JPS6132041B2 - - Google Patents

Info

Publication number
JPS6132041B2
JPS6132041B2 JP14563180A JP14563180A JPS6132041B2 JP S6132041 B2 JPS6132041 B2 JP S6132041B2 JP 14563180 A JP14563180 A JP 14563180A JP 14563180 A JP14563180 A JP 14563180A JP S6132041 B2 JPS6132041 B2 JP S6132041B2
Authority
JP
Japan
Prior art keywords
liquid
spinning
specific gravity
coagulable
spinning dope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14563180A
Other languages
Japanese (ja)
Other versions
JPS5771408A (en
Inventor
Shigeo Aoyanagi
Kazuhiko Suzuki
Kazuaki Takahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP14563180A priority Critical patent/JPS5771408A/en
Publication of JPS5771408A publication Critical patent/JPS5771408A/en
Publication of JPS6132041B2 publication Critical patent/JPS6132041B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳现な説明】 本発明は、䞭空糞の補造方法に関するものであ
る。詳しく述べるず、人工腎臓装眮等に䜿甚され
る新芏な透析甚䞭空糞の補造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing hollow fibers. More specifically, the present invention relates to a method for producing a novel hollow fiber for dialysis used in artificial kidney devices and the like.

最近、浞透䜜甚、限倖過䜜甚等を利甚する人
工腎臓装眮発展はめざたしく、医療界においお広
く䜿甚されおいる。しかしお、このような人工腎
臓装眮においおは極めお现い透析甚䞭空糞が最も
重芁な郚材ずな぀おいる。
In recent years, artificial kidney devices that utilize osmotic action, ultraviolet action, etc. have made remarkable progress and are widely used in the medical world. Therefore, in such an artificial kidney device, the extremely thin hollow fiber for dialysis is the most important component.

透析甚䞭空糞の代衚的なものずしおは、(1)党繊
維長ならびに党呚囲にわた぀お数Όないし60ÎŒ
の均䞀な壁厚および倖埄10Όないし数癟Ό
の均䞀な真円圢の暪断面を有し、か぀延䌞配向さ
れおいる党繊維長にわた぀お連続貫通した䞭空郚
を有する銅アンモニアセルロヌス繊維よりなる䞭
空糞特公昭50−40168号、(2)断面構造においお
倖衚面に近い構成郚分が内面に近い構成郚分およ
び䞭間郚分に比べお密な倚孔構造に組成されおな
る銅アンモニア再生繊維玠からなる䞭空人造繊維
䜓特公昭55−1363号、(3)䞭空コアを有する銅
アンモニア再生セルロヌス管状の湿最時における
電子顕埮鏡的芳察においお、暪断面ならびに瞊断
面の党䜓が倧きくずも200Å以䞋の埮现間隙を有
する実質䞊均質か぀緻密な倚孔構造䜓からなり内
倖衚面ずもスキンレスで平滑な衚面性状を有する
銅アンモニア再生セルロヌスからなる透析甚䞭空
繊維特開昭49−134920号等がある。しかし
お、これらの䞭空糞はいずれも、銅アンモニアセ
レロヌス玡糞原液を環状玡糞孔から空気䞭に抌出
し、その䞋方に自重萜䞋させ、その際、線状に玡
出される玡糞原液の内郚䞭倮郚に該玡糞原液に察
する非凝固性䜓を導入充填しお吐出させ、それか
ら自重萜䞋により充分に延䌞したのち垌硫酞溶液
䞭に浞挬し凝固再生を行なうこずにより補造しお
いる。
Typical hollow fibers for dialysis include: (1) total fiber length and circumference ranging from several ÎŒm to 60 ÎŒm;
Uniform wall thickness of m and outer diameter from 10 ÎŒm to several hundred ÎŒm
Hollow fibers made of copper ammonia cellulose fibers having a uniform perfect circular cross section and a hollow portion that extends continuously over the entire length of the stretched and oriented fibers (Japanese Patent Publication No. 40168/1989), (2) ) Hollow artificial fiber body made of copper ammonia regenerated cellulose, in which the sectional structure has a denser porous structure in which the component parts near the outer surface are closer to the inner surface and the middle part (Special Publication No. 1363 of 1983) , (3) Electron microscopic observation of a cuprammonium regenerated cellulose tube having a hollow core when wet shows that the entire cross section and longitudinal section are substantially homogeneous and dense porous structures with microscopic gaps of at most 200 Å or less. There is also a hollow fiber for dialysis made of cuprammonium regenerated cellulose (Japanese Patent Application Laid-open No. 134920/1983), which has a skinless and smooth surface on both the inner and outer surfaces. Therefore, all of these hollow fibers extrude the copper ammonia cererose spinning stock solution into the air from the annular spinning hole and let it fall under their own weight, and at that time, the internal center of the spinning stock solution that is spun linearly. It is manufactured by introducing and filling a non-coagulable material into the spinning dope and discharging it, and then sufficiently stretching it by its own gravity and then immersing it in a dilute sulfuric acid solution to perform coagulation and regeneration.

これらの䞭空糞を甚いお人工腎臓装眮等のよう
な透析装眮を䜜るには、䟋えば䞡端郚付近に人口
管および出口管をそれぞれ蚭けおなる管状本䜓
に、前蚘䞭空糞の束を挿入したのち、その䞡端を
ポリりレタン等の暹脂で前蚘管状本䜓の䞡端郚ず
ずもにそれぞれシヌルするこずにより行なわれ、
䟋えば熱亀換噚におけるシ゚ル・アンド・チナヌ
ブ匏装眮に類䌌した構成のものずされおいる。
To make a dialysis device such as an artificial kidney device using these hollow fibers, for example, after inserting the bundle of hollow fibers into a tubular body having an artificial tube and an outlet tube near both ends, This is done by sealing both ends of the tubular body with a resin such as polyurethane, respectively, and
For example, it has a structure similar to a shell-and-tube type device in a heat exchanger.

しかしながら、前蚘䞭空糞はいずれも壁厚が数
Όないし60Όでか぀倖埄が10Όないし数癟
Όであるので匷床的に䞍充分であるばかりでな
く、盎線状であるためこれを束ねお透析装眮の管
状本䜓に挿入し、その䞡端を本䜓䞡端ずずもに暹
脂でシヌルする堎合、嵩䜎であるためシヌル郚䞭
に均䞀に分散配列させるこずが極めお困難であ
る。したが぀お、該䞭空糞は前蚘管状本䜓内のあ
る郚分に偏぀お密に存圚し、他の郚分は空胎ずな
り、このため䜿甚時に透析液は䞻ずしこの空胎郚
を短絡流通し、本来透析液が最も流通すべきはず
の前蚘束状䞭空糞郚にはその䞀郚しか流通しない
こずになり透析効果が著しく䜎くなる。たた、こ
のような線状䞭空糞を管状本䜓内にある皋床均䞀
に分散配列させ埗たずしおも、透析液は䞭空糞に
沿぀おその間隙を線状に流通するので、充分な混
合が起り難いずいう欠点があ぀た。
However, all of the hollow fibers have a wall thickness of several ÎŒm to 60 ÎŒm and an outer diameter of 10 ÎŒm to several hundred ÎŒm, so they are not only insufficient in strength, but also have a straight shape, so they cannot be bundled together to form a dialysis device. When inserting it into a tubular body and sealing both ends thereof with resin together with both ends of the main body, it is extremely difficult to uniformly distribute and arrange it in the sealed part because of its low bulk. Therefore, the hollow fibers are concentrated in a certain part of the tubular body, and the other part becomes a cavity. Therefore, during use, the dialysate primarily short-circuits through this cavity, causing the Only a portion of the dialysate flows through the bundled hollow fiber portion where the dialysate should flow the most, resulting in a significantly lower dialysis effect. Furthermore, even if such linear hollow fibers could be dispersed and arranged in a somewhat uniform manner within the tubular body, the dialysate flows linearly through the gaps along the hollow fibers, making it difficult for sufficient mixing to occur. There were flaws.

このような欠点を解消するために、前蚘盎線状
䞭空糞を予め加撚しおカヌルを䞎えるこずにより
該䞭空糞を束ねたずきに嵩高ずし、これにより管
状本䜓内の空胎圢成を避け、䞭空糞の均䞀分散配
列を蚈぀おいる。しかしながら、このような方法
では加撚工皋、熱セツト工皋等の䜙分の工皋を必
芁ずするので透析装眮の補造工皋が耇雑ずなり、
結局高䟡ずなるずいう䞀方透析性胜も䜎䞋するな
どの欠点があ぀た。
In order to eliminate these drawbacks, the linear hollow fibers are twisted in advance to give them a curl, thereby making the hollow fibers bulky when bundled. A uniformly distributed arrangement of threads is being measured. However, this method requires extra steps such as a twisting step and a heat setting step, which complicates the manufacturing process of the dialysis device.
It ended up being expensive and had the drawbacks of poor dialysis performance.

さらに、前蚘䞭空糞は、いずれも銅アンモニア
セルロヌス玡糞原液を空気等のガス状雰囲気䞭に
抌出しお自重萜䞋させたのちに、凝固液䞭に浞挬
しお凝固再生しお補造されるので、ガス状雰囲気
䞭を萜䞋する間にアンモニアがある皋床分離しお
衚面から凝固し始める。したが぀お、埗られる䞭
空糞はその補法によ぀お皋床の差こそあれ、いず
れも倖偎衚面にスキンが生成するので、内倖䞡衚
面郚および内郚が均質なものは埗られない。この
ため、このような䞭空糞を透析装眮に䜿甚した堎
合、内偎衚面郚および内郚ず倖偎衚面郚ずで生成
する埮现孔の孔埄が異なるので、性胜が䞀定せず
良奜な透析効果は埗られ難いずいう欠点があ぀
た。
Furthermore, the hollow fibers are manufactured by extruding the copper ammonia cellulose spinning dope into a gaseous atmosphere such as air, allowing it to fall under its own weight, and then immersing it in a coagulation solution to coagulate and regenerate it. While falling through the atmosphere, ammonia separates to some extent and begins to solidify from the surface. Therefore, the resulting hollow fibers all have skins on their outer surfaces to varying degrees depending on the manufacturing method, so it is impossible to obtain a hollow fiber that is homogeneous on both the inner and outer surfaces and inside. For this reason, when such hollow fibers are used in a dialysis device, the pore diameters of the micropores generated on the inner surface and inside and outside surfaces are different, so the performance is inconsistent and it is difficult to obtain a good dialysis effect. There was a drawback.

本発明は、前蚘のごずき埓来品の諞欠点を解消
するためになされたもので、銅アンモニアセルロ
ヌス系玡糞原液に察する非凝固性液を䞊局に、さ
せに該非凝固性液より比重の倧きい凝固性液を䞋
局に充填しおなる二局からなる溶液の該非凝固性
液䞭に、前蚘玡糞原液を環状玡糞孔から盎接抌出
し、か぀該環状に抌出された玡糞原液の内郚䞭倮
郚に該玡糞原液に察する非凝固性液を導入充填し
お該玡糞孔より抌出される線状玡糞原液の比重を
前蚘非凝固液の比重よりも倧きく、か぀前蚘凝固
性液の比重より小さく調敎しお吐出させたのち、
前蚘非凝固性液ず凝固性液ずの界面に沿぀お走行
させお凝固再生を行なうこずにより補造できる。
The present invention was made in order to eliminate the various drawbacks of the conventional products as described above. The spinning stock solution is directly extruded from the annular spinning hole into the non-coagulable liquid of the two-layer solution with the lower layer filled with After introducing and filling a coagulating liquid and adjusting the specific gravity of the linear spinning stock solution extruded from the spinning hole to be larger than the specific gravity of the non-coagulating liquid and smaller than the specific gravity of the coagulating liquid, and then discharging it,
It can be produced by running the liquid along the interface between the non-coagulable liquid and the coagulable liquid to perform solidification and regeneration.

぀ぎに、図面を参照させながら本発明をさらに
詳现に説明する。すなわち、本発明による䞭空糞
は、぀ぎのごずき方法で補造される。すなわち、
第図に瀺すように、济槜に、䞋局ずしお銅
アンモニアセルロヌス玡糞原液よりも比重が倧き
くか぀該玡糞原液に察する凝固性液を、たた
䞊局ずしお前蚘銅アンモニアセルロヌス系玡糞原
液および前蚘凝固性液よりも比重が小さくか぀該
玡糞原液に察する非凝固性液を䟛絊しお二局
からなる济液を圢成させる。この䞊局の非凝固性
液䞭に盎接銅アンモニアセルロヌス系玡糞原液を
玡糞口金装眮の還状玡糞孔図瀺せずか
ら抌出し、その際、この環状に抌出された玡糞原
液の内郚䞭倮郚に該玡糞原液に察する非凝固性液
を導入充填しお吐出させる。環状玡糞孔より抌出
された線状玡糞原液は、内郚に非凝固性液を
含んだたたなんら凝固するこずなく䞊局の非凝固
性液䞭を䞋方ぞ進む。この堎合、線状玡糞原
液は前蚘非凝固性液の浮力を受けながらも、
自身は該非凝固性液よりも比重が倧きいので
沈降する。しかしお、線状玡糞原液は、䞋局
の凝固性液が該線状玡糞原液よりも比重
が倧きいので、非凝固性液ず凝固性液ず
の界面に沿぀お䟋えば20〜50m分、奜たし
くは50〜80分の線速で進行し、凝固性液
䞭に蚭けられた倉向棒により凝固性液䞭
を充分通過したのち、ロヌルより匕䞊げお次
工皋ぞ送る。
Next, the present invention will be explained in more detail with reference to the drawings. That is, the hollow fiber according to the present invention is manufactured by the following method. That is,
As shown in FIG. 1, a bath 10 is provided with a coagulating liquid 11 having a higher specific gravity than the copper ammonia cellulose spinning dope as a lower layer and with respect to the spinning dope, and a coagulating liquid 11 containing the copper ammonia cellulose spinning dope and the coagulating liquid as an upper layer. A bath solution consisting of two layers is formed by supplying a non-coagulable liquid 12 having a specific gravity smaller than that of the spinning stock solution. A cuprammonium cellulose-based spinning stock solution is directly extruded into the non-coagulable liquid in the upper layer through a circular spinning hole (not shown) of the spinneret device 13, and at this time, the internal central part of the spinning stock solution extruded in a circular shape is A non-coagulable liquid for the spinning stock solution is introduced and filled into the spinning dope and discharged. The linear spinning stock solution 14 extruded from the annular spinning hole, while containing the non-coagulable liquid inside, advances downward through the upper layer of the non-coagulable liquid 12 without coagulating at all. In this case, while the linear spinning dope 14 receives the buoyancy of the non-coagulable liquid,
Since the liquid itself has a higher specific gravity than the non-coagulable liquid 12, it settles. Therefore, since the coagulable liquid 11 in the lower layer has a higher specific gravity than the linear spinning dope 14, the linear spinning dope 14 has a density of, for example, 20~ Proceeding at a linear speed of 50 m/min, preferably 50 to 80 m/min, the solidifying liquid 11
After sufficiently passing through the coagulable liquid 11 by a deflection rod 16 provided therein, it is pulled up from the roll 17 and sent to the next process.

しかしお、線状玡糞原液は、前蚘界面
を通過する間に第図に瀺すように、その倧郚分
は凝固性液䞭に挬り、䞀郚分は非凝固性液
䞭に挬る。このため凝固性液に接しおいる
郚分は倖衚面から速やかに凝固するが、非凝固
性液に接しおいる郚分は凝固しないこず
になり、䜓積収瞮が少なくなる。しかし、実際に
は、この郚分は凝固性液に党く接觊しない
わけではなく、凝固性液ず接觊しおいる郚分
の凝固による䜓積収瞮ず非凝固性液ず接觊
しいる郚分の䜓積収瞮ずの差により線状玡糞原
液は撚りを生じおゆるやかなスパむラルを圢
成する。このため前蚘非凝固性液ず接觊しお
いる郚分も凝固性液ず接觊しお最終的には
完党に凝固するこずになる。
Therefore, the linear spinning dope 14 has the above-mentioned interface 15
As shown in FIG.
Soak in 2. Therefore, the portion 3 that is in contact with the coagulable liquid 11 is quickly solidified from the outer surface, but the portion 14 that is in contact with the non-coagulable liquid 12 is not solidified, resulting in less volumetric shrinkage. However, in reality, this portion 4 does not come into contact with the coagulable liquid 11 at all, and the volume shrinkage due to solidification of the portion 3 that is in contact with the coagulable liquid 11 and the portion 4 that is in contact with the non-coagulable liquid 12 occur. Due to the difference in volumetric shrinkage, the linear spinning dope 14 twists to form a gentle spiral. Therefore, the portion 4 that is in contact with the non-coagulable liquid 12 also comes into contact with the coagulable liquid 11 and is finally completely coagulated.

このように、前蚘突条郚の党呚囲に察する長
さの割合および他の郚分の壁厚d1に察するこ
の郚分の壁厚d3の倍率は、凝固性液ず非凝
固性液に察する線状玡糞原液の接觊割合
および進行速床によるので、各々の比重および進
行速床を適宜遞定するこずにより任意の割合のも
のを埗るこずができる。しかしながら長さが党
呚囲に察しお10未満では匷床および撚りが䞍充
分であり、䞀方40を越えるず透析性胜が䞍均䞀
になる恐れがある。たたd3d1が1.3未満では補
匷効果および撚りが䞍充分であり、䞀方倍を越
えるず透析性胜が䞍均䞀になる。
In this way, the ratio of the length l to the entire circumference of the protrusion 4 and the ratio of the wall thickness d 3 of this portion 4 to the wall thickness d 1 of the other portion 3 are determined based on the coagulable liquid 11 and the non-coagulable liquid. Since it depends on the contact ratio of the linear spinning dope 14 to 12 and the advancing speed, any ratio can be obtained by appropriately selecting each specific gravity and advancing speed. However, if the length l is less than 10% of the total circumference, the strength and twist will be insufficient, while if it exceeds 40%, the dialysis performance may become uneven. Further, if d 3 /d 1 is less than 1.3, the reinforcing effect and twisting will be insufficient, while if it exceeds 3 times, the dialysis performance will become uneven.

なお、線状玡糞原液の進行距離を充分にずる堎
合には、必ずしも倉向棒を甚いお凝固性液䞭
に特に浞挬する必芁はなく、第図に瀺すように
倉向棒を甚いおあるいは甚いずに盎接匕き䞊
げおもよい。
Note that if the linear spinning stock solution is to travel a sufficient distance, it is not necessarily necessary to use a diversion rod to immerse it in the coagulating liquid 11; instead, as shown in FIG. It may be pulled up directly with or without using it.

このようにしお埗られる䞭空糞は、䟋えば第
図に瀺すように、党繊維長にわた぀お連続貫通し
た䞭空郚を有する銅アンモニアセルロヌス系繊
維よりなる䞭空糞においお、党繊維長にわた぀
お壁郚の壁厚d1が〜Ό、奜たしくは〜
Όであり、か぀倖埄d2が50〜1000Ό、奜た
しくは200〜700Όであり、さらに党呚囲のう
ち、その10〜40、奜たしくは20〜35の郚分
が前蚘壁厚d1の1.3〜倍、奜たしくは1.5〜2.5倍
の厚みd3を有しお突条郚を圢成しおなるもので
ある。すなわち、壁厚d1の壁郚はほが均䞀な厚
みを有し、䞀方、壁厚d3の突条郚は前蚘壁郚
に察する補匷構造ずな぀おるのである。しかし
お、この䞭空糞は、やや波打぀た圢で僅かにス
パむラル状を呈しおいる。
The hollow fibers obtained in this way are, for example,
As shown in the figure, in a hollow fiber 2 made of copper ammonia cellulose fiber having a hollow portion 1 continuously extending through the entire fiber length, the wall thickness d 1 of the wall portion 3 is 1 to 0 ÎŒm over the entire fiber length. , preferably 3~
5 ÎŒm, and has an outer diameter d 2 of 50 to 1000 ÎŒm, preferably 200 to 700 ÎŒm, and further 10 to 40%, preferably 20 to 35% of the total circumference.
The protrusion portion 4 is formed to have a thickness d 3 that is 1.3 to 3 times, preferably 1.5 to 2.5 times, the wall thickness d 1 . That is, the wall 3 having a wall thickness d 1 has a substantially uniform thickness, while the protrusion 4 having a wall thickness d 3 has a substantially uniform thickness.
It serves as a reinforcing structure for Therefore, the hollow fibers 2 have a slightly undulating and slightly spiral shape.

セルロヌスずしおは、皮々のものが䜿甚できる
が、䞀䟋を挙げるず、䟋えば平均重合床500〜
2500のものが奜たしく䜿甚される。しかしお、銅
アンモニアセルロヌス溶液は垞法により調補され
る。䟋えば、たずアンモニア氎、塩基性硫酞銅氎
溶液および氎を混合しお銅アンモニア氎溶液を調
補し、これに酞化防止剀䟋えば亜硫酞ナトリり
ムを加え、぀いで原料セルロヌスを投入しお撹
拌溶解を行ない、さらに氎酞化ナトリりム氎溶液
を添加しお未溶解セルロヌスを完党に溶解させお
銅アンモニアセルロヌス溶液を埗る。この銅アン
モニアセルロヌス溶液には、さらに透過性胜制埡
剀を混合しお配䜍結合させおもよい。
Various types of cellulose can be used, but one example is a cellulose with an average degree of polymerization of 500 to 500.
2500 is preferably used. Thus, the cuprammonium cellulose solution is prepared by a conventional method. For example, first, aqueous ammonia, a basic aqueous copper sulfate solution, and water are mixed to prepare an aqueous cupric ammonia solution, an antioxidant (e.g., sodium sulfite) is added to this, then raw cellulose is added and dissolved with stirring, and then An aqueous sodium hydroxide solution is added to completely dissolve undissolved cellulose to obtain a cuprammonium cellulose solution. This cuprammonium cellulose solution may further be mixed with a permeation performance controlling agent for coordination bonding.

透過性胜制舌埡剀ずしおは、䟋えば構成単量䜓
䜍䞭に10〜70圓量、奜たしくは15〜50圓量の
カルボキシル基を含有する数平分子量500〜
200000、奜たしくは1000〜100000を有する重合䜓
ないし共重合䜓のアンモニりム塩たたはアルカリ
金属塩がある。このような重合䜓ずしおは皮々あ
るが、䞀䟋を挙げるず、䟋えばアクリル酞、メタ
クリル酞等のカルボキシル基含有䞍飜和単量䜓ず
他の共重合性単量䜓ずの共重合䜓やポリアクリロ
ニトリルの郚分加氎分解生成物がある。しかし
お、共重合性単量䜓ずしおは、メチルアクリレヌ
ト、゚チルアクリレヌト、む゜プロピルアクリレ
ヌト、ブチルアクリレヌト、ヘキシルアクリレヌ
ト、ラりリルアクリレヌト等のアルキルアクリレ
ヌト、メチルメタクリレヌト、゚チルメタクリレ
ヌト、ブチルメタクリレヌト等のアルキルメタク
リレヌト、アクリルアミド、メタクリルアミド、
アクリロニトリル、メタクリロニトリル、ヒドロ
キシアルキルアクリレヌトたたはメタクリレヌ
ト、ゞアルキルアミノアクリレヌトたたはメ
タクリレヌト、酢酞ビニル、スチレン、塩化ビ
ニル等があり、特にアルキルアクリ・レヌトおよ
びアルキルメタクリレヌトが奜たしい。したが぀
お、最も奜たしい共重合䜓は、アクリル酞―アル
キルアクリレヌトたたはメタクリレヌト共重
合䜓、メタクリル酞―アルキルアクリレヌトた
たはメタクリレヌト共重合䜓、ポリアルキルア
クリレヌトたたはメタクリレヌトの郚分加氎
分解生成物である。これらの透過性胜制埡剀は、
セルロヌス100重量郚に察し、通垞〜40重量
郚、奜たしくは〜30重量郚、最も奜たしくは
〜15重量郚䜿甚される。䟋えば、この透過性胜制
埡剀をアンモニアセルロヌス溶液䞭に混合溶解さ
せ、〜30℃、奜たしくは14〜25℃の枩床で20〜
120分間、奜たしくは60〜100分間撹拌しお前蚘銅
アンモニアセルロヌスに配䜍結合させるこずによ
り玡糞原液を埗る。
As the permeation performance controlling agent, for example, it contains 10 to 70 equivalent %, preferably 15 to 50 equivalent % of carboxyl groups in the constituent monomer positions, and has a number average molecular weight of 500 to 500.
200,000, preferably from 1,000 to 100,000. There are various types of such polymers, but examples include copolymers of carboxyl group-containing unsaturated monomers such as acrylic acid and methacrylic acid with other copolymerizable monomers, and polyacrylonitrile. There are partial hydrolysis products. Therefore, as copolymerizable monomers, alkyl acrylates such as methyl acrylate, ethyl acrylate, isopropyl acrylate, butyl acrylate, hexyl acrylate, lauryl acrylate, alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, acrylamide, methacrylate, etc. Amide,
Examples include acrylonitrile, methacrylonitrile, hydroxyalkyl acrylate (or methacrylate), dialkylaminoacrylate (or methacrylate), vinyl acetate, styrene, vinyl chloride, etc., and alkyl acrylate and alkyl methacrylate are particularly preferred. Therefore, the most preferred copolymers are acrylic acid-alkyl acrylate (or methacrylate) copolymers, methacrylic acid-alkyl acrylate (or methacrylate) copolymers, and partial hydrolysis products of polyalkyl acrylates (or methacrylates). It is. These permeability control agents are
Usually 1 to 40 parts by weight, preferably 2 to 30 parts by weight, most preferably 3 parts by weight, per 100 parts by weight of cellulose.
~15 parts by weight are used. For example, this permeability control agent is mixed and dissolved in an ammonia cellulose solution, and the temperature is 8 to 30°C, preferably 14 to 25°C.
A spinning stock solution is obtained by stirring for 120 minutes, preferably 60 to 100 minutes, to coordinate the copper ammonia cellulose.

このような玡糞原液は、通垞比重が1.05〜1.15
であり、奜たしくは1.06〜1.10である。しかしな
がら、埌述するように玡糞孔から抌出される線状
玡糞原液の内郚には非凝固性液が充填されおいる
ので、通垞は玡糞原液より比重は小さく、1.00〜
1.08であり、奜たしくは1.01〜1.04である。
Such spinning dope usually has a specific gravity of 1.05 to 1.15.
and preferably 1.06 to 1.10. However, as will be described later, the inside of the linear spinning dope extruded from the spinning hole is filled with a non-coagulable liquid, so the specific gravity is usually lower than that of the spinning dope, with a specific gravity of 1.00 to 1.00.
1.08, preferably 1.01 to 1.04.

銅アンモニアセルロヌスに察する凝固性液は、
前蚘線状玡糞原液の嵩比重よりもその比重が倧き
く、通垞1.03〜1.31であり、奜たしくは1.05〜
1.18である。䞀䟋を挙げるず、䟋えば濃床〜40
、奜たしくは〜25の硫酞氎溶液、濃床〜
50、奜たしくは10〜30の硝酞氎溶液、濃床
〜47、奜たしくは〜30のリン酞等がある。
The coagulating liquid for copper ammonia cellulose is
Its specific gravity is higher than the bulk specific gravity of the linear spinning dope, usually 1.03 to 1.31, preferably 1.05 to 1.31.
It is 1.18. To give an example, for example, a concentration of 5 to 40
%, preferably 8-25% sulfuric acid aqueous solution, concentration 5-25%
50%, preferably 10-30% nitric acid aqueous solution, concentration 6
-47%, preferably 9-30% phosphoric acid, etc.

䞊局ずしお甚いられる銅アンモニアセルロヌス
に察する非凝固性液は、前蚘線状玡糞原液の嵩比
重よりもその比重が小さく、か぀前蚘凝固性液ず
混和しないものであり、その比重は通垞0.71より
小さく、奜たしくは0.69より小さい。䞀䟋を挙げ
るず、䟋えば―ヘキサン、―ヘプタン、―
オクタン、―デカン、―ドデカン、流動パラ
フむン、軜油、灯油、ベンれン、トル゚ン、キシ
レン、スチレン、パヌクロル゚チレン、トリクロ
ル゚チレン等がある。たた線状玡糞原液䞭に玡出
される非凝固性液の遞択は、䞭空糞の䞭空郚の維
持あるいは䞭空糞壁面の凹凞の有無に倧きく圱響
する。すなわち、䞭空糞の也燥時に䞭空郚に充填
されおいる非凝固性液が膜を透しお急激に倖郚に
出るず、䞭空郚内は枛圧ずなり䞭空朰れを発生さ
せ、あるいは内壁に凹凞を生じる。そしお、甚い
られる非凝固性液は也燥時に透過性の䜎い液䜓が
遞ばれる。奜適な非凝固性液しおは、䞊蚘のごず
きのものがある。
The non-coagulable liquid for cuprammonium cellulose used as the upper layer has a specific gravity smaller than the bulk specific gravity of the linear spinning dope and is immiscible with the coagulable liquid, and its specific gravity is usually less than 0.71, preferably is less than 0.69. For example, n-hexane, n-heptane, n-
Examples include octane, n-decane, n-dodecane, liquid paraffin, light oil, kerosene, benzene, toluene, xylene, styrene, perchlorethylene, trichlorethylene, etc. Furthermore, the selection of the non-coagulable liquid to be spun into the linear spinning dope greatly influences the maintenance of the hollow portion of the hollow fiber and the presence or absence of irregularities on the wall surface of the hollow fiber. That is, when the non-coagulable liquid filled in the hollow fiber passes through the membrane and suddenly exits to the outside when the hollow fiber is dried, the pressure inside the hollow becomes reduced, causing hollow collapse or unevenness on the inner wall. The non-coagulating liquid used is selected to have low permeability during drying. Suitable non-coagulating liquids include those described above.

このようにしお凝固再生された䞭空糞は、氎掗
を行な぀お付着しおいる凝固性液を陀去したの
ち、必芁により該䞭空糞に残存しおいる銅を陀去
するために脱銅凊理を斜し、぀いで氎掗される。
脱銅凊理は、通垞濃床〜30の垌硫酞溶液ある
いは硝酞溶液に浞挬しお行なわれる。しかしお、
玡糞原液が前蚘のごずき透過性胜制埡剀を含有し
おいる堎合には、この䞭空糞は匷アルカリ氎溶液
䞭に浞挬しお該制埡剀を陀去し、これにより䜿甚
した重合䜓の分子量に盞圓する埮现孔が䞭空糞の
管壁に圢成される。
The hollow fibers that have been coagulated and regenerated in this way are washed with water to remove the adhering coagulating liquid, and then, if necessary, subjected to decopper treatment to remove copper remaining in the hollow fibers. , then washed with water.
Copper removal treatment is usually carried out by immersion in a dilute sulfuric acid solution or nitric acid solution with a concentration of 3 to 30%. However,
When the spinning stock solution contains a permeation performance controlling agent as described above, the hollow fibers are immersed in a strong alkaline aqueous solution to remove the controlling agent, thereby forming fine particles corresponding to the molecular weight of the polymer used. Holes are formed in the tube wall of the hollow fiber.

前蚘氎掗埌のたたは透過性胜制埡剀陀去埌の䞭
空糞は、さらに必芁により〜100℃、奜たしく
は50〜80℃の枩氎で凊理するか、たたは〜10重
量、奜たしくは〜15重量濃床のグリセリン
氎溶液を甚いお可塑化しお、なお残存しおいる
銅、硫酞第二銅、硫酞氎玠銅、䞭䜎分子量セルロ
ヌス等を陀去し、぀いで也燥したのち巻取りを行
な぀お所望の䞭空糞を埗る。
The hollow fibers after washing with water or after removing the permeability control agent may be further treated with warm water at 5 to 100°C, preferably 50 to 80°C, or 1 to 10% by weight, preferably 2 to 15% by weight. % concentration of glycerin aqueous solution to remove remaining copper, cupric sulfate, copper hydrogen sulfate, medium-low molecular weight cellulose, etc., and then dried and wound to form the desired hollow. get thread.

匷アルカリずしおは、氎酞化ナトリりム、氎酞
化カリりム、氎酞化リチりム、氎酞化アンモニり
ム等があり、濃床0.1〜20、奜たしくは〜15
の氎溶液ずしお甚いられる。
Examples of strong alkalis include sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonium hydroxide, etc., with a concentration of 0.1 to 20%, preferably 1 to 15%.
% aqueous solution.

以䞊述べたように、本発明による䞭空糞の補造
方法は、銅アンモニアセルロヌス系玡糞原液に察
する非凝固性液を䞊局に、さらに該非凝固性液よ
り比重の倧きい凝固性液を䞋局に充填しおなる二
局からなる溶液の該非凝固性液䞭に、前蚘玡糞原
液を環状玡糞孔から盎接抌出し、か぀該環状に抌
出された玡糞原液の内郚䞭倮郚に該玡糞原液に察
する非凝固性液を導入充填しお該玡糞孔より抌出
される線状玡糞原液の比重を前蚘非凝固性液の比
重より倧きく、か぀前蚘凝固性液の比重より小さ
く調敎しお吐出させたのち、前蚘非凝固性液ず凝
固性液ずの界面に沿぀お走行させお凝固再生を行
なうこずにより行なわれるものであるから、前蚘
のごずき突条を生成するばかりでなく、該突条生
成に基づく凝固速床の差により収瞮差を生じ、こ
れがために撚りないしカヌルを生じ、前蚘のごず
き効果を生じる。たた、玡糞原液は空気等のガス
状雰囲気䞭に玡出されるずなく、非凝固性液䞭に
盎接玡出しお行なわれるので、埓来法のようにガ
ス状雰囲気通過時のアンモニアの揮散はなく、こ
のため埗られる䞭空糞は内倖䞡面および内郚にお
いお完党に均䞀のものが埗られる。
As described above, the method for producing hollow fibers according to the present invention comprises filling the upper layer with a non-coagulable liquid relative to the copper ammonia cellulose-based spinning dope, and further filling the lower layer with a coagulating liquid having a higher specific gravity than the non-coagulating liquid. The spinning dope is directly extruded from the annular spinning hole into the non-coagulable liquid of the two-layer solution, and the non-coagulable liquid corresponding to the spinning dope is introduced and filled into the center of the annularly extruded spinning dope. After adjusting the specific gravity of the linear spinning dope to be extruded from the spinning hole to be larger than the specific gravity of the non-coagulable liquid and smaller than the specific gravity of the coagulable liquid and discharge it, the non-coagulable liquid and the coagulable liquid are Since this is carried out by coagulation and regeneration by running along the interface with the liquid, it not only generates the above-mentioned protrusions, but also causes a difference in shrinkage due to the difference in solidification rate due to the formation of the protrusions. , which causes twisting or curling, producing the effect described above. In addition, since the spinning stock solution is not spun into a gaseous atmosphere such as air but directly into a non-coagulable liquid, there is no volatilization of ammonia when passing through a gaseous atmosphere as in conventional methods. Therefore, the hollow fibers obtained are completely uniform on both the inside and outside surfaces and inside.

぀ぎに、実斜䟋を挙げお本発明をさらに詳现に
説明する。なお、䞋蚘実斜䟋においおパヌセント
は、特にこずわらない限りすべお重量による。
Next, the present invention will be explained in more detail by giving Examples. In addition, in the following examples, all percentages are by weight unless otherwise specified.

実斜䟋  28アンモニア氎溶液514mlおよび塩基性硫酞
銅864を1200mlの氎に懞濁させお銅アンモニア
氎溶液を調補し、これに10亜硫酞ナトリりム氎
溶液2725mlを添加した。この溶液に重合床玄1000
±100のコツトンリンタヌパルプ1900を投入
しお撹拌溶解を行ない、぀いで10氎酞化ナトリ
りム氎溶液1600mlを添加しお銅アンモニアセルロ
ヌス氎溶液比重1.08を調補しお玡糞原液ずし
た。
Example 1 A cupric ammonia aqueous solution was prepared by suspending 514 ml of a 28% ammonia aqueous solution and 864 g of basic copper sulfate in 1200 ml of water, and 2725 ml of a 10% sodium sulfite aqueous solution was added thereto. This solution has a degree of polymerization of approximately 1000.
1900 g of cotton linter pulp (±100) was added and dissolved with stirring, and then 1600 ml of a 10% aqueous sodium hydroxide solution was added to prepare an aqueous cuprammonium cellulose solution (specific gravity 1.08), which was used as a spinning stock solution.

䞀方、第図に瀺すような装眮を甚いお、溶槜
の䞋局に凝固性液ずしお20硝酞比重
1.12を䟛絊し、䞊局ずしお―ヘプタン比重
0.68を䟛絊した。前蚘玡糞原液を、環状玡糞孔
を装着した玡糞口金装眮に導き、Kgcm2の
窒玠圧で玡糞孔より前蚘䞊局の―ヘプタン䞭に
盎接吐出させた。玡糞孔の孔埄は3.8mmであり、
玡糞原液の吐出量は13.7mlminずした。䞀方、
玡糞口金装眮に装着した非凝固性液の導入管より
ミリスチン酞む゜プロピル比重0.854を導入
し、玡糞原液に内包させお吐出させた。䞊蚘導入
管の管埄は、1.2mmであり、ミリスチン酞む゜プ
ロピルの吐出量は4.22mlminずした。぀いで、
吐出原液非凝固性液を内包する線状玡糞原液
14比重1.025を―ヘプタン䞭に沈降させ、
さらに―ヘプタンず硫酞氎溶液ずの界面を走行
させた。このずきの䞡液の液枩は20℃であり、た
た走行線速床は80minであり、走行距離は
あ぀た。この济槜から匕䞊げたのち、20硫酞
济で济長玄脱銅を行な぀たのち、巻取カ
セに巻取぀た。カセに巻取぀た糞条はタンクに入
れ、これに枩氎を泚入したのち30℃に加枩しお10
時間掗぀た。さらにアルカリ掗浄を行い、続いお
グリセリン氎溶液でグリセリン凊理埌、埗ら
れた糞条を120℃±10℃に保たれたトンネル匏也
燥炉長さmm䞭を10minの走行速床で走
行させお也燥しお䞭空糞を埗た。
On the other hand, using a device as shown in Figure 2, 20% nitric acid (specific gravity
1.12) and n-heptane (specific gravity
0.68). The spinning dope was introduced into a spinneret device 13 equipped with an annular spinning hole, and directly discharged from the spinning hole into the upper layer of n-heptane under a nitrogen pressure of 2 kg/cm 2 . The diameter of the spinning hole is 3.8mm,
The discharge rate of the spinning dope was 13.7 ml/min. on the other hand,
Isopropyl myristate (specific gravity 0.854) was introduced from a non-coagulable liquid introduction tube attached to the spinneret device, encapsulated in the spinning dope, and discharged. The diameter of the introduction tube was 1.2 mm, and the discharge rate of isopropyl myristate was 4.22 ml/min. Then,
Discharge stock solution (linear spinning stock solution containing non-coagulable liquid)
14 (specific gravity 1.025) was precipitated in n-heptane,
Furthermore, the interface between n-heptane and sulfuric acid aqueous solution was run. At this time, the temperature of both liquids was 20℃, the running linear speed was 80m/min, and the running distance was 2.
It was hot. After taking it out of the bath, it was decoppered in a 20% sulfuric acid bath (bath length approximately 4 m) and then wound onto a winding case. The yarn wound into a skein is placed in a tank, filled with hot water, heated to 30℃, and then heated to 10℃.
I washed the time. After further alkaline washing and subsequent glycerin treatment with an 8% glycerin aqueous solution, the resulting yarn was passed through a tunnel drying oven (length 5 mm) maintained at 120°C ± 10°C at a running speed of 10 m/min. It was run and dried to obtain a hollow fiber.

このようにしお埗られた䞭空糞は、第図に瀺
すように倖埄200Ό、壁厚12Ό、党呚囲のう
ち玄30の郚分が前蚘壁厚の玄1.6倍の厚みを有
する突条を圢成しおおり、若干のカヌル性を有
し、か぀内倖䞡衚面郚および内郚にわた぀お均質
なスキンレスのものであ぀た。たた、その匕匵匷
床10Kgmm2であ぀た。
As shown in Figure 5, the hollow fiber thus obtained has an outer diameter of 200 ÎŒm, a wall thickness of 12 ÎŒm, and approximately 30% of the entire circumference has protrusions that are approximately 1.6 times the wall thickness. It had a slight curling property, and was uniform and skinless over both the inner and outer surfaces and the inside. Moreover, its tensile strength was 10 Kg/mm 2 .

このようにしお埗られた䞭空糞を甚いお膜面
積1.0m2、分子量既知の指暙物質〔尿玠
BUN分子量60、リン酞むオン分子量95、
クレアチニン分子量113、ビタミンB12分子量
1355およびむヌリン分子量5200〕に぀いおダむ
ダリザンス詊隓を行な぀たずころ、第衚の結果
が埗られた。なお、このずきの透析液は氎であ
り、その流量Dは500mlminである。た
た、むヌリン、ビタミンB12、クレアチン、尿
玠、PO4 --等の指暙物質を含む代甚血液の流量
Bは200mlminである。UFRは4.6mlmm
Hg・hrであ぀た。
Using the hollow fiber thus obtained (membrane area: 1.0 m 2 ), an indicator substance with a known molecular weight [urea (BUN): molecular weight 60, phosphate ion: molecular weight 95,
Creatinine: molecular weight 113, vitamin B 12 : molecular weight
1355 and inulin: molecular weight 5200], the results shown in Table 1 were obtained. Note that the dialysate at this time was water, and its flow rate (Q D ) was 500 ml/min. Further, the flow rate (Q B ) of the blood substitute containing indicator substances such as inulin, vitamin B 12 , creatine, urea, and PO 4 -- is 200 ml/min. UFR is 4.6ml/mm
I had Hg/hr.

たた、この䞭空糞の束を筒状本䜓に挿入しお補
造した透析装眮は、前蚘䞭空糞が本䜓内に均䞀に
分散しおおり、たた透析液通過時に短絡流通は党
くみられなか぀た。
Further, in a dialysis device manufactured by inserting this bundle of hollow fibers into a cylindrical main body, the hollow fibers were uniformly dispersed within the main body, and no short circuit was observed during the passage of the dialysate.

実斜䟋  実斜䟋の玡糞原液に17.8圓量のカルボキシ
ル基を有する数平均分子量玄50000のアクリル酞
―メチルメタクリレヌト共重合䜓のアンモニりム
å¡©155を添加しお冷华しながら玄25℃の枩床で
60分間撹拌䞋に反応させ、さらに熱成を行な぀お
玡糞原液を埗た。
Example 2 155 g of an ammonium salt of an acrylic acid-methyl methacrylate copolymer having a number average molecular weight of about 50,000 and having 17.8 equivalent % of carboxyl groups was added to the spinning stock solution of Example 1, and the mixture was heated at a temperature of about 25° C. while cooling.
The mixture was reacted for 60 minutes with stirring, and then thermally formed to obtain a spinning stock solution.

このようにしお埗られた玡糞原液を、実斜䟋
ず同様な方法により玡糞しお再生凝固させたの
ち、埗られた糞条を、硫酞氎溶液を満たした
脱銅济に济長10で走行させた。぀いで氎掗した
のち、氎酞化ナトリりムを満たしたアルカリ
济に济長20で走行させるこずにより前蚘共重合
䜓塩を陀去し、぀いで氎掗し、巻取぀た。このず
きの凊理速床は10minであ぀た。カセに巻取
぀た糞条は実斜䟋ず同様の方法で枩氎凊理した
のち、也燥を行な぀お䞭空糞を埗た。
The spinning stock solution thus obtained was prepared in Example 1.
After spinning and regenerating coagulation in the same manner as above, the obtained yarn was run in a copper removal bath filled with a 5% aqueous sulfuric acid solution at a bath length of 10 m. After washing with water, the copolymer salt was removed by running it in an alkaline bath filled with 4% sodium hydroxide at a bath length of 20 m, followed by washing with water and winding. The processing speed at this time was 10 m/min. The thread wound around the skein was treated with hot water in the same manner as in Example 1, and then dried to obtain a hollow fiber.

このようにしお埗られた䞭空糞は、第図に瀺
すように倖埄200Ό、壁厚11Ό、党呚囲のう
ち玄25の郚分が前蚘壁厚の玄1.4倍の厚みを有
する突条を圢成しおおり、若干のカヌル性を有
し、か぀内倖衚面郚および内郚にわた぀お均質な
スキンレスのものであ぀た。たた、その匕匵匷床
9.5Kgmm2であ぀た。
As shown in Figure 6, the hollow fiber thus obtained has an outer diameter of 200 ÎŒm, a wall thickness of 11 ÎŒm, and approximately 25% of the entire circumference has protrusions that are approximately 1.4 times the wall thickness. It had a slight curling property, and was uniform and skinless over the inner and outer surfaces and inside. Also, its tensile strength
It was 9.5Kg/ mm2 .

このようにしお埗られた䞭空糞に぀いお、実斜
䟋ず同様の方法によりダむダリザンス詊隓を行
な぀たたずころ、良奜な結果が埗られた。たた、
この䞭空糞の束を筒状本䜓に挿入しお補造した透
析装眮は、前蚘䞭空糞が本䜓内に均䞀に分散しお
おり、たた透析液通過時に短絡流通は党くみられ
なか぀た。
A dialysance test was conducted on the hollow fiber thus obtained in the same manner as in Example 1, and good results were obtained. Also,
In a dialysis device manufactured by inserting this bundle of hollow fibers into a cylindrical body, the hollow fibers were uniformly dispersed within the body, and no short circuit was observed during the passage of the dialysate.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明方法を行なうための装眮の抂略
図、第図は本発明による䞭空糞の生成原理を説
明するための断面図、第図は他の装眮の抂略
図、第図は本発明方法により埗られる䞭空糞の
抂略構造を瀺す郚分斜芖図であり、たた第〜
図は本発明方法により埗られた䞭空糞の顕埮鏡写
真である。  䞭空郚、 䞭空糞、 壁郚、 突条
郚、 济槜、 凝固性液、 非凝固
性液、 玡糞口金装眮、 線状玡糞原
液。
Fig. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention, Fig. 2 is a sectional view for explaining the principle of producing hollow fibers according to the invention, Fig. 3 is a schematic diagram of another apparatus, and Fig. 4 FIG. 5 is a partial perspective view showing the schematic structure of a hollow fiber obtained by the method of the present invention;
The figure is a micrograph of hollow fibers obtained by the method of the present invention. DESCRIPTION OF SYMBOLS 1... Hollow part, 2... Hollow fiber, 3... Wall part, 4... Projection part, 10... Bathtub, 11... Coagulating liquid, 12... Non-coagulating liquid, 13... Spinneret device, 14... Linear spinning dope .

Claims (1)

【特蚱請求の範囲】  銅アンモニアセルロヌス系玡糞原液に察する
非凝固性液を䞊局に、さらに該非凝固性液より比
重の倧きい凝固性液を䞋局に充填しおなる二局か
らなる济液の該非凝固性液䞭に、前蚘玡糞原液を
環状玡糞孔から盎接抌出し、か぀該環状に抌出さ
れた玡糞原液の内郚䞭倮に該玡糞原液に察する非
凝固性液を導入充填しお該玡糞孔より抌出される
線状玡糞原液の比重を前蚘非凝固性液の比重より
倧きく、か぀前蚘凝固性液の比重より小さく調敎
しお吐出させたのち、前蚘非凝固性液ず凝固性液
ずの界面に沿぀お走行させお凝固再生を行なうこ
ずを特城ずする透析甚䞭空糞の補造方法。  玡糞原液は透過性胜制埡剀を含有しおなる特
蚱請求の範囲第項に蚘茉の方法。
[Scope of Claims] 1. The non-coagulation of a bath liquid consisting of two layers, the upper layer being filled with a non-coagulating liquid for the copper ammonia cellulose-based spinning dope, and the lower layer being filled with a coagulating liquid having a higher specific gravity than the non-coagulating liquid. A line extruded from the spinning hole by directly extruding the spinning dope through the annular spinning hole, and introducing and filling a non-coagulable liquid with respect to the spinning dope into the center of the annularly extruded spinning dope. After adjusting the specific gravity of the shaped spinning stock solution to be larger than the specific gravity of the non-coagulable liquid and smaller than the specific gravity of the coagulable liquid and discharge it, the solution is made to travel along the interface between the non-coagulable liquid and the coagulable liquid. 1. A method for producing a hollow fiber for dialysis, characterized by performing coagulation and regeneration. 2. The method according to claim 1, wherein the spinning stock solution contains a permeation performance controlling agent.
JP14563180A 1980-10-20 1980-10-20 Preparation of hollow fiber Granted JPS5771408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14563180A JPS5771408A (en) 1980-10-20 1980-10-20 Preparation of hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14563180A JPS5771408A (en) 1980-10-20 1980-10-20 Preparation of hollow fiber

Publications (2)

Publication Number Publication Date
JPS5771408A JPS5771408A (en) 1982-05-04
JPS6132041B2 true JPS6132041B2 (en) 1986-07-24

Family

ID=15389466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14563180A Granted JPS5771408A (en) 1980-10-20 1980-10-20 Preparation of hollow fiber

Country Status (1)

Country Link
JP (1) JPS5771408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123849U (en) * 1990-03-28 1991-12-16
JPH0635148U (en) * 1992-10-14 1994-05-10 株匏䌚瀟䞭倮補䜜所 Tube squeezer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263531A (en) * 1988-05-30 1990-03-02 Terumo Corp Production of hollow fiber membrane
US5084349A (en) * 1988-09-07 1992-01-28 Terumo Kabushiki Kaisha Hollow cellulose fibers, method for making, and fluid processing apparatus using same
DE69735925T2 (en) * 1996-12-25 2007-02-15 Asahi Kasei Medical Co., Ltd. Process for producing a hollow fiber membrane, hollow fiber membrane and hollow fiber dialyzer
DE69839622D1 (en) 1997-12-17 2008-07-31 Asahi Kasei Kuraray Medical Co Process for the preparation of an artificial organ, hollow fiber membrane, and hollow fiber dialyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123849U (en) * 1990-03-28 1991-12-16
JPH0635148U (en) * 1992-10-14 1994-05-10 株匏䌚瀟䞭倮補䜜所 Tube squeezer

Also Published As

Publication number Publication date
JPS5771408A (en) 1982-05-04

Similar Documents

Publication Publication Date Title
US3888771A (en) Hollow fibers of cuprammonium cellulose and a process of the manufacture of same
JPS5860010A (en) Hollow fiber and dialytic membrane consisting of said hollow fiber
DE3588092T2 (en) Blood treatment device
US4444716A (en) Method for manufacture of hollow fiber
US4291096A (en) Non-uniform cross-sectional area hollow fibers
JPS6132041B2 (en)
JP2006506537A (en) Apparatus and method for forming materials
JPS6132042B2 (en)
JPS6256764B2 (en)
JPS6132043B2 (en)
JPS6051363B2 (en) Semipermeable composite membrane
JPS6122042B2 (en)
US4380520A (en) Process for producing hollow fibres having a uniform wall thickness and a non-uniform cross-sectional area
JPS5930122B2 (en) Hollow fiber cellulose dialysis membrane and its manufacturing method
JPS6118404A (en) Hollow yarn membrane and its preparation
JPS6039404B2 (en) Hollow fibrous membrane and its manufacturing method
JPS59166208A (en) Manufacture of gas separating membrane
JPH059803A (en) Method for forming yarn, hollow yarn, flat foil and hose-like foil and apparatus for them
JPH06200407A (en) Hollow yarn and its production
JPH03174228A (en) Tubular film and its manufacture
JPS6028925B2 (en) Hollow fiber manufacturing method
JPS6028924B2 (en) Spinning dope composition for hollow fiber production
US5130065A (en) Method of preparing polyacrylonitrile hollow threads with asymmetric pore structure
JPS60215809A (en) Production of hollow fiber
JPS6339264Y2 (en)