(b)−2における130μs以上で見られる大きな波形が隙間を通過する波である。また、焦点38が板状部材56(アクリル樹脂)内に位置するx=17mmでは、図7の(b)−3に示すように、板状部材56を透過する波が測定された。   In the case of (b) provided with nitrile rubber, a gap was formed between the nitrile rubber and the end face of the inspection object 30, and waves passing through the gap were measured. For example, a large waveform seen in a time zone of 150 μs or more in FIG. 7B or 130 μs or more in FIG. 7B-2 is a wave passing through the gap. Further, at x = 17 mm where the focal point 38 is located in the plate-like member 56 (acrylic resin), the wave transmitted through the plate-like member 56 was measured as shown in FIG.

粘弾性エラストマーを設けた(c)の場合は、(a)、(b)の場合で見られたような空中を直接伝搬して受信される波形は測定されなかった。すなわち、粘弾性エラストマーが柔軟に変形したことで、検査対象物30の端面との隙間を完全に埋めることができたものと考えられる。このため、焦点38が検査対象物30(接着層36)内に位置するx=−3mmでは、図8の(c)−1に示すように、検査対象物30中を透過したと見られる明瞭な波形を得ることができた。ただし、焦点38が粘弾性エラストマー内に位置するx=4mmでは、図8の(c)−2に示すように、より大きな波形が測定された。これは、粘弾性エラストマーを透過した波形であり、検査対象物30(接着層36)よりも粘弾性エラストマーの方が超音波の透過しやすい素材であることに起因する結果である。   In the case of (c) provided with a viscoelastic elastomer, the waveform received by directly propagating through the air as seen in the cases of (a) and (b) was not measured. That is, it is considered that the gap between the viscoelastic elastomer and the end surface of the inspection object 30 could be completely filled because the viscoelastic elastomer was flexibly deformed. For this reason, when x = −3 mm where the focal point 38 is located in the inspection object 30 (adhesive layer 36), it is clear that it has been transmitted through the inspection object 30 as shown in FIG. I was able to obtain a simple waveform. However, at x = 4 mm where the focal point 38 is located in the viscoelastic elastomer, a larger waveform was measured as shown in FIG. This is a waveform transmitted through the viscoelastic elastomer, and is a result due to the fact that the viscoelastic elastomer is a material through which ultrasonic waves are more easily transmitted than the inspection object 30 (adhesive layer 36).

クロロプレンゴムスポンジを設けた(d)の場合は、空中を直接伝搬して受信される波形も測定されず、ゴムスポンジの位置においても超音波が透過していないことがわかる。例えば、焦点38が検査対象物30(接着層36)内に位置するx=−3mmでは、図8の(d)−1に示すように、検査対象物30中を透過した波以外の波形は観測されておらず、焦点38がゴムスポンジ内に位置するx=4mmでは、図8の(d)−2に示すように、透過波が測定されていない。これは、多孔質のゴムスポンジの内部で超音波が減衰し、検査対象物30(接着層36)よりもゴムスポンジの方が超音波の透過しにくい素材であることに起因する結果である。   In the case of (d) provided with a chloroprene rubber sponge, the waveform received by directly propagating through the air is not measured, and it can be seen that ultrasonic waves are not transmitted even at the position of the rubber sponge. For example, when x = −3 mm where the focal point 38 is located in the inspection object 30 (adhesive layer 36), the waveform other than the wave transmitted through the inspection object 30 is as shown in FIG. When x = 4 mm where the focal point 38 is not observed and the focal point 38 is located in the rubber sponge, no transmitted wave is measured as shown in (d) -2 of FIG. This is a result of the fact that the ultrasonic wave attenuates inside the porous rubber sponge, and the rubber sponge is a material through which the ultrasonic wave is harder to transmit than the inspection object 30 (adhesive layer 36).

以上説明した本実施形態によれば、鋼板32,34端部での接着層36による密着性を評価する場合に、鋼板32,34の端面32c,34cに密着する超音波遮蔽部材54により、超音波送信面12から送信された超音波が検査対象物30を迂回して超音波受信面22に回折波として到達するのを抑制することができる。したがって、検査対象物30中(鋼板32と接着層36と鋼板34)を透過して超音波受信面22に到達する透過波の振幅を超音波受信面22での受信信号から精度よく検出することができる。その結果、鋼板32,34端部での接着層36による密着性を精度よく評価することができる。その際には、検査対象物30の端面に密着する弾性部材58の素材として、粘弾性エラストマーやゴムスポンジ等の弾性変形しやすい素材を用いることで、検査対象物30の端面が凹凸を有する場合であっても、超音波が検査対象物30の端面と超音波遮蔽部材54(弾性部材58)との隙間を通過して漏洩するのを防止することができ、検査対象物30を迂回する回折波成分をさらに抑えることができる。さらに、ばね60の付勢力により超音波遮蔽部材54を検査対象物30の端面へ押し付けることで、検査対象物30の端面と弾性部材58との間に密着力を安定して発生させることができる。また、弾性部材58の素材としてゴムスポンジ等、超音波の減衰率の高い多孔質素材を用いることで、超音波遮蔽部材54における超音波の透過率を検査対象物30よりも低くすることができ、検査対象物30を迂回する回折波成分をさらに抑えることができる。また、送信側超音波遮蔽キャップ14及び受信側超音波遮蔽キャップ24によっても、検査対象物30を迂回する回折波成分をさらに抑えることができる。   According to the present embodiment described above, when evaluating the adhesion by the adhesive layer 36 at the ends of the steel plates 32 and 34, the ultrasonic shielding member 54 that is in close contact with the end surfaces 32c and 34c of the steel plates 32 and 34 can be used. The ultrasonic wave transmitted from the sound wave transmitting surface 12 can be prevented from bypassing the inspection object 30 and reaching the ultrasonic wave receiving surface 22 as a diffracted wave. Therefore, the amplitude of the transmitted wave that passes through the inspection object 30 (the steel plate 32, the adhesive layer 36, and the steel plate 34) and reaches the ultrasonic wave receiving surface 22 is accurately detected from the received signal at the ultrasonic wave receiving surface 22. Can do. As a result, the adhesion by the adhesive layer 36 at the ends of the steel plates 32 and 34 can be accurately evaluated. In that case, when the elastic member 58 that is in close contact with the end surface of the inspection object 30 is made of an elastically deformable material such as a viscoelastic elastomer or rubber sponge, the end surface of the inspection object 30 has irregularities. Even so, it is possible to prevent the ultrasonic waves from leaking through the gap between the end face of the inspection object 30 and the ultrasonic shielding member 54 (elastic member 58), and to make diffraction that bypasses the inspection object 30. Wave components can be further suppressed. Furthermore, by pressing the ultrasonic shielding member 54 against the end surface of the inspection object 30 by the urging force of the spring 60, it is possible to stably generate a close contact force between the end surface of the inspection object 30 and the elastic member 58. . Further, by using a porous material having a high ultrasonic attenuation rate, such as a rubber sponge, as the material of the elastic member 58, the ultrasonic transmittance of the ultrasonic shielding member 54 can be made lower than that of the inspection object 30. Further, the diffracted wave component that bypasses the inspection object 30 can be further suppressed. Further, the transmission-side ultrasonic shielding cap 14 and the reception-side ultrasonic shielding cap 24 can further suppress the diffracted wave component that bypasses the inspection object 30.

本実施形態では、例えば図9に示すように、超音波遮蔽部材54を、金属薄板72,74と、金属薄板72,74の端部間に挟まれ、検査対象物30の端面に密着する弾性部材58とを含んで構成することも可能である。図9に示す構成例によれば、音響インピーダンスの高い金属薄板72,74を用いることで、超音波遮蔽部材54における超音波の透過率を低くすることができ、検査対象物30を迂回する回折波成分をさらに抑えることができる。   In the present embodiment, for example, as shown in FIG. 9, the ultrasonic shielding member 54 is sandwiched between the metal thin plates 72 and 74 and the end portions of the metal thin plates 72 and 74 and is elastically attached to the end surface of the inspection object 30. It is also possible to include the member 58. According to the configuration example shown in FIG. 9, by using the metal thin plates 72 and 74 having high acoustic impedance, the ultrasonic transmittance in the ultrasonic shielding member 54 can be lowered, and diffraction that bypasses the inspection object 30. Wave components can be further suppressed.

また、本実施形態では、例えば図10に示すように、超音波遮蔽部材54をばね60を介して走査装置40に支持することで、超音波遮蔽部材54が検査対象物30における超音波透過位置より外周側の端面に密着する状態を維持するように、走査装置40が超音波遮蔽部材54を超音波送信センサ10及び超音波受信センサ20とともに移動させることも可能である。図10に示す構成例によれば、超音波遮蔽部材54(弾性部材58)を検査対象物30における超音波透過位置の移動範囲71全体に渡ってその外周側の端面に密着させる必要が無く、超音波遮蔽部材54の小型化を図ることができる。なお、図10に示す構成例においても、超音波送信面12から検査対象物30及び超音波遮蔽部材54を迂回して超音波受信面22に到る経路が、超音波送信面12と超音波受信面22間の距離と比較して、十分長くなる(例えば2倍以上になる)ように、超音波遮蔽部材54の長さ及び幅を決定することが好ましい。   Further, in the present embodiment, for example, as illustrated in FIG. 10, the ultrasonic shielding member 54 is supported by the scanning device 40 via the spring 60, so that the ultrasonic shielding member 54 is in an ultrasonic transmission position in the inspection object 30. It is also possible for the scanning device 40 to move the ultrasonic shielding member 54 together with the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 so as to maintain a state of being in close contact with the outer peripheral end surface. According to the configuration example shown in FIG. 10, it is not necessary for the ultrasonic shielding member 54 (elastic member 58) to be in close contact with the outer peripheral side end surface over the entire movement range 71 of the ultrasonic transmission position in the inspection object 30. The size of the ultrasonic shielding member 54 can be reduced. Also in the configuration example shown in FIG. 10, the path from the ultrasonic transmission surface 12 to the ultrasonic reception surface 22 bypassing the inspection object 30 and the ultrasonic shielding member 54 is the ultrasonic transmission surface 12 and the ultrasonic wave. It is preferable to determine the length and width of the ultrasonic shielding member 54 so as to be sufficiently long (for example, twice or more) as compared with the distance between the receiving surfaces 22.

以上の説明では、超音波送信センサ10及び超音波受信センサ20がフォーカス型センサであり、超音波送信面12及び超音波受信面22が検査対象物30中(接着層36)に焦点38を有する凹曲面形状である場合について説明した。ただし、本実施形態では、超音波送信センサ10及び超音波受信センサ20がフォーカス型センサでなくてもよく、例えば超音波送信面12及び超音波受信面22が平面であってもよい。   In the above description, the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 are focus sensors, and the ultrasonic transmission surface 12 and the ultrasonic reception surface 22 have a focal point 38 in the inspection object 30 (adhesive layer 36). The case of a concave curved surface shape has been described. However, in this embodiment, the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 may not be a focus type sensor, and for example, the ultrasonic transmission surface 12 and the ultrasonic reception surface 22 may be flat.

以上の説明では、送信側超音波遮蔽キャップ14及び受信側超音波遮蔽キャップ24を超音波送信センサ10及び超音波受信センサ20にそれぞれ設けた場合について説明した。ただし、本実施形態では、送信側超音波遮蔽キャップ14だけを超音波送信センサ10に設けることも可能であるし、受信側超音波遮蔽キャップ24だけを超音波受信センサ20に設けることも可能である。さらに、本実施形態では、送信側超音波遮蔽キャップ14及び受信側超音波遮蔽キャップ24の両方を省略することも可能である。それらの場合でも、超音波送信面12から送信された超音波が検査対象物30を迂回して超音波受信面22に回折波として到達するのを超音波遮蔽部材54により抑制することが可能である。   In the above description, the case where the transmission-side ultrasonic shielding cap 14 and the reception-side ultrasonic shielding cap 24 are provided in the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 has been described. However, in the present embodiment, only the transmission-side ultrasonic shielding cap 14 can be provided in the ultrasonic transmission sensor 10, or only the reception-side ultrasonic shielding cap 24 can be provided in the ultrasonic reception sensor 20. is there. Furthermore, in this embodiment, it is possible to omit both the transmission side ultrasonic shielding cap 14 and the reception side ultrasonic shielding cap 24. Even in those cases, the ultrasonic wave shielding member 54 can suppress the ultrasonic wave transmitted from the ultrasonic wave transmitting surface 12 from reaching the ultrasonic wave receiving surface 22 by bypassing the inspection object 30. is there.

以上の説明では、本実施形態に係る超音波検査装置を用いた検査対象物30の検査の適用例として、鋼板32,34の接着層36による密着性を評価する場合について説明した。ただし、本実施形態に係る超音波検査装置は、鋼板32,34の接着層36による密着性の評価以外に、例えば検査対象物30の内部欠陥の検査等にも適用することが可能である。   In the above description, as an application example of the inspection of the inspection object 30 using the ultrasonic inspection apparatus according to the present embodiment, the case of evaluating the adhesion by the adhesive layer 36 of the steel plates 32 and 34 has been described. However, the ultrasonic inspection apparatus according to the present embodiment can be applied to, for example, inspection of internal defects of the inspection object 30 in addition to the evaluation of the adhesion by the adhesive layer 36 of the steel plates 32 and 34.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

10 超音波送信センサ、12 超音波送信面、14 送信側超音波遮蔽キャップ、20 超音波受信センサ、22 超音波受信面、24 受信側超音波遮蔽キャップ、30 検査対象物、32,34 鋼板、36 接着層、38 焦点、40 走査装置、41 超音波信号供給部、42 信号処理部、44 画像処理部、46 表示装置、48 検査判定部、54 超音波遮蔽部材、56 板状部材、58 弾性部材、60 ばね、70 治具、72,74 金属薄板。   DESCRIPTION OF SYMBOLS 10 Ultrasonic transmission sensor, 12 Ultrasonic transmission surface, 14 Transmission side ultrasonic shielding cap, 20 Ultrasonic reception sensor, 22 Ultrasonic reception surface, 24 Reception side ultrasonic shielding cap, 30 Inspection object, 32, 34 Steel plate, 36 adhesive layer, 38 focus, 40 scanning device, 41 ultrasonic signal supply unit, 42 signal processing unit, 44 image processing unit, 46 display device, 48 inspection determination unit, 54 ultrasonic shielding member, 56 plate member, 58 elasticity Member, 60 spring, 70 jig, 72, 74 Metal thin plate.

Claims (7)

検査対象物の表面端部と対向配置される超音波送信面であって、超音波を検査対象物の表面端部へ送信する超音波送信面を含む超音波送信装置と、
検査対象物を介して超音波送信面と対向するよう検査対象物の裏面端部と対向配置される超音波受信面であって、超音波送信面から送信され且つ検査対象物中を透過した超音波を受信する超音波受信面を含む超音波受信装置と、
検査対象物における超音波透過位置より外周側の端面に密着する超音波遮蔽部材であって、超音波送信面から送信された超音波が検査対象物を迂回して超音波受信面に到達するのを抑制するための超音波遮蔽部材と、
を備える、超音波検査装置。
An ultrasonic transmission surface including an ultrasonic transmission surface that is disposed opposite to the surface end of the inspection object and transmits ultrasonic waves to the surface end of the inspection object; and
An ultrasonic receiving surface disposed opposite to the back end of the inspection object so as to face the ultrasonic transmission surface via the inspection object, and transmitted from the ultrasonic transmission surface and transmitted through the inspection object An ultrasonic receiving device including an ultrasonic receiving surface for receiving sound waves;
An ultrasonic shielding member that is in close contact with the outer peripheral end surface of the ultrasonic wave transmission position in the inspection object, and the ultrasonic wave transmitted from the ultrasonic wave transmission surface bypasses the inspection object and reaches the ultrasonic wave reception surface. An ultrasonic shielding member for suppressing
An ultrasonic inspection apparatus comprising:
請求項1に記載の超音波検査装置であって、
超音波遮蔽部材における検査対象物の前記端面に密着する部分は、弾性変形可能である、超音波検査装置。
The ultrasonic inspection apparatus according to claim 1,
The ultrasonic inspection apparatus in which the portion of the ultrasonic shielding member that is in close contact with the end face of the inspection object is elastically deformable.
請求項1または2に記載の超音波検査装置であって、
超音波遮蔽部材における超音波の透過率は、検査対象物における超音波の透過率より低い、超音波検査装置。
The ultrasonic inspection apparatus according to claim 1 or 2,
The ultrasonic inspection apparatus, wherein the ultrasonic transmittance of the ultrasonic shielding member is lower than the ultrasonic transmittance of the inspection object.
請求項1〜3のいずれか1に記載の超音波検査装置であって、
超音波遮蔽部材を検査対象物の前記端面へ押し付ける押付機構を備える、超音波検査装置。
The ultrasonic inspection apparatus according to any one of claims 1 to 3,
An ultrasonic inspection apparatus comprising a pressing mechanism that presses an ultrasonic shielding member against the end face of an inspection object.
請求項1〜4のいずれか1に記載の超音波検査装置であって、
検査対象物における超音波透過位置を移動させるように、超音波送信装置及び超音波受信装置を移動させる走査装置を備え、
超音波遮蔽部材は、検査対象物における超音波透過位置の移動範囲全体に渡ってその外周側の端面に密着する、超音波検査装置。
The ultrasonic inspection apparatus according to any one of claims 1 to 4,
A scanning device for moving the ultrasonic transmission device and the ultrasonic reception device so as to move the ultrasonic transmission position in the inspection object;
The ultrasonic inspection apparatus, wherein the ultrasonic shielding member is in close contact with the outer peripheral end surface over the entire moving range of the ultrasonic transmission position in the inspection object.
請求項1〜4のいずれか1に記載の超音波検査装置であって、
検査対象物における超音波透過位置を移動させるように、超音波送信装置及び超音波受信装置を移動させる走査装置を備え、
走査装置は、超音波遮蔽部材が検査対象物における超音波透過位置より外周側の端面に密着する状態を維持するように、超音波遮蔽部材を超音波送信装置及び超音波受信装置とともに移動させる、超音波検査装置。
The ultrasonic inspection apparatus according to any one of claims 1 to 4,
A scanning device for moving the ultrasonic transmission device and the ultrasonic reception device so as to move the ultrasonic transmission position in the inspection object;
The scanning device moves the ultrasonic shielding member together with the ultrasonic transmission device and the ultrasonic reception device so as to maintain the state where the ultrasonic shielding member is in close contact with the end face on the outer peripheral side from the ultrasonic transmission position in the inspection object. Ultrasonic inspection device.
請求項1〜6のいずれか1に記載の超音波検査装置であって、
検査対象物は、第1板状部材と第2板状部材が端部において接着層を介して接合されており、
超音波送信面は、第1板状部材の表面端部と対向配置され、超音波を第1板状部材を介して接着層へ送信し、
超音波受信面は、第1板状部材と接着層と第2板状部材を介して超音波送信面と対向するよう第2板状部材の裏面端部と対向配置され、超音波送信面から送信され且つ第1板状部材と接着層と第2板状部材を透過した超音波を受信し、
超音波遮蔽部材は、第1板状部材における超音波透過位置より外周側の端面及び第2板状部材における超音波透過位置より外周側の端面のいずれか1つ以上に密着する、超音波検査装置。
The ultrasonic inspection apparatus according to any one of claims 1 to 6,
The inspection object has the first plate-like member and the second plate-like member joined to each other via an adhesive layer at the end,
The ultrasonic transmission surface is disposed opposite to the surface end of the first plate member, and transmits ultrasonic waves to the adhesive layer via the first plate member.
The ultrasonic wave receiving surface is arranged to face the back surface end of the second plate member so as to face the ultrasonic wave transmitting surface via the first plate member, the adhesive layer, and the second plate member, and from the ultrasonic wave transmitting surface. Receiving ultrasonic waves transmitted and transmitted through the first plate member, the adhesive layer and the second plate member;
The ultrasonic shielding member is in close contact with any one or more of an end face on the outer peripheral side from the ultrasonic transmission position in the first plate member and an end face on the outer peripheral side from the ultrasonic transmission position in the second plate member. apparatus.
JP2011276902A 2011-12-19 2011-12-19 Ultrasonic inspection device Pending JP2013127400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011276902A JP2013127400A (en) 2011-12-19 2011-12-19 Ultrasonic inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011276902A JP2013127400A (en) 2011-12-19 2011-12-19 Ultrasonic inspection device

Publications (1)

Publication Number Publication Date
JP2013127400A true JP2013127400A (en) 2013-06-27

Family

ID=48778015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011276902A Pending JP2013127400A (en) 2011-12-19 2011-12-19 Ultrasonic inspection device

Country Status (1)

Country Link
JP (1) JP2013127400A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190133632A (en) 2018-05-23 2019-12-03 가부시키가이샤 히타치 파워 솔루션즈 Position control device, position control method, and ultrasonic image system
JP2020027012A (en) * 2018-08-10 2020-02-20 ヤマハファインテック株式会社 Ultrasonic inspection device, and ultrasonic inspection method
JP2020027011A (en) * 2018-08-10 2020-02-20 ヤマハファインテック株式会社 Ultrasonic inspection device
JP2021067543A (en) * 2019-10-23 2021-04-30 株式会社東芝 Sensor and inspection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245598A (en) * 2003-02-10 2004-09-02 Idemitsu Eng Co Ltd Probe and material evaluation test method using the same
US20050115324A1 (en) * 2003-01-08 2005-06-02 Anton Stauffer Systems and apparatus for airborne ultrasonic testing of package and container seals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050115324A1 (en) * 2003-01-08 2005-06-02 Anton Stauffer Systems and apparatus for airborne ultrasonic testing of package and container seals
JP2004245598A (en) * 2003-02-10 2004-09-02 Idemitsu Eng Co Ltd Probe and material evaluation test method using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190133632A (en) 2018-05-23 2019-12-03 가부시키가이샤 히타치 파워 솔루션즈 Position control device, position control method, and ultrasonic image system
KR20210110540A (en) 2018-05-23 2021-09-08 가부시키가이샤 히타치 파워 솔루션즈 Position control device, position control method, and ultrasonic image system
JP2020027012A (en) * 2018-08-10 2020-02-20 ヤマハファインテック株式会社 Ultrasonic inspection device, and ultrasonic inspection method
JP2020027011A (en) * 2018-08-10 2020-02-20 ヤマハファインテック株式会社 Ultrasonic inspection device
CN110824000A (en) * 2018-08-10 2020-02-21 雅马哈精密科技株式会社 Ultrasonic inspection apparatus and ultrasonic inspection method
TWI738031B (en) * 2018-08-10 2021-09-01 日商山葉汎提克股份有限公司 Ultrasonic inspection device
JP7112726B2 (en) 2018-08-10 2022-08-04 ヤマハファインテック株式会社 Ultrasonic inspection device and ultrasonic inspection method
US11435321B2 (en) 2018-08-10 2022-09-06 Yamaha Fine Technologies Co., Ltd. Ultrasonic inspection device
CN110824000B (en) * 2018-08-10 2022-11-29 雅马哈精密科技株式会社 Ultrasonic inspection apparatus and ultrasonic inspection method
JP7190154B2 (en) 2018-08-10 2022-12-15 ヤマハファインテック株式会社 ultrasonic inspection equipment
JP2021067543A (en) * 2019-10-23 2021-04-30 株式会社東芝 Sensor and inspection device
JP7249924B2 (en) 2019-10-23 2023-03-31 株式会社東芝 Sensors and inspection equipment

Similar Documents

Publication Publication Date Title
JP2012112851A (en) Ultrasonic inspection device and ultrasonic inspection method
GB201310969D0 (en) Ultrasonic NDT inspection system
CN107735680B (en) The removing inspection method and removing check device of laminated body
JP5237923B2 (en) Adhesion evaluation apparatus and method
JP5420525B2 (en) Apparatus and method for ultrasonic inspection of small diameter tube
JP5306919B2 (en) Ultrasonic flaw detection method and apparatus
JP2013127400A (en) Ultrasonic inspection device
KR20130080086A (en) The correction method for beam focal point of phased ultrasonic transducer with curved wedge
JP2015040857A (en) Sensor module including adaptive backing layer
KR20130080084A (en) An polymer material based flexible phased array ultrasonic transducer for ultrasonic nondestructive testing of material with uneven surface
WO2018135244A1 (en) Ultrasonic probe
RU2009148401A (en) METHOD FOR DETECTING DEFECTS IN GLUE COMPOUNDS AND DEVICE FOR ITS IMPLEMENTATION
JP2005315636A (en) Quantitative evaluation method of closed crack and quantitative evaluation device of closed crack
WO2020039850A1 (en) Method and device for evaluating bonding interface
JP2007178186A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2001208729A (en) Defect detector
KR101767422B1 (en) Seperable Ultrasonic Transducer with Enhanced Space Resolution
Le Jeune et al. Multimodal plane wave imaging for non-destructive testing
JP5609540B2 (en) Defect detection method and defect detection apparatus using leaky surface acoustic wave
KR101139592B1 (en) longitudinal wave transducer wedge to maintain couplant layer and longitudinal wave transducer using the same
Seo et al. Improvement of crack sizing performance by using nonlinear ultrasonic technique
JP2017161513A (en) Ultrasonic flaw detecting device, and ultrasonic flaw detecting method
JP6761780B2 (en) Defect evaluation method
US11054399B2 (en) Inspection method
WO2019150953A1 (en) Ultrasonic probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303