JP2894133B2 - Hollow fiber and method for producing the same - Google Patents

Hollow fiber and method for producing the same

Info

Publication number
JP2894133B2
JP2894133B2 JP4359752A JP35975292A JP2894133B2 JP 2894133 B2 JP2894133 B2 JP 2894133B2 JP 4359752 A JP4359752 A JP 4359752A JP 35975292 A JP35975292 A JP 35975292A JP 2894133 B2 JP2894133 B2 JP 2894133B2
Authority
JP
Japan
Prior art keywords
outer diameter
hollow fiber
fiber
spinning
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4359752A
Other languages
Japanese (ja)
Other versions
JPH06200407A (en
Inventor
宜明 中川
靖二 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JEI EMU ESU KK
Original Assignee
JEI EMU ESU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JEI EMU ESU KK filed Critical JEI EMU ESU KK
Priority to JP4359752A priority Critical patent/JP2894133B2/en
Publication of JPH06200407A publication Critical patent/JPH06200407A/en
Application granted granted Critical
Publication of JP2894133B2 publication Critical patent/JP2894133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は主に血液浄化に使用され
る中空繊維およびその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow fiber mainly used for blood purification and a method for producing the same.

【0002】[0002]

【従来の技術】現在血液浄化に利用されている中空繊維
は円筒型のハウジング内に数千本程度束にして挿入され
ている。このうち、特に血液透析およびその類似療法に
於いては中空繊維内部に血液を、外部に透析液を流し有
害物質の除去を行っている。特に、高い除去率が要求さ
れる血中尿素窒素(BUN)に於いてはその大部分が拡
散により除去されている。従って、中空繊維自体の透過
性能を向上させても中空繊維外表面と透析液との接触性
が不良であれば除去能の向上を図る事はできない。すな
わち、繊維同志が密着すると透析液が繊維の外表面に十
分接触できなくなるので、繊維自体の持つ性能を十分発
揮する事ができなくなる。このため中空繊維相互間の接
触面積の低下を図り、透析液との接触性を向上させる技
術が必要となっている。公知の技術としては、中空繊維
外表面にフィン状の突起を付けた方法(特公平2−44
226など)、中空繊維間にスペーサーを加えた方法
(特開平3−238027など)および繊維を蛇行させ
る方法(特開昭61−5848など)が提案されてい
る。また製膜時、紡糸原液および中空部形成の芯液吐出
量を強制的に変化させる方法(特開昭55−14271
1、特公昭58−50761)も提案されている。
2. Description of the Related Art Hollow fibers currently used for blood purification are inserted in a bundle of several thousands in a cylindrical housing. Among them, particularly in hemodialysis and similar treatments, harmful substances are removed by flowing blood inside the hollow fiber and dialysate outside. In particular, most of urea nitrogen (BUN) in blood, which requires a high removal rate, is removed by diffusion. Therefore, even if the permeation performance of the hollow fiber itself is improved, the removal ability cannot be improved if the contact between the outer surface of the hollow fiber and the dialysate is poor. That is, when the fibers come into close contact with each other, the dialysate cannot sufficiently contact the outer surface of the fiber, so that the performance of the fiber itself cannot be sufficiently exhibited. Therefore, there is a need for a technique for reducing the contact area between the hollow fibers and improving the contact property with the dialysate. As a known technique, a method in which fin-shaped protrusions are provided on the outer surface of a hollow fiber (Japanese Patent Publication No. 2-44)
226), a method in which a spacer is added between hollow fibers (for example, JP-A-3-238027), and a method for meandering the fibers (for example, JP-A-61-5848). Also, a method for forcibly changing the spinning stock solution and the core solution discharge amount for forming the hollow portion during film formation (Japanese Patent Application Laid-Open No. 55-14271).
1, Japanese Patent Publication No. 58-50761) has also been proposed.

【0003】[0003]

【本発明が解決しようとする課題】これら従来技術にお
いては、特殊形状ノズルや製膜後に特別な処理工程およ
び装置を必要とすることから、製造工程の増加はもとよ
り、繊維への物理的、化学的ダメージを受けやすい。ま
た、フィンもしくはスペーサーを挿入した場合、これら
が繊維外表面と接触する部分は透析液との接触性が低下
しやすく、必ずしも良好とは言いがたい。本発明はこれ
ら技術が抱える従来技術の問題点を改善し、高い開繊性
を有する中空繊維および該繊維を利用した血液処理装置
を提供することを目的とするものである。また、従来の
中空繊維の製造法においては、多くは中空部を形成する
ために有機液体からなる芯液を使用しているが、その洗
浄除去のためにフロン系洗浄剤を使用している。しかし
フロンの使用削減によりその洗浄法に苦慮している状況
にある。本発明の第2の目的は、このような問題の無い
中空繊維の製造法を提供する事にある。
In these prior arts, special processing nozzles and special processing steps and equipment are required after film formation. Therefore, not only the number of manufacturing steps is increased, but also physical and chemical Susceptible to mechanical damage. Also, when fins or spacers are inserted, the portions where they come into contact with the outer surface of the fiber tend to have low contact with the dialysate, and are not necessarily good. An object of the present invention is to solve the problems of the prior arts possessed by these techniques and to provide a hollow fiber having a high fiber-opening property and a blood processing apparatus using the fibers. Further, in the conventional method for producing hollow fibers, a core liquid composed of an organic liquid is often used to form a hollow portion, but a Freon-based cleaning agent is used for washing and removing the core liquid. However, due to the reduction in the use of CFCs, there is a situation in which they are struggling with such cleaning methods. A second object of the present invention is to provide a method for producing a hollow fiber free of such problems.

【0004】[0004]

【課題を解決しようとする手段】本発明においては、中
空繊維の外径を周期的に変化、特に波形に変化させ、該
外径の最小外径/最大外径の比(以下「外径比」とい
う。)を0.70〜0.95の範囲にし、且つ、変化の
周期を300〜3,000μmの範囲にする事により、
前記の第1の目的を達成した。本発明で言う波形の変化
とは、図1に示すように繊維の縦断面において膜壁が波
形状に形成されるような変化を意味し、変化の周期と
は、最大外径部から次の最大外径部あるいは最小外径部
から次の最小外径部までの距離を単位とし、これを周期
的に繰り返すことを意味する。本発明の中空繊維は、内
部に血液を流して血液を処理する用途に好適であり、特
に透析膜として好ましく使用される。また、このような
中空繊維を前記第2の目的を達成しつつ製造するために
は、中空繊維の原料を溶解した紡糸原液を紡糸時の粘度
が500〜1,000ポイズになるように調製し、これ
を二重管状紡糸ノズルに供給して内部に気体を供給しな
がら空気中に押し出し、次いで凝固浴中に導入して、張
力がほとんどかからない状態で凝固させる。以下、本発
明の中空繊維状の半透膜およびその製造法について具体
的に説明する。本発明の中空繊維は、外径比が0.70
〜0.95の範囲にあり、且つ、その変化の周期(波
長)が300〜3,000μmの範囲にあるが、外径比
が0.95より大きかったり周期が3,000μmより
長くなると血液処理において繊維同志が密着しやすくな
り、本発明の効果が十分に発現しなくなる。また、外径
比が0.70より小さいものや周期が300μmより短
いものは、製造工程において繊維の部分的な肉薄化を生
じやすくなり、その結果血液処理において血液の漏洩や
繊維の潰れを生じやすくなるので好ましくない。より好
ましい外径比は0.80〜0.95であり、周期は50
0〜2,000μmの範囲にある事が好ましい。さら
に、中空繊維の肉厚は外径の変化にかかわり無くほぼ一
定である事が優れた膜性能を得る上で好ましい。血液を
内部に流す場合、中空繊維の内径は150〜250μm
の範囲にある事が好ましい。また、膜の厚さは5〜10
0μmの範囲が好適であり、より好ましいのは5〜50
μmである。本発明の中空繊維を製造するにはまず、上
記の高分子原料を溶解した紡糸原液を、紡糸時の粘度が
500〜1,000ポイズになるよう調製する。粘度が
500ポイズよりも小さいと、外径比が0.70よりも
小さくなり、1,000ポイズを越えると逆に0.95
よりも大きくなる。粘度は、原料の濃度、添加剤および
温度などによって変化するので、これらを調節して紡糸
時の粘度が上記の範囲に入るようにする。本発明におい
て用いられる中空繊維を構成する材料としては、セルロ
ースアセテートおよびその加水分解物、銅アンモニアセ
ルロース、ポリアクリロニトリル、ポリメチルメタクリ
レート、ポリビニルアルコール、ポリスルホン、ポリエ
ーテルスルホン等の高分子材料が好適に使用できる。紡
糸原液における高分子原料の濃度は、20〜40重量%
の範囲が適当である。高分子原料を溶解するための溶剤
は原料によって異なるが、N,N−ジメチルホルムアミ
ド、N,N−ジメチルアセトアミド、ジメチルスルホオ
キシドおよびN−メチル−2−ピロリドンなどは種々の
高分子に広く使用する事ができる。また、紡糸原液に
は、種々の重合度を持ったポリエチレングリコール、ポ
リビニルピロリドン、多価アルコールおよび無機塩類な
どの第3成分を添加して、膜性能の制御や紡糸原液の粘
度の調節を行う事ができる。紡糸原液は、二重同心円状
の紡糸口金の外側ノズルに供給し、内側のノズルにはガ
スを供給して口金より空気中に押し出す。ガスの代わり
に液体を供給した場合には、外径の周期的変化が発現し
ない。金型の形状は、必ずしも円形である必要はなく、
他の形状例えば楕円形さらにはその他の異形断面形状の
ものであってもよい。内側ノズルに供給するガスとして
は、窒素、アルゴン等の不活性ガスが望ましい。紡糸原
液は繊維の肉厚を一定にするために一定の平均流速で口
金に供給する。口金より押し出された紡糸原液は、空気
中を通過した後に凝固浴に導入され、中空繊維が形成さ
れる。凝固液としては水、または水溶液が好適であり、
中空繊維は凝固浴を通過した後に巻取られる。本発明に
於いては紡糸原液を一旦、空気中に押し出す事が必要で
あり、直接凝固浴中に押し出した場合は外径が周期的に
変化する中空繊維を得る事ができない。紡糸原液の粘度
を500〜1,000ポイズにすると外径が周期的に変
化する中空繊維が得られる理由は明確でないが、内部に
ガスを吹き込みながら空気中に押し出す。内部にガスを
吹き込みながら空気中に押し出すと、内部のガスは表面
張力によって丸くなろうとし、この力と粘度とが適度に
つり合うためではないかと考えられる。すなわち、粘度
が500ポイズよりも小さいと丸くなろうとする力が粘
度に打ち勝って外径変動が大きくなり、粘度が1000
ポイズよりも大きいと丸くなろうとする力の影響が小さ
くなり、500〜1000ポイズではこれらがつり合っ
て所定の外径変動を持った中空繊維が得られるものと思
われる。そしてこのような周期的変化をそのまま固定す
るために張力がほとんどかからない状態で凝固させる。
凝固時に少しでも強い張力がかかると周期的な外径変化
が消失してしまう。本発明においては、(1)紡糸原液
の粘度を所定の範囲に調製し、(2)内側ノズルにガス
を供給し、かつ(3)ノズルより一旦空気中に押し出す
ことにより、外径が所定の周期で変化する中空繊維を自
動的に得ることができる。これに対して、前述した従来
技術は、上記の(1)(2)(3)の条件を同時に満足
するものではなく、繊維の内部に供給する液体または気
体の圧力を周期的に変化させることによって外径を周期
的に変化させるものである。このような従来技術による
場合には、圧力をあまり短い周期で変化させることが困
難なため、本発明で規定するような短い周期で外径が変
化する繊維を得ることが難しい。本発明の中空繊維は、
外径が周期的に変動している事によって繊維の外表面同
志の密着が起きにくくなり、極めて高い開繊性を示す。
また、内径も周期的に変動する事により、非ニュートン
流体である血液が中空繊維内部を流れるときに生じる境
膜が形成されにくくなり、それによる拡散除去能の向上
も達成できる。実際、この繊維を使用した血液透析器
は、同一膜面積の外径が一定のタイプと比較し、BUN
クリアランスで約5〜10%の改善が図れた他、繊維紡
糸後の洗浄が不要のため製造工程が従来より少なく、こ
れに伴う膜損傷率も減少、結果として、血液通液不良、
返血後の残血も著しく改善された。
In the present invention, the outer diameter of the hollow fiber is changed periodically, especially in a waveform, and the ratio of the outer diameter to the minimum outer diameter / maximum outer diameter (hereinafter referred to as the "outer diameter ratio"). ) In the range of 0.70 to 0.95 and the period of change in the range of 300 to 3,000 μm.
The first object has been achieved. The change in the waveform referred to in the present invention means a change in which the membrane wall is formed in a wavy shape in the longitudinal section of the fiber as shown in FIG. 1, and the cycle of the change means the following from the maximum outer diameter portion to the next. This means that the distance from the maximum outer diameter part or the minimum outer diameter part to the next minimum outer diameter part is used as a unit, and this is periodically repeated. The hollow fiber of the present invention is suitable for use in treating blood by flowing blood therein, and is particularly preferably used as a dialysis membrane. Further, in order to produce such a hollow fiber while achieving the second object, a spinning solution in which the raw material of the hollow fiber is dissolved is prepared so that the viscosity at the time of spinning becomes 500 to 1,000 poise. The mixture is supplied to a double tubular spinning nozzle, extruded into air while supplying gas therein, and then introduced into a coagulation bath to coagulate in a state where little tension is applied. Hereinafter, the hollow fiber-shaped semipermeable membrane of the present invention and a method for producing the same will be specifically described. The hollow fiber of the present invention has an outer diameter ratio of 0.70
0.90.95, and the cycle (wavelength) of the change is in the range of 300-3,000 μm, but when the outer diameter ratio is larger than 0.95 or the cycle is longer than 3,000 μm, the blood treatment is performed. In this case, the fibers easily adhere to each other, and the effect of the present invention is not sufficiently exhibited. In addition, if the outer diameter ratio is smaller than 0.70 or the cycle is shorter than 300 μm, the fiber is likely to be partially thinned in the manufacturing process, and as a result, blood leakage or fiber crushing occurs in blood processing. It is not preferable because it becomes easier. A more preferred outer diameter ratio is 0.80 to 0.95, and the period is 50.
It is preferably in the range of 0 to 2,000 μm. Further, it is preferable that the thickness of the hollow fiber is substantially constant regardless of the change of the outer diameter in order to obtain excellent membrane performance. When flowing blood inside, the inner diameter of the hollow fiber is 150-250 μm
Is preferably within the range. The thickness of the film is 5 to 10
The range of 0 μm is preferable, and the range of 5 to 50 is more preferable.
μm. In order to produce the hollow fiber of the present invention, first, a spinning solution in which the above-mentioned polymer material is dissolved is prepared so that the viscosity at the time of spinning becomes 500 to 1,000 poise. When the viscosity is smaller than 500 poise, the outer diameter ratio becomes smaller than 0.70, and when the viscosity exceeds 1,000 poise, the outer diameter ratio becomes 0.95.
Larger than. The viscosity varies depending on the concentration of the raw material, the additive, the temperature, and the like, and these are adjusted so that the viscosity during spinning falls within the above range. As a material constituting the hollow fiber used in the present invention, a polymer material such as cellulose acetate and a hydrolyzate thereof, cuprammonium cellulose, polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol, polysulfone, and polyether sulfone are preferably used. it can. The concentration of the polymer raw material in the spinning solution is 20 to 40% by weight.
Is appropriate. Although the solvent for dissolving the polymer raw materials varies depending on the raw materials, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone, etc. are widely used for various polymers. Can do things. In addition, a third component such as polyethylene glycol, polyvinylpyrrolidone, polyhydric alcohol and inorganic salts having various degrees of polymerization is added to the spinning dope to control membrane performance and adjust the viscosity of the spinning dope. Can be. The spinning solution is supplied to the outer nozzle of a double concentric spinneret, and gas is supplied to the inner nozzle to be extruded into the air from the spinneret. When a liquid is supplied instead of a gas, the outer diameter does not change periodically. The shape of the mold does not necessarily have to be circular,
Other shapes, such as an elliptical shape and other irregular cross-sectional shapes, may be used. As a gas supplied to the inner nozzle, an inert gas such as nitrogen or argon is desirable. The spinning dope is supplied to the spinneret at a constant average flow rate to keep the fiber thickness constant. The spinning solution extruded from the spinneret is introduced into a coagulation bath after passing through the air to form hollow fibers. As the coagulating liquid, water or an aqueous solution is preferable,
The hollow fibers are wound after passing through a coagulation bath. In the present invention, it is necessary to once extrude the spinning solution into the air, and if it is extruded directly into a coagulation bath, it is not possible to obtain hollow fibers whose outer diameter changes periodically. When the viscosity of the spinning dope is set to 500 to 1,000 poise, the reason why a hollow fiber whose outer diameter changes periodically is not clear, but it is extruded into the air while blowing gas inside. If the gas is extruded into the air while the gas is being blown into the inside, the gas inside tends to be rounded due to surface tension, and it is considered that this force and viscosity are appropriately balanced. That is, when the viscosity is less than 500 poise, the force for rounding overcomes the viscosity, the fluctuation of the outer diameter becomes large, and the viscosity becomes 1000
If the poise is larger than the poise, the effect of the rounding force is reduced. If the poise is 500 to 1000 poise, these are balanced to obtain a hollow fiber having a predetermined variation in outer diameter. Then, in order to fix such a periodic change as it is, the solidification is performed in a state where almost no tension is applied.
If any strong tension is applied during solidification, the periodic change in outer diameter disappears. In the present invention, (1) the viscosity of the spinning dope is adjusted to a predetermined range, (2) the gas is supplied to the inner nozzle, and (3) the outer diameter is predetermined by temporarily extruding the air from the nozzle. Hollow fibers that change with the period can be obtained automatically. On the other hand, the prior art described above does not simultaneously satisfy the above conditions (1), (2), and (3), and periodically changes the pressure of the liquid or gas supplied into the fiber. The outer diameter is changed periodically. In the case of such a conventional technique, it is difficult to change the pressure in a very short cycle, so that it is difficult to obtain a fiber whose outer diameter changes in a short cycle as defined in the present invention. The hollow fiber of the present invention,
When the outer diameter fluctuates periodically, the outer surfaces of the fibers are less likely to adhere to each other, and exhibit extremely high spreadability.
Further, by periodically changing the inner diameter, it is difficult to form a boundary film generated when blood, which is a non-Newtonian fluid, flows through the inside of the hollow fiber, and it is also possible to achieve an improvement in diffusion removal ability. In fact, a hemodialyzer using this fiber has a BUN compared with a type having the same membrane area and a constant outer diameter.
In addition to improving the clearance by about 5 to 10%, cleaning after fiber spinning is not required, so the number of manufacturing steps is smaller than before, and the membrane damage rate associated therewith is also reduced.
Residual blood after return was also significantly improved.

【0005】[0005]

【実施例】【Example】

実施例1 セルロースアセテート28部、ポリエチレングリコール
25部、ジメチルホルムアミド47部からなる紡糸原液
を調製後90℃に加温した。この時のドープ粘度は70
0から800ポイズであった。この原液を二重管よりな
るノズル外管から、また、内管からは芯材として常温窒
素ガスを4ml/minの割合で吐出した。吐出後、空
気層を通過させ、その後水浴中に導き凝固させ130m
/minで巻取った。得られた中空繊維断面は真円であ
り、最小外径221μm、最大外径265μmであり、
外径比0.83であった。さらに、繊維長手方向に1,
000〜1,500μmの外径の周期変動を認めた。得
られた中空繊維は、グリセリンにより可塑化後、乾燥、
バンドル化した。この時、膜相互間の粘着は全く認めず
極めて高い開繊性を示した。これを膜面積1m2 のモジ
ュールとして水系でのクリアランスを測定したところ、
尿素クリアランスで184ml/min、無機りんクリ
アランスで130ml/minと良好であった。また、
中空繊維内部に造影剤を流し、外部に透析液を流してX
線断層撮影法により透析液の流動状態を観察したとこ
ろ、透析液は全体に均一に流れており良好であった。さ
らにこのモジュールにて血液循環試験を4時間行い返血
したが、返血状態は良好であり、残血もほとんど認めな
かった。
Example 1 A spinning dope comprising 28 parts of cellulose acetate, 25 parts of polyethylene glycol and 47 parts of dimethylformamide was prepared and heated to 90 ° C. The dope viscosity at this time is 70
It was between 0 and 800 poise. The undiluted solution was discharged from a nozzle outer tube consisting of a double tube and from the inner tube as a core material at room temperature nitrogen gas at a rate of 4 ml / min. After discharging, let it pass through the air layer, then guide it into a water bath and solidify it.
/ Min. The cross section of the obtained hollow fiber is a perfect circle, having a minimum outer diameter of 221 μm and a maximum outer diameter of 265 μm,
The outer diameter ratio was 0.83. Further, in the longitudinal direction of the fiber,
Periodic fluctuation of the outer diameter of 000 to 1,500 μm was observed. The obtained hollow fiber is plasticized with glycerin, dried,
Bundled. At this time, adhesion between the films was not recognized at all, and extremely high opening property was exhibited. When this was used as a module with a membrane area of 1 m 2 and the clearance in an aqueous system was measured,
The urea clearance was good at 184 ml / min, and the inorganic phosphorus clearance was good at 130 ml / min. Also,
Flow contrast agent inside the hollow fiber and dialysate outside,
Observation of the flow state of the dialysate by X-ray tomography showed that the dialysate flowed uniformly throughout and was good. Further, a blood circulation test was performed for 4 hours using this module, and the blood was returned. The blood returned was good, and almost no residual blood was observed.

【0006】実施例2 紡糸原液中のポリエチレングリコール添加量を27部と
した以外、実施例1と同様に製膜した。この時の原液粘
度は約900ポイズであった。得られた中空繊維断面は
真円であり、最小外径240μm、最大外径267μm
であり、外径比は0.90であった。また繊維長手方向
の外径周期変動は1,200〜1,500μmであっ
た。この膜を使用した1m2 モジュールの尿素クリアラ
ンスは175ml/minであった。
Example 2 A film was formed in the same manner as in Example 1 except that the amount of polyethylene glycol in the spinning solution was changed to 27 parts. The viscosity of the stock solution at this time was about 900 poise. The cross section of the obtained hollow fiber is a perfect circle, the minimum outer diameter is 240 μm, and the maximum outer diameter is 267 μm.
And the outer diameter ratio was 0.90. The outer diameter period variation in the fiber longitudinal direction was 1,200 to 1,500 μm. The urea clearance of a 1 m 2 module using this membrane was 175 ml / min.

【0007】実施例3 ポリエーテルスルホン30部、ポリエチレングリコール
35部、ジメチルスルホオキシド35部からなる紡糸原
液を調製後40℃に加温した。この時の紡糸原液粘度は
600ポイズであった。この原液を実施例1と同様に吐
出、凝固させ125m/minで巻取った。得られた中
空繊維断面は真円であり、最小外径275μm、最大外
径303μmであり、外径比0.91であった。また、
繊維長手方向の周期は1,000〜1,300μmであ
った。この中空繊維も実施例1と同様、高い開繊性が得
られた。
Example 3 A spinning dope comprising 30 parts of polyether sulfone, 35 parts of polyethylene glycol and 35 parts of dimethyl sulfoxide was prepared and heated to 40 ° C. At this time, the viscosity of the spinning dope was 600 poise. This stock solution was discharged and solidified in the same manner as in Example 1 and wound at 125 m / min. The cross section of the obtained hollow fiber was a perfect circle, having a minimum outer diameter of 275 μm, a maximum outer diameter of 303 μm, and an outer diameter ratio of 0.91. Also,
The period in the fiber longitudinal direction was 1,000 to 1,300 μm. As with Example 1, this hollow fiber also had high openability.

【0008】比較例1 実施例1と同様の紡糸原液組成にて、同様の紡糸条件で
紡糸し、凝固浴で少しテンションのかかるような条件で
巻取った。得られた中空繊維は外径の周期的変化が見ら
れなかった。この繊維を実施例1と同様にしてバンドル
化したところ、繊維相互間の粘着を認めた。このため、
繊維のほぐしを必要とした。この繊維で1m2 のモジュ
ールを作成し、膜性能を測定したところ、水系での尿素
クリアランスは140ml/minであった。また、血
液通液性試験を実施したところ、ほぐしを必要とした部
分を中心に残血を認めた。さらに、実施例1と同様にし
てX線断層撮影法により透析液の流動状態を観察したと
ころ、全体に不均一で数カ所に局所的に流れの悪い部分
が認められた。
Comparative Example 1 Using the same spinning dope composition as in Example 1, spinning was performed under the same spinning conditions, and the film was wound in a coagulation bath under such a condition that a slight tension was applied. The obtained hollow fiber did not show a periodic change in the outer diameter. When the fibers were bundled in the same manner as in Example 1, adhesion between the fibers was observed. For this reason,
Needed fiber loosening. When a module of 1 m 2 was prepared from these fibers and the membrane performance was measured, the urea clearance in an aqueous system was 140 ml / min. In addition, a blood permeation test was performed, and residual blood was observed mainly in the portion that required loosening. Further, the flow state of the dialysate was observed by X-ray tomography in the same manner as in Example 1. As a result, a non-uniform part of the dialysate was observed at several places, and a locally poor flow part was observed.

【0009】比較例2 実施例1と同様の組成で紡糸原液温度を100〜105
℃とし、粘度の低下を図った以外、同条件にて処理し
た。この時の紡糸原液濃度は、100〜300ポイズで
あり、得られた繊維の外径比は0.5、長手方向の径変
化周期は500μmであった。この繊維は部分的に潰
れ、もしくは眼鏡状の変形を生じ、モジュールに組み立
て、プライミングを行ったところ、圧力損失が高く、リ
ークが生じ使用不能であった。
Comparative Example 2 The same composition as in Example 1 was used and the temperature of the spinning dope was set to 100 to 105.
° C and treated under the same conditions except that the viscosity was reduced. The spinning dope concentration at this time was 100 to 300 poise, the outer diameter ratio of the obtained fiber was 0.5, and the diameter change cycle in the longitudinal direction was 500 μm. These fibers were partially crushed or deformed like glasses, and when assembled into a module and primed, the pressure loss was high, leaks occurred, and the fibers could not be used.

【0010】[0010]

【効果】本発明の中空繊維は、外径の最小外径/最大外
径の比が特定の範囲で周期的に変化していることによ
り、繊維の外表面同志の密着が起き難く、極めて高い開
繊性を示す。
The hollow fiber of the present invention has a very high ratio because the outer surface of the fiber is unlikely to adhere to each other because the ratio of the outer diameter to the minimum outer diameter / maximum outer diameter periodically changes within a specific range. Shows spreadability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の中空繊維の一例の断面図である。FIG. 1 is a cross-sectional view of an example of the hollow fiber of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI D01F 1/08 D01F 1/08 (58)調査した分野(Int.Cl.6,DB名) D01D 5/24 D01F 1/08 A61M 1/14,1/18 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 identification code FI D01F 1/08 D01F 1/08 (58) Investigated field (Int.Cl. 6 , DB name) D01D 5/24 D01F 1/08 A61M 1 / 14,1 / 18

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 繊維の外径が繊維の長手方向に波形に周
期的に変化しており、該外径の最小外径/最大外径の比
が0.70〜0.95の範囲にあり、且つ、その周期が
300〜3,000μmの範囲にある事を特徴とする半
透膜性中空繊維。
An outer diameter of a fiber is periodically changed in a waveform in a longitudinal direction of the fiber, and a ratio of a minimum outer diameter to a maximum outer diameter of the outer diameter is in a range of 0.70 to 0.95. And a semi-permeable membrane hollow fiber having a period in the range of 300 to 3,000 μm.
【請求項2】 繊維の肉厚むらが少ない請求項1記載の
中空繊維。
2. The hollow fiber according to claim 1, wherein the fiber has less thickness unevenness.
【請求項3】 中空繊維が透析膜である請求項1または
2記載の中空繊維。
3. The hollow fiber according to claim 1, wherein the hollow fiber is a dialysis membrane.
【請求項4】 請求項1、2または3記載の中空繊維を
血液の入口と出口を有するハウジング内に収納してなる
血液処理装置。
4. A blood processing apparatus comprising the hollow fiber according to claim 1, 2 or 3 housed in a housing having an inlet and an outlet for blood.
【請求項5】 中空繊維の原料を溶解した紡糸原液を紡
糸時の粘度が500〜1,000ポイズになるように調
製し、これを二重管状紡糸ノズルに供給して内部に気体
を供給しながら空気中に押し出し、次いで凝固浴中に導
入して、張力がほとんどかからない状態で凝固させる事
を特徴とする請求項1記載の中空繊維の製造法。
5. A spinning solution in which a raw material of a hollow fiber is dissolved is prepared so as to have a viscosity of 500 to 1,000 poise during spinning, and this is supplied to a double tubular spinning nozzle to supply a gas therein. 2. The method for producing hollow fibers according to claim 1, wherein the fibers are extruded into air while being introduced into a coagulation bath, and coagulated in a state where little tension is applied.
JP4359752A 1992-12-30 1992-12-30 Hollow fiber and method for producing the same Expired - Fee Related JP2894133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4359752A JP2894133B2 (en) 1992-12-30 1992-12-30 Hollow fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4359752A JP2894133B2 (en) 1992-12-30 1992-12-30 Hollow fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06200407A JPH06200407A (en) 1994-07-19
JP2894133B2 true JP2894133B2 (en) 1999-05-24

Family

ID=18466120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4359752A Expired - Fee Related JP2894133B2 (en) 1992-12-30 1992-12-30 Hollow fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2894133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102309929A (en) * 2010-06-30 2012-01-11 吕晓龙 Different-diameter hollow fiber membrane and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980030357A (en) * 1996-10-29 1998-07-25 구광시 Hollow fiber membrane and its manufacturing method
US6322703B1 (en) * 1999-04-20 2001-11-27 Asahi Kasei Kabushiki Kaisha Method for purifying aqueous suspension
DE102007009208B4 (en) * 2007-02-26 2010-01-28 Fresenius Medical Care Deutschland Gmbh Hollow fiber, hollow fiber bundles, filters and processes for producing a hollow fiber or a hollow fiber bundle
KR20140099752A (en) * 2013-02-04 2014-08-13 코오롱인더스트리 주식회사 Hollow fiber membrane and hollow fiber membrane module comprising the same
DE102015116787A1 (en) * 2015-10-02 2017-04-06 B. Braun Avitum Ag Hollow fiber membrane with periodic change in cross section
CN112058095B (en) * 2020-09-23 2022-06-10 天津城建大学 Preparation method of internal pressure type non-isometric hollow fiber membrane and fiber membrane component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102309929A (en) * 2010-06-30 2012-01-11 吕晓龙 Different-diameter hollow fiber membrane and preparation method thereof

Also Published As

Publication number Publication date
JPH06200407A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
WO1998052683A1 (en) Polysulfone-base hollow-fiber hemocathartic membrane and processes for the production thereof
CA2473286A1 (en) Spiraled surface hollow fiber membranes
JP2894133B2 (en) Hollow fiber and method for producing the same
JP2001507741A (en) Melt-spun polysulfone semipermeable membrane and method for producing the same
JP3392141B2 (en) High flow rate hollow fiber membrane
JPS6022901A (en) Selective permeable hollow fiber
JPS6333871B2 (en)
JPH11309355A (en) Polysulfone hollow fiber type blood purifying membrane and its production
EP0824960A1 (en) Hollow-fiber membrane of polysulfone polymer and process for the production thereof
JPS59166208A (en) Manufacture of gas separating membrane
US20220088543A1 (en) System and method for producing hollow fibre membranes
JPS6118404A (en) Hollow yarn membrane and its preparation
JPH0929078A (en) Production of hollow yarn membrane
JPS6132041B2 (en)
WO1983001632A1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JP3537539B2 (en) Method for producing vinyl alcohol-based copolymer hollow fiber membrane
JP2818366B2 (en) Method for producing cellulose ester hollow fiber membrane
JP3473202B2 (en) Manufacturing method of hollow fiber membrane
JPH05161833A (en) Production of semipermeable membrane having high water permeability
JP4672128B2 (en) Hollow fiber membrane and method for producing the same
JPH07258915A (en) Porous polysulfone hollow yarn
JPH04222204A (en) Polyacrylonitrile hollow yarn
JP2005205358A (en) Production method of porous hollow fiber membrane
JP2009095825A (en) Hollow fiber membrane or hollow fiber membrane module, and its manufacturing method
JPH1015366A (en) Manufacture of hollow fiber membrane of selective permeability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees