JP2894997B2 - Manufacturing method of printed wiring board - Google Patents

Manufacturing method of printed wiring board

Info

Publication number
JP2894997B2
JP2894997B2 JP20071696A JP20071696A JP2894997B2 JP 2894997 B2 JP2894997 B2 JP 2894997B2 JP 20071696 A JP20071696 A JP 20071696A JP 20071696 A JP20071696 A JP 20071696A JP 2894997 B2 JP2894997 B2 JP 2894997B2
Authority
JP
Japan
Prior art keywords
resin layer
solder resist
insulating resin
wiring board
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20071696A
Other languages
Japanese (ja)
Other versions
JPH1051138A (en
Inventor
宣和 高堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYAMA NIPPON DENKI KK
Original Assignee
TOYAMA NIPPON DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYAMA NIPPON DENKI KK filed Critical TOYAMA NIPPON DENKI KK
Priority to JP20071696A priority Critical patent/JP2894997B2/en
Publication of JPH1051138A publication Critical patent/JPH1051138A/en
Application granted granted Critical
Publication of JP2894997B2 publication Critical patent/JP2894997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は印刷配線板の製造方
法に関し、特にビルトアップ工法を用いた印刷配線板の
製造方法に関するものである。
The present invention relates to a method for manufacturing a printed wiring board, and more particularly to a method for manufacturing a printed wiring board using a built-up method.

【0002】[0002]

【従来の技術】従来のビルトアップ基板の製造方法を次
に示す。はじめに図3(a)に示す如く両面にパターン
化された銅の導体22を有するFR−4のコア層21と
なる基板両面に絶縁層となる感光性エポキシ樹脂層23
を80ミクロン厚形成した後、パターン化された露光用
マスクを通して感光性エポキシ樹脂層23表面に部分的
に4J/cm2 のUV光を照射する。次にガンマブチル
ラクトンを含む溶剤により現像し、感光性エポキシ樹脂
層23のUV光未照射部を除去し、図3(b)に示す如
くフォトビア24を形成する。次に130℃、2時間の
ポストベーキングを行い感光性エポキシ樹脂層23を硬
化させる。次に、感光性エポキシ樹脂層23の表面を4
0ミクロン厚全面研磨し、図3(c)に示す如く表面の
5ミクロン厚の光硬化層を除去する。その後、図4
(a)に示す如く感光性エポキシ樹脂層23の表面に銅
めっきを施し、さらにこれをエッチングによりパターン
化し、最外層の導体25を形成する。さらに上記の感光
性エポキシ樹脂層23形成から銅めっき、エッチングの
工程を繰り返すことにより多層化が可能である。本例で
はビルトアップ層を両面に1層づつ形成した後、図4
(b)に示す如く変性エポキシ樹脂のソルダレジスト2
6を基板の両面に35ミクロン厚塗布し、400mJ/
cm2 のUV光27の照射と150℃、1時間のポスト
ベーキングにより変性エポキシ樹脂のソルダレジスト2
6を硬化させビルトアップ基板を製造した。
2. Description of the Related Art A conventional method of manufacturing a built-up substrate will be described below. First, as shown in FIG. 3 (a), a photosensitive epoxy resin layer 23 serving as an insulating layer on both sides of a substrate serving as a core layer 21 of FR-4 having copper conductors 22 patterned on both sides.
Is formed to a thickness of 80 μm, and the surface of the photosensitive epoxy resin layer 23 is partially irradiated with UV light of 4 J / cm 2 through a patterned exposure mask. Next, development is performed with a solvent containing gamma butyl lactone to remove the UV light-irradiated portions of the photosensitive epoxy resin layer 23, thereby forming a photo via 24 as shown in FIG. Next, the photosensitive epoxy resin layer 23 is cured by performing post-baking at 130 ° C. for 2 hours. Next, the surface of the photosensitive epoxy resin layer 23 is
The entire surface is polished to a thickness of 0 μm, and a photo-cured layer having a thickness of 5 μm on the surface is removed as shown in FIG. Then, FIG.
As shown in FIG. 2A, the surface of the photosensitive epoxy resin layer 23 is plated with copper, and is then patterned by etching to form the outermost conductor 25. Further, by repeating the steps from the formation of the photosensitive epoxy resin layer 23 to the copper plating and the etching, multilayering is possible. In this example, after the built-up layers are formed on both sides one by one, FIG.
(B) Solder resist 2 of modified epoxy resin as shown in FIG.
6 is applied to both sides of the substrate in a thickness of 35 μm, and 400 mJ /
Irradiation with UV light 27 cm 2 and post-baking at 150 ° C. for 1 hour
6 was cured to produce a built-up substrate.

【0003】またソルダレジスト26の塗布に関して
は、特開平3−4595号公報に積層板の両面にソルダ
レジスト26を塗布する工程の前に基板中の水分を蒸発
させるためにベーキングを行う多層基板の製造方法が記
載されている。
As for the application of the solder resist 26, Japanese Patent Laid-Open No. 3-4595 discloses a multi-layer substrate which is baked to evaporate moisture in the substrate before the step of applying the solder resist 26 to both surfaces of the laminate. A manufacturing method is described.

【0004】[0004]

【発明が解決しようとする課題】上記の従来例では、感
光性エポキシ樹脂層の表面に銅めっきを施し、さらにこ
れをエッチングによりパターン化した後、直ちにソルダ
レジストを塗布しているので、その後、−65〜125
℃の熱サイクルのMIL熱衝撃試験を実施した場合、感
光性エポキシ樹脂層に樹脂クラックが発生してしまう。
この樹脂クラックの発生箇所は、ソルダレジストの開口
部エッジの直下の樹脂層に発生する。原因は、ソルダレ
ジスト形成後のUV光照射により、ソルダレジストの開
口部のみ、感光性エポキシ樹脂層が局所的に感光し、感
光性エポキシ樹脂層でソルダレジストで覆われている箇
所とソルダレジストの開口部とで熱膨張率が異なるため
であり、熱膨張率が異なる境界部で応力が発生し、熱サ
イクルを繰り返すうちに熱膨張率が異なる部分の境界部
で樹脂クラックが発生する。
In the above-mentioned prior art, the surface of the photosensitive epoxy resin layer is plated with copper, and after patterning by etching, a solder resist is immediately applied. -65 to 125
When a MIL thermal shock test with a thermal cycle of ° C. is performed, resin cracks occur in the photosensitive epoxy resin layer.
The location where the resin crack occurs is generated in the resin layer immediately below the opening edge of the solder resist. The cause is that the photosensitive epoxy resin layer is locally exposed only at the opening of the solder resist by UV light irradiation after the formation of the solder resist, the part covered with the solder resist by the photosensitive epoxy resin layer and the solder resist This is because the thermal expansion coefficient differs between the opening and the opening. Stress is generated at a boundary portion having a different thermal expansion coefficient, and a resin crack is generated at a boundary portion of a portion having a different thermal expansion coefficient during repeated thermal cycles.

【0005】本発明は、感光性エポキシ樹脂層の熱サイ
クルによる樹脂クラックを防止し、印刷配線板の信頼性
向上を目的とする。
An object of the present invention is to prevent a resin crack due to a thermal cycle of a photosensitive epoxy resin layer and to improve the reliability of a printed wiring board.

【0006】[0006]

【課題を解決するための手段】本発明の印刷配線板の製
造方法は、ベースとなるコア層に感光性絶縁樹脂層を形
成する工程と、この感光性絶縁樹脂層を露光・現像して
フォトビアを形成する工程と、前記感光性絶縁樹脂層表
面を研磨し光硬化層を除去する工程と、研磨した前記感
光性絶縁樹脂層表面銅めっきを施し、さらにこれをエ
ッチングしてパターン化された導体を設けた前記感光
性絶縁樹脂層表面にソルダレジストを形成する工程とを
有する印刷配線板の製造方法において、前記ソルダレジ
ストを形成する前に前記感光性絶縁樹脂層表面にUV光
照射を行うことを特徴とする。
According to the present invention, there is provided a method of manufacturing a printed wiring board, comprising the steps of forming a photosensitive insulating resin layer on a core layer serving as a base, and exposing and developing the photosensitive insulating resin layer to form a photo via. Forming the surface, polishing the surface of the photosensitive insulating resin layer to remove the photocured layer , applying copper plating to the polished surface of the photosensitive insulating resin layer ,
The photosensitive after only set the patterned conductor by etching
The method of manufacturing a printed wiring board and a step that form the solder resist sexual insulating resin layer surface, and characterized by performing the UV irradiation in the photosensitive insulating resin layer surface before you form the solder resist I do.

【0007】本発明によれば、ソルダレジストを塗布す
る工程の前に最外層の感光性絶縁樹脂層の表面にUV光
照射を行っている。このため、この時点で最外層の感光
性絶縁樹脂層の露出部分が感光してしまい、ソルダレジ
スト形成後の、UV光照射によっては、ソルダレジスト
の開口部が局所的に感光することはない。
According to the present invention, the surface of the outermost photosensitive insulating resin layer is irradiated with UV light before the step of applying a solder resist. Therefore, at this point, the exposed portion of the outermost photosensitive insulating resin layer is exposed, and the opening of the solder resist is not locally exposed by UV light irradiation after the formation of the solder resist.

【0008】[0008]

【発明の実施の形態】次に本発明の実施の形態について
図面を参照して説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0009】図1(a)〜(c)、図2(a),(b)
は本発明の一実施の形態のビルトアップ工法を用いた印
刷配線板の製造方法を説明する工程順に示した断面図で
ある。本発明の一実施の形態の印刷配線板の製造方法
は、はじめに図1(a)に示す如く両面にパターン化さ
れた銅の導体12を有するFR−4のコア層11となる
基板両面上に絶縁層となる感光性エポキシ脂層13を8
0ミクロン厚形成した後、パターン化された露光用マス
クを通して感光性エポキシ脂層13表面に部分的に4J
/cm2 のUV光を照射する。次にガンマブチルラクト
ンを含む溶剤により現像し、感光性エポキシ樹脂13の
UV光未照射部を除去し、図1(b)に示す如くフォト
ビア14を形成する。次に130℃、2時間のポストベ
ーキングを行い感光性エポキシ脂層13を硬化させ、感
光性エポキシ樹脂層13の表面から40ミクロン厚を全
面研磨し、図1(c)に示す如く表面の5ミクロン厚の
光硬化層を除去する。その後、最外層の感光性絶縁樹脂
層15となる感光性エポキシ樹脂層13の表面に銅めっ
きを施し、さらにこれをエッチングによりパターン化
し、最外層の導体16を形成する。さらに上記の絶縁層
形成から銅めっき、エッチングの工程を繰り返すことに
より多層化が可能である。次に本実施の形態では、図2
(a)に示す如く最外層の感光性絶縁脂層15に500
mJ/cm2 のUV光17を基板全面に照射し、最外層
の感光性絶縁樹脂層15を感光させ、室温付近での熱膨
張率を8.0×10-5/℃から1.2×10-4/℃に変
化させる。その後、図2(b)に示す如くソルダレジス
ト18を基板の両面に塗布し、400mJ/cm2 のU
V光19の全面照射と、150℃1時間のポストベーキ
ングによりソルダレジスト18を硬化させビルトアップ
基板を製造する。
FIGS. 1 (a) to 1 (c), FIGS. 2 (a) and 2 (b)
3A to 3C are cross-sectional views illustrating a method of manufacturing a printed wiring board using a built-up method according to an embodiment of the present invention in the order of steps. A method of manufacturing a printed wiring board according to an embodiment of the present invention is described in the following. First, as shown in FIG. 1A, a FR-4 core layer 11 having copper conductors 12 patterned on both sides is formed on both sides of a substrate. The photosensitive epoxy resin layer 13 serving as an insulating layer is
After forming a thickness of 0 μm, 4 J is partially applied to the surface of the photosensitive epoxy resin layer 13 through a patterned exposure mask.
/ Cm 2 of UV light. Next, development is performed with a solvent containing gamma butyl lactone, and a portion of the photosensitive epoxy resin 13 not irradiated with UV light is removed, thereby forming a photo via 14 as shown in FIG. 1B. Next, the photosensitive epoxy resin layer 13 is cured by performing post-baking at 130 ° C. for 2 hours, and the entire surface of the photosensitive epoxy resin layer 13 is polished to a thickness of 40 μm from the surface thereof, as shown in FIG. Remove micron thick photocured layer. Thereafter, copper plating is applied to the surface of the photosensitive epoxy resin layer 13 to be the photosensitive insulating resin layer 15 as the outermost layer, and the surface is patterned by etching to form the conductor 16 as the outermost layer. Further, by repeating the steps from the formation of the insulating layer to the copper plating and the etching, multilayering is possible. Next, in the present embodiment, FIG.
As shown in (a), the outermost photosensitive insulating grease layer 15 has 500
The entire surface of the substrate is irradiated with UV light 17 of mJ / cm 2 to expose the outermost photosensitive insulating resin layer 15 and to have a coefficient of thermal expansion near room temperature of from 8.0 × 10 −5 / ° C. to 1.2 ×. Change to 10 -4 / ° C. Thereafter, as shown in FIG. 2 (b), a solder resist 18 is applied to both sides of the substrate, and 400 mJ / cm 2 of U
The solder resist 18 is hardened by irradiating the entire surface with the V light 19 and post-baking at 150 ° C. for 1 hour to manufacture a built-up substrate.

【0010】上記で説明した本発明の一実施の形態によ
れば、ソルダレジスト18形成前に最外層の感光性絶縁
樹脂層15が感光しているため、このソルダレジスト1
8形成後のUV光19照射によっても、ソルダレジスト
18の開口部の最外層の感光性絶縁樹脂層15が局所的
に感光することはない。従って最外層の感光性絶縁樹脂
層15のソルダレジスト18で覆われている箇所とソル
ダレジスト18の開口部で熱膨張率が異なることはな
く、最外層の感光性絶縁樹脂層15の熱膨張率は1.2
×10-4/℃と一定である。
According to the embodiment of the present invention described above, since the outermost photosensitive insulating resin layer 15 is exposed to light before the formation of the solder resist 18, the solder resist 1
Even when the UV light 19 is irradiated after the formation of the resist 8, the photosensitive insulating resin layer 15 as the outermost layer at the opening of the solder resist 18 is not locally exposed. Accordingly, there is no difference in the coefficient of thermal expansion between the portion of the outermost photosensitive insulating resin layer 15 covered with the solder resist 18 and the opening of the solder resist 18, and the coefficient of thermal expansion of the outermost photosensitive insulating resin layer 15 does not differ. Is 1.2
It is constant at × 10 -4 / ° C.

【0011】[0011]

【発明の効果】感光性エポキシ樹脂層は、120℃、3
0分以上のベーキングで熱硬化成分が重合し、またUV
光照射によっても、光硬化成分が重合する性質を持つ。
感光性エポキシ樹脂は、硬化によって、熱膨張率が上昇
し、150℃、4時間ベーキングでは、8.0×10-5
/℃から1.1×10-4/℃に変化する。
According to the present invention, the photosensitive epoxy resin layer is heated at 120.degree.
The thermosetting component is polymerized by baking for more than 0 minutes, and UV
The photocurable component also has the property of polymerizing by light irradiation.
The coefficient of thermal expansion of the photosensitive epoxy resin is increased by curing, and baking at 150 ° C. for 4 hours is 8.0 × 10 −5.
/ ° C to 1.1 × 10 -4 / ° C.

【0012】ビルトアップ基板では、上記の性質を持つ
エポキシ樹脂を用いているため、従来の印刷配線板の製
造方法では、ソルダレジスト形成後のUV光照射によ
り、ソルダレジストの開口部のみ、感光性エポキシ樹脂
層が局所的に感光し、感光性エポキシ樹脂層ソルダレ
ジストで覆われている箇所とソルダレジストの開口部で
熱膨張率が異なってしまう。このような印刷配線板に
MIL熱衝撃試験を実施した場合、絶縁樹脂層で部分的
に熱膨張率が異なるため、その境界部で応力が発生し、
熱サイクルを繰り返すうちに熱膨張率が異なる部分の境
界部で樹脂クラックが発生する。
Since the built-up substrate uses an epoxy resin having the above-described properties, in the conventional method of manufacturing a printed wiring board, only the opening of the solder resist is exposed by UV light irradiation after the formation of the solder resist. epoxy resin layer is locally exposed to light, at the opening point and the solder resist covered with solder resist of the photosensitive epoxy resin layer
Have different coefficients of thermal expansion. When the MIL thermal shock test is performed on such a printed wiring board, since the thermal expansion coefficient is partially different in the insulating resin layer, a stress is generated at the boundary thereof,
As the thermal cycle is repeated, resin cracks occur at the boundary between portions having different coefficients of thermal expansion.

【0013】しかし、本発明によれば、ソルダレジスト
形成前に最外層の感光性絶縁樹脂層が感光しているた
め、ソルダレジスト形成後の紫外線照射によっても、ソ
ルダレジストの開口部の最外層の感光絶縁樹脂層が局所
的に感光することはなく、従って熱衝撃試験においても
絶縁層樹脂にクラックが発生することがない。
However, according to the present invention, since the outermost photosensitive insulating resin layer is exposed to light before the formation of the solder resist, the outermost layer of the opening of the solder resist can be irradiated by ultraviolet irradiation after the formation of the solder resist. The photosensitive insulating resin layer is not locally exposed to light, so that cracks do not occur in the insulating layer resin even in the thermal shock test.

【0014】また特開平3−4595号公報に示された
従来例のように、ソルダレジストを塗布する工程の前に
ベーキングを行っても、光硬化成分は未反応のため、ソ
ルダレジスト形成後のUV光照射により、ソルダレジス
トの開口部のみ、最外層の感光性絶縁樹脂層が局所的に
感光し、この最外層の感光性絶縁樹脂層でソルダレジス
トで覆われている箇所とソルダレジストの開口部で熱膨
張率が異なってしまい、樹脂クラックの発生防止硬化は
期待できない。
Further, even if baking is performed before the step of applying a solder resist as in the conventional example disclosed in JP-A-3-4595, the photocurable component has not reacted, so Due to the UV light irradiation, the outermost photosensitive insulating resin layer is locally exposed only at the opening of the solder resist, and the portion of the outermost photosensitive insulating resin layer covered with the solder resist and the opening of the solder resist. The thermal expansion coefficient differs between the portions, and curing preventing the occurrence of resin cracks cannot be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(c)は本発明の一実施の形態のビル
トアップ工法を用いた印刷配線板の製造方法を説明する
工程順に示した断面図である。
FIGS. 1A to 1C are cross-sectional views illustrating a method of manufacturing a printed wiring board using a built-up method according to an embodiment of the present invention in the order of steps.

【図2】(a),(b)は本発明の一実施の形態のビル
トアップ工法を用いた印刷配線板の製造方法を説明する
工程順に示した断面図である。
FIGS. 2A and 2B are cross-sectional views illustrating a method of manufacturing a printed wiring board using a built-up method according to an embodiment of the present invention in the order of steps.

【図3】(a)〜(c)は従来のビルトアップ工法を用
いた印刷配線板の製造方法の一例を説明する工程順に示
した断面図である。
FIGS. 3A to 3C are cross-sectional views sequentially illustrating steps of an example of a method for manufacturing a printed wiring board using a conventional build-up method.

【図4】(a),(b)は従来のビルトアップ工法を用
いた印刷配線板の製造方法の一例を説明する工程順に示
した断面図である。
FIGS. 4A and 4B are cross-sectional views sequentially illustrating steps of an example of a method for manufacturing a printed wiring board using a conventional build-up method.

【符号の説明】[Explanation of symbols]

11,21 コア層 12,22 導体 13,23 感光性エポキシ樹脂層 14,24 フォトビア 15 最外層の感光性絶縁樹脂層 16,25 最外層の導体 17,19,27 UV光 18,26 ソルダレジスト 11, 21 Core layer 12, 22 Conductor 13, 23 Photosensitive epoxy resin layer 14, 24 Photo via 15 Outermost photosensitive insulating resin layer 16, 25 Outermost conductor 17, 19, 27 UV light 18, 26 Solder resist

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ベースとなるコア層に感光性絶縁樹脂層
を形成する工程と、この感光性絶縁樹脂層を露光・現像
してフォトビアを形成する工程と、前記感光性絶縁樹脂
層表面を研磨し光硬化層を除去する工程と、研磨した前
記感光性絶縁樹脂層表面銅めっきを施し、さらにこれ
をエッチングしてパターン化された導体を設けた前記
感光性絶縁樹脂層表面にソルダレジストを形成する工程
とを有する印刷配線板の製造方法において、前記ソルダ
レジストを形成する前に前記感光性絶縁樹脂層表面にU
V光照射を行うことを特徴とする印刷配線板の製造方
法。
1. A step of forming a photosensitive insulating resin layer on a core layer serving as a base, a step of exposing and developing the photosensitive insulating resin layer to form a photo via, and polishing the surface of the photosensitive insulating resin layer. Removing the photo-cured layer, and performing copper plating on the polished surface of the photosensitive insulating resin layer.
Wherein after only set the etching to patterned conductor
The method of manufacturing a printed wiring board and a step that form the solder resist photosensitive insulating resin layer surface, the photosensitive insulating resin layer surface before you form the solder resist U
A method for manufacturing a printed wiring board, comprising irradiating V light.
JP20071696A 1996-07-30 1996-07-30 Manufacturing method of printed wiring board Expired - Fee Related JP2894997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20071696A JP2894997B2 (en) 1996-07-30 1996-07-30 Manufacturing method of printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20071696A JP2894997B2 (en) 1996-07-30 1996-07-30 Manufacturing method of printed wiring board

Publications (2)

Publication Number Publication Date
JPH1051138A JPH1051138A (en) 1998-02-20
JP2894997B2 true JP2894997B2 (en) 1999-05-24

Family

ID=16429026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20071696A Expired - Fee Related JP2894997B2 (en) 1996-07-30 1996-07-30 Manufacturing method of printed wiring board

Country Status (1)

Country Link
JP (1) JP2894997B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207655A (en) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd Metallic base substrate and light-emitting unit

Also Published As

Publication number Publication date
JPH1051138A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
US4211603A (en) Multilayer circuit board construction and method
KR20130090115A (en) Method for forming solder resist and print circuit board with the same solder resist
JPH0682926B2 (en) Method for manufacturing multilayer wiring board
JP2894997B2 (en) Manufacturing method of printed wiring board
JP2586745B2 (en) Manufacturing method of printed wiring board
JPH04348588A (en) Manufacture of printed circuit board
JP3890631B2 (en) Method for manufacturing printed wiring board
JP2550899B2 (en) Method for manufacturing printed wiring board
JP3215542B2 (en) Method of manufacturing multilayer thin film wiring board
JPS5929160B2 (en) Manufacturing method of wiring board
JPH0537151A (en) Formation of thin film multilayer circuit
JP2738372B2 (en) Method of forming coaxial wiring pattern
JP2621634B2 (en) Manufacturing method of polyimide resin multilayer wiring board
JP2623377B2 (en) Method of forming polyimide insulating layer on multilayer circuit board
JPS5921095A (en) Method of producing multilayer printed circuit board
JP2919423B2 (en) Manufacturing method of printed wiring board
JP2000269326A (en) Manufacture for semiconductor device
JP2587544B2 (en) Manufacturing method of printed wiring board
JP2755019B2 (en) Method for manufacturing multilayer wiring board
JPH05211388A (en) Manufacture of printed wiring board
JP2644847B2 (en) Multilayer wiring board and method of manufacturing the same
JPH0354873B2 (en)
JP2003152316A (en) Method of preventing printed board from being soldered
JPH01321683A (en) Manufacture of printed wiring board
JP3187285B2 (en) Manufacturing method of printed circuit board

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990202

LAPS Cancellation because of no payment of annual fees