JPS6022901A - Selective permeable hollow fiber - Google Patents

Selective permeable hollow fiber

Info

Publication number
JPS6022901A
JPS6022901A JP12216083A JP12216083A JPS6022901A JP S6022901 A JPS6022901 A JP S6022901A JP 12216083 A JP12216083 A JP 12216083A JP 12216083 A JP12216083 A JP 12216083A JP S6022901 A JPS6022901 A JP S6022901A
Authority
JP
Japan
Prior art keywords
hollow fiber
copolymer
membrane
spinning
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12216083A
Other languages
Japanese (ja)
Other versions
JPH0451216B2 (en
Inventor
Kazusane Tanaka
和実 田中
Tatsuo Nogi
野木 立男
Shoji Nagaoka
長岡 昭二
Hidefumi Takiuchi
滝内 秀文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP12216083A priority Critical patent/JPS6022901A/en
Publication of JPS6022901A publication Critical patent/JPS6022901A/en
Publication of JPH0451216B2 publication Critical patent/JPH0451216B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide excellent material permeability, contamination resistance, and sufficient mechanical strength to a hollow fiber for a permeable membrane by incorporating a copolymer having a polyethylene oxide unit. CONSTITUTION:A component A, for example, consists of acrylic or methacrylic ester expressed by the formula I or a vinyl monomer, etc. shown by the formula II, and a component B consists of a monomer or a polymer copolymerizable with the component A such as acrylic acid, methacrylic acid, methyl acrylate, etc. And a selectively permeable hollow fiber is constituted of a copolymer consisting of both components. In addition, the copolymer is required to contain >=1wt% n>=5 polyethylene oxide units contained in the components A.

Description

【発明の詳細な説明】 (技術分野) 本発明は耐汚染1/1倶よび溶質透過性に優れた選択透
過性中空繊組に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a permselective hollow fiber assembly with excellent stain resistance of 1/1 and solute permeability.

(従来技術どイの欠点) 近年、高分子材料の産業・医療分野への応用がすJみ、
とり4つ()物質の分離に関して1選択透過性膜いわゆ
る半透膜の利用が関心を高めている。
(Disadvantages of conventional technology) In recent years, polymer materials have been increasingly applied to industrial and medical fields.
There is increasing interest in the use of selectively permeable membranes, so-called semipermeable membranes, for the separation of four (4) substances.

たとえば逆浸透、透析、限外濾過、気体分離などの分野
において膜使用についての多くの□技術報告がなされて
いる。しかしながら、これらの操作においては処理物質
により膜が汚染されて、処理能力が低下することや、膜
自体の分離性能が必ずしも十分でないことが問題となっ
ている。
For example, many technical reports have been published on the use of membranes in fields such as reverse osmosis, dialysis, ultrafiltration, and gas separation. However, in these operations, there are problems in that the membrane is contaminated by the treatment substance, reducing the treatment capacity, and that the separation performance of the membrane itself is not necessarily sufficient.

このような選択透過性膜の素材としては従来から再生セ
ルロース、各種ヒルロース系誘導体、アクリロニトリル
系重合体、ポリビニルアルコール系重合体、ポリメチル
メタクリレ−1〜系重合(Aなどがとりあげられてき1
〔。さらには耐汚染性を高める目的で、2−ヒドロキシ
エチルメタクリレ=1〜;N−ビニルピロリドン、アク
リルアミド、あるいは(メタ)アクリル酸などの親水性
成分を2有する合成高分子が検討されてきた。
As materials for such selectively permeable membranes, regenerated cellulose, various hillulose derivatives, acrylonitrile polymers, polyvinyl alcohol polymers, and polymethylmethacrylate-1-based polymers (A1) have been used as materials for such selectively permeable membranes.
[. Furthermore, for the purpose of improving stain resistance, synthetic polymers having 2-hydroxyethyl methacrylate = 1 to 2 hydrophilic components such as N-vinylpyrrolidone, acrylamide, or (meth)acrylic acid have been studied.

しかし、これらの素材からなる膜は水や溶質41どの物
質透過性が不十分であったり、あるい【よごれを高めよ
うとして多量の共重合成分を導入しての目的は達しても
一方で機械的強度が低下し、実用上の膜としての機能が
損われたりした。さらにこれらの膜を用いて、各種蛋白
溶液の濃縮、液体食品の無菌化あるいは排水処理工程に
おいて限外濾過分離を行なうに際し、溶質成分の膜面へ
の(=J着、1「積にJ:って目づまり現象をおこし、
目的の操作が阻害されCいた。あるいはこれらの膜を医
療用途に用いて血液や体液などに接触した場合には、蛋
白質、脂質などの各種液性成分の吸着あるいは血小板、
白血球、赤血球、線帷芽細胞などの有形成分の付着が不
可避であり、これらが膜表面にお(プる血栓の生成や補
体系の活性化による免疫機能の低下などをもたらりと推
定された。
However, membranes made of these materials have insufficient permeability to substances such as water and solutes, or they have been introduced with a large amount of copolymerized components to increase dirtiness. The mechanical strength of the film decreased, and its functionality as a practical membrane was impaired. Furthermore, when these membranes are used to concentrate various protein solutions, sterilize liquid foods, or carry out ultrafiltration separation in wastewater treatment processes, the solute components (= J arrival, 1 product J: This causes a clogging phenomenon.
The intended operation was hindered. Alternatively, when these membranes are used for medical purposes and come into contact with blood or body fluids, they may adsorb various humoral components such as proteins and lipids, or they may absorb platelets,
It is assumed that the adhesion of formed substances such as white blood cells, red blood cells, and thromboblasts is inevitable, and that these lead to the formation of blood clots on the membrane surface and a decline in immune function due to the activation of the complement system. It was done.

(発明の目的) 本発明者らの一員はすでに親水性高分子材料としてポリ
エチレンオキサイド単位を有する医療用ハイド臼ゲルを
提案しIC(待聞昭57−164064)。しかしなが
ら、かがる提案においては。
(Objective of the Invention) A member of the present inventors has already proposed a medical hydride gel having polyethylene oxide units as a hydrophilic polymer material and published it as an IC (164064/1986). However, in Kagaru's proposal.

前述したような素材の耐汚染性は向上したものの、。Although the stain resistance of the materials mentioned above has improved.

選択透過性を備えIζ実用的な膜材料を提供するには不
十分なものであった。我々はさらに該親水性高分子材オ
″」に関して、鋭意研究を進めた結果、ポリ」−ヂレン
オキリーイド単位を有する共重合体を含む中空繊維が良
好な物質透過性と耐汚染性を有し。
This was insufficient to provide a practical membrane material with permselectivity. As a result of our intensive research into the hydrophilic polymer material, we found that hollow fibers containing a copolymer having poly-dylene oxylide units have good material permeability and stain resistance. I have it.

かつ寸分な(幾械的強度を備えた選択透過性膜として実
用に耐えることを見いだし2本発明に到達しlこ 。
We have found that this membrane can be put to practical use as a permselective membrane with sufficient mechanical strength, and have arrived at the present invention.

(発明の構成) 本発明の高分子組成物からなる選択透過11膜は次の構
成を有する。
(Structure of the Invention) The permselective membrane 11 made of the polymer composition of the present invention has the following structure.

重合度5以上のポリニーf−レンΔ主すイト単イ。と重
合性炭素−炭素二重結合とを同へ一分子内に有1ノる重
合性単量体(成分1 ) 、 J5よぴ重含14炭素−
炭素二重結合を有づる単量体く成分■)からなる共重合
体を少4区ども一〇の構成成分ど(Jる選択透過性中空
繊維。
Polynylene f-ren Δ main body monomer with a degree of polymerization of 5 or more. and a polymerizable carbon-carbon double bond in one molecule (component 1), a polymerizable monomer containing 14 carbon atoms and a polymerizable carbon-carbon double bond in one molecule.
A copolymer consisting of a monomer having a carbon double bond (1) is used as a permselective hollow fiber.

本発明を構成する成分(1)とは1例えば一般式(1) %式% (1) であられされるアクリル酸、又はメタクリル酸エステル
類あるいは一般式(2) であられされるビニル単量体等である。
Component (1) constituting the present invention is 1, for example, an acrylic acid or methacrylic acid ester represented by the general formula (1) % formula % (1) or a vinyl monomer represented by the general formula (2) etc.

これらのイ・]加エロ含f’l化合物の製法は公知であ
り。
Methods for producing these compounds containing f'l and [I] are well known.

−その重合性炭素−炭素二重結合により特別な装置。- A special device due to its polymerizable carbon-carbon double bond.

手法を用い’、r くとも9通常のラジノJル開始剤2
例えば、アゾビスイソブヂロニトリル、アゾビスジメヂ
ルバ1ノロニ1〜リル、ベンゾイルパーオキサイドなど
を用いて、容易に重合でき、さらに他の単量体あるいは
重合体と共重合も可能であり、ポリエチレンAキリ゛イ
ド単位をイiする高分子組成物を効率Jζく、また再現
性よく形成することができる。
Using the technique ', r at least 9 the usual radino-J initiator 2
For example, it can be easily polymerized using azobisisobutylonitrile, azobisdimedilba-1-noronyl-lyl, benzoyl peroxide, etc., and can also be copolymerized with other monomers or polymers. , a polymer composition containing polyethylene A fluoride units can be formed efficiently and with good reproducibility.

重合体中のポリエチレンオキ1ナイド含イ1屯は。1 ton of polyethylene oxide in the polymer.

例えば元素分析、赤外線吸収スベクl〜ル、核磁気共鳴
スペクトルなど通常の手法によりiff認1ノることが
できる。
For example, it can be determined by conventional techniques such as elemental analysis, infrared absorption spectrum, and nuclear magnetic resonance spectroscopy.

該重合体を構成する共重合成分(II ) +、v成分
(1)と共重合有能な単量体あるいは重合体Cあれば本
質的にはいずれでもよく9例えば11j!r1体として
は、アクリル酸、メタクリル))!2 、アクリル酸メ
ヂル、メタクリル酸メチル、メタクリル酸ジメヂルアミ
ノエヂル、アクリ[Z二重・ツル。酢酸じニル、塩化ビ
ニル、スヂレン、塩化ビニリデン、2−ヒドロギシエチ
ルメタクリレ−1−,N−ビニルピロリドン、アクリル
アミド、シアL171〜ンアクリルアミド、エチレン、
プロピレン、ブタシコニンなどの炭素−炭素二重結合を
有Jるイ」加壬合11化合物およびこれらの混合物等が
ある。
Essentially any monomer or polymer C capable of copolymerizing with the copolymerization component (II) + and v component (1) constituting the polymer may be used.9 For example, 11j! As r1 form, acrylic acid, methacrylic acid))! 2, methyl acrylate, methyl methacrylate, dimylaminoedyl methacrylate, acrylic [Z double/vine. Dinylacetate, vinyl chloride, styrene, vinylidene chloride, 2-hydroxyethylmethacryle-1-,N-vinylpyrrolidone, acrylamide, cyan acrylamide, ethylene,
Examples include compounds having a carbon-carbon double bond such as propylene and butashikonine, and mixtures thereof.

ここで、成分(1)と(II)の」いp合体は任意の共
重合形態をとりうる。これらの成分のうら特に成分(1
)がメトキシポリエチレングリニコールモノメタクリレ
−1へで、これと共重合する成分(11)がアクリロニ
1〜リルあるいはメタクリル酸メチルであるにうむ共重
合体が通常量も好ましく用いられる。
Here, the polymer of components (1) and (II) can take any copolymerization form. Among these components, especially the component (1
) is methoxypolyethylene glycol monomethacrylate-1, and the component (11) to be copolymerized with this is acryloni-1-lyl or methyl methacrylate. A copolymer in which the component (11) is acryloni-1-lyl or methyl methacrylate is also preferably used in a normal amount.

本発明の選択透過性中空繊肩「をイM成づる重合体中に
は、成分(I)中に含有されるn≧5のポリエチレンA
キ(ノイド115位が少なくども1重量%以上含まれる
ことが必要ぐある。これを達成するのに必要な共重合体
中の成分([)の足は、(I)中に含まれるポリエチレ
ンオキサイドの重量分率。
In the polymer constituting the permselective hollow fiber shoulder of the present invention, polyethylene A with n≧5 contained in component (I)
It is necessary that at least 1% by weight or more of the ki(noid at position 115) is contained.To achieve this, the component ([) in the copolymer necessary to contain the polyethylene oxide contained in (I) weight fraction.

即ちnに依存する。例えば、成分(n)がメチルメタク
リレ−1−r−あり、成分(1)が化合物(1)でR1
=Cl−13、R2=OCH3の場合、n=9では単び
体中位としく(1)を0 、 ’255モル%以上含有
することが必要であるのに対し、n=100の場合には
0.023モル%以上でよい。
That is, it depends on n. For example, component (n) is methyl methacrylate-1-r-, component (1) is compound (1) and R1
= Cl-13, R2 = OCH3, when n = 9, it is necessary to have 0,255 mol% or more of (1) as the monomer intermediate, whereas when n = 100, may be 0.023 mol% or more.

該中空繊維に対して目標の性能を達成するのに必要なポ
リエチレンオキサイド単位含有率を与えた場合、そのポ
リエチレンオキサイド単位の重合度71<5では、紡糸
安定性がわるい、得られた膜の機械的強度が不十分、な
どの理由で使用できない。1゛なわち、ポリエチレンオ
キサイド単位の重合度が72<5であり、またポリエチ
レンオキサイド単位の含有率が1重量%未満の揚台には
得られる選択透過性中空!J&mは本発明の目的とする
性質。
When the polyethylene oxide unit content necessary to achieve the target performance is given to the hollow fiber, if the degree of polymerization of the polyethylene oxide unit is 71 < 5, the spinning stability will be poor and the resulting membrane will be difficult to machine. It cannot be used for reasons such as insufficient physical strength. 1゛That is, the permselective hollow that can be obtained in a platform in which the degree of polymerization of polyethylene oxide units is 72<5 and the content of polyethylene oxide units is less than 1% by weight! J&m is the property aimed at by the present invention.

すなわち各種成分の11着抑制、すぐれた物質透過性な
どの特長を持ち得ない。好ましいポリエチレンオキサイ
ド単位の重合度は9〜300特に好ましくは20〜10
0であり、また9fましいポリ]二チレンオキサイド単
位の含有率は3〜90重量%である。
In other words, it cannot have features such as suppression of various components and excellent substance permeability. The degree of polymerization of the polyethylene oxide unit is preferably 9 to 300, particularly preferably 20 to 10.
0, and the content of 9f poly]dethylene oxide units is 3 to 90% by weight.

また本発明における弛の共重合体成分どしては。Also, the loose copolymer component in the present invention.

本発明における成分(II)からなるイ]加重合性化合
物およびこれらの混合物などであり、これらは上記成分
(1)と(II)の共重合体のポリエチレンオキサイド
単位の重量割合として1重量%(全ポリマ中)以上含有
するように配合することができる。
A] Polymerizable compounds consisting of component (II) in the present invention and mixtures thereof, etc., and these are 1% by weight (as the weight ratio of polyethylene oxide units in the copolymer of components (1) and (II)). ) or more in the total polymer.

次に本発明で用いられる紡糸原液の溶媒としては、前記
共重合体等を同時に溶解しうる溶媒はずべて使用可能で
あり1例えばジメチルホルムアミド、ジメチルスルホキ
シド、ジメチルアセタミド。
Next, as the solvent for the spinning dope used in the present invention, any solvent that can simultaneously dissolve the copolymer etc. can be used, such as dimethylformamide, dimethylsulfoxide, and dimethylacetamide.

N−メチルピロリドンなどが好ましく用いられる。N-methylpyrrolidone and the like are preferably used.

またこれらの相互配合物等も好ましく用いられる。Mixtures of these compounds are also preferably used.

これらの溶媒に該共重合体およびその混合物を溶解する
にあたっては、要求される性能1機械的強度、紡糸性を
考慮する必要がある。ずなわら。
When dissolving the copolymer and its mixture in these solvents, it is necessary to consider the required performance (1) mechanical strength and spinnability. Zunawara.

紡糸原液の重合体濃度は膜の透過性および機械的強度と
密接に関連しており、濃度をあげずぎると膜の物質透過
性が失われ、逆に低すぎると機械的強度が低下し、実用
に耐えられな(なる。また紡糸原液の粘度IJ紡糸性の
重要な因子であり2良好な中空繊組形態を形成するため
にも重合体の濃度【ま、5〜50千吊%の範囲で使用さ
れるべきである。
The polymer concentration in the spinning stock solution is closely related to the permeability and mechanical strength of the membrane; if the concentration is too high, the membrane's permeability to substances will be lost, and if it is too low, the mechanical strength will decrease, making it impractical for practical use. In addition, the viscosity of the spinning stock solution is an important factor for IJ spinnability, and in order to form a good hollow fiber configuration, the polymer concentration [well, in the range of 5 to 50,000% should be used.

紡糸原液を口金から吐出りる場合は、なめらかな糸条形
成と同時に中空繊維形態保持についても十分形1憇しな
りればならない。安定に吐出するためには原液の粘度は
重要な因子であり、このため口金温麻を調節して吐出時
の原液粘度を制御することも可能(゛ある。通常、■程
中で延伸を行なわない場合は凝固浴でほぼ中空機紐の寸
法が決定される。目標寸法に比べて大きな孔径の中空口
金を使用する場合には、紡糸原液を一旦空中へ叶出し。
When the spinning stock solution is discharged from the spinneret, it is necessary to form a smooth yarn and at the same time maintain the hollow fiber shape sufficiently. The viscosity of the stock solution is an important factor for stable dispensing, and therefore it is possible to control the viscosity of the stock solution at the time of dispensing by adjusting the temperature of the nozzle. If not, the dimensions of the hollow machine string are approximately determined in the coagulation bath.When using a hollow nozzle with a hole diameter larger than the target size, the spinning stock solution is once released into the air.

しかる後に凝固浴へ浸漬、凝固さける。いわゆる乾湿式
紡糸法は有効な手段である。
After that, it is immersed in a coagulation bath to avoid coagulation. The so-called dry-wet spinning method is an effective method.

中空繊維形態保持のためには、中空機紐の内部に液体を
注入することが行なわれる。注入される液体としては2
例えば、該紡糸原液の溶媒および水や(多価)アルコー
ルなどの凝固剤あるいはこれらの混合物、あるいは該共
重合体やそれとの混合物の非溶媒であるような疎水性の
液体2例えば11−オクタン、流動パラフィンなどの脂
肪族炭化水素、ミリスチン酸イソプロピルのような脂肪
酸エステルなども使用できる。
In order to maintain the shape of the hollow fibers, a liquid is injected into the inside of the hollow machine string. The liquid to be injected is 2
For example, a hydrophobic liquid such as a solvent for the spinning solution and a coagulant such as water or a (polyhydric) alcohol, or a mixture thereof, or a non-solvent for the copolymer or a mixture thereof, such as 11-octane, Aliphatic hydrocarbons such as liquid paraffin, fatty acid esters such as isopropyl myristate, etc. can also be used.

また吐出糸条が空中での温度変化によってグル化したり
、凝固によって速やかに強固な構造を形成J°る場合に
は、自己吸引や圧入ににって窒素ガスや空気などの不活
性気体を用いることができる。
In addition, if the discharged yarn becomes glued due to temperature changes in the air or quickly forms a strong structure by solidification, use an inert gas such as nitrogen gas or air during self-suction or press-fitting. be able to.

このような気体注入法は工程上からも非常に右利な方法
である。温度変化によってゲル化をおこづような原液系
の場合には、乾式部分において冷風をふぎつけ、ゲル化
を促進させることもできる。
Such a gas injection method is very advantageous from a process standpoint. In the case of a stock solution system in which gelation occurs due to temperature changes, gelation can be promoted by blowing cold air in the drying section.

この場合空中部分いわゆる乾式部の長さは30mm以上
にイよる。また温度変化ににってゲル化したり。
In this case, the length of the aerial part, so-called dry part, is 30 mm or more. It may also gel due to temperature changes.

あるいは急激な粘度上昇を伴なわない原液で、凝固のみ
によって中空m維形態を保持しようとする場合には、乾
式部の長さを短かくすることが望ましい。乾式部の長さ
が長1゛ぎる場合には、中空比(外径に対り−る内径の
割合)の小さな中空繊維になり、注入圧をあげていくと
目標の中空比に達する前に局部的な膨らみが生じてしま
う。また短がすぎる場合には急激なドラフトがかかるこ
とになり紡糸が不安定にイTるので1通常、乾式部の艮
ざは1m+n以上100mm、好ましくは3鞘以上50
mmの範囲に設定する。
Alternatively, if the hollow m-fiber form is to be maintained only by coagulation with a stock solution that does not cause a rapid increase in viscosity, it is desirable to shorten the length of the dry section. If the length of the dry part is too long, the hollow fibers will have a small hollowness ratio (the ratio of the inner diameter to the outer diameter), and if the injection pressure is increased, the hollowness ratio will decrease before reaching the target hollowness ratio. A localized bulge will occur. Also, if it is too short, a sudden draft will be applied and the spinning will become unstable.1Usually, the length of the dry section is 1m+n or more and 100mm, preferably 3 sheaths or more and 50mm.
Set to a range of mm.

凝固浴は通常、水や(多価)アルコールなどの凝固剤、
または紡糸原液を構成している溶媒との混合物からなる
。凝固浴の組成はその凝固性によって、紡糸安定性や中
空繊維の膜構造に大きく影響する。紡糸原液に対して凝
固性が高い場合には。
Coagulation baths typically contain a coagulant such as water or (polyhydric) alcohol;
Or it consists of a mixture with the solvent that constitutes the spinning dope. The composition of the coagulation bath greatly influences spinning stability and the membrane structure of hollow fibers depending on its coagulation properties. If the spinning dope has high coagulability.

中空繊維の膜部分に巨大ボイドが生成する。また凝固性
が低くなると中空繊維形態の保持が困難になるため、原
液特性どもあわせて適切な組成にしなければならない。
Huge voids are generated in the hollow fiber membrane. In addition, if the coagulability becomes low, it becomes difficult to maintain the hollow fiber shape, so the composition must be appropriate, taking into account the properties of the stock solution.

凝固浴の温度はその凝固性を大きく支配し、膜の透過性
にもm大な要因となっている。すなわち浴の温度が高く
なると透過性は大きくなる。このため目標の透過性能に
対し、前記の凝固浴組成と適切な条件で組みあわされる
The temperature of the coagulation bath greatly controls its coagulation properties and is also a major factor in the permeability of the membrane. That is, as the temperature of the bath increases, the permeability increases. Therefore, the coagulation bath composition is combined with the above-mentioned coagulation bath composition under appropriate conditions for the target permeation performance.

凝固後、十分な水洗を行なってから、含水状態中空繊維
が乾燥によってその膜構造を破壊されるのを防ぐため、
膜構造内部の水をグリセリンあるいはエチレングリコー
ルなどに置換する。さらに必要に応じてグリセリン水溶
液などを用0て熱処理を施し1寸法安定性を付与するこ
ともできる。
After coagulation, after washing thoroughly with water, in order to prevent the membrane structure of the hydrated hollow fibers from being destroyed by drying,
The water inside the membrane structure is replaced with glycerin or ethylene glycol. Furthermore, if necessary, one-dimensional stability can be imparted by heat treatment using an aqueous glycerin solution or the like.

(発明の効果) かくして適切な条件下で紡糸したポリエチレンオキサイ
ド単位含有共重合体を含む中空繊維は機械的強度にもす
ぐれ、処理膜面の耐汚染効果に加えて2例えば尿素やビ
タミン812などの透過性が著しい向上を示すにも拘わ
らずアルブミンの閉止率が畠いなどその選択透過性につ
いてもすぐれた効果を発揮させることができる。したが
ってその選択透過性の特徴に応じて公知の方法により装
置化し、逆浸透、透析、限外濾過、気体分離等の目的に
利用できる。すなわち、かかる目的のために前記のにう
な共Φ合体のポリエチレンオキサイド単位含有率や紡糸
原液の重合体濃度などの原液条件、紡糸条イ1.後処理
条件等を適当に選び2選択透過性を任意に調節すること
が可能である。
(Effects of the Invention) Thus, the hollow fiber containing the polyethylene oxide unit-containing copolymer spun under appropriate conditions has excellent mechanical strength, and in addition to the anti-fouling effect on the treated membrane surface, it also has the ability to contain substances such as urea and vitamin 812. Even though the permeability has been significantly improved, the albumin blocking rate is still high, and excellent effects can be exhibited in terms of permselectivity. Therefore, they can be made into devices by known methods depending on their permselective characteristics and used for purposes such as reverse osmosis, dialysis, ultrafiltration, and gas separation. That is, for this purpose, the above-mentioned stock solution conditions such as the polyethylene oxide unit content of the co-Φ aggregate and the polymer concentration of the spinning stock solution, and the spinning threads 1. It is possible to arbitrarily adjust the two-selective permeability by appropriately selecting post-processing conditions and the like.

以下、実施例にJ:ってさらに詳しく説明するが。Hereinafter, J: will be described in more detail in Examples.

本発明はこれら実施例により限定されるものではない。The present invention is not limited to these Examples.

実施例1 メトキシボリエチレングリコールメタクリレ−1−、“
’M−23G”(エチレンオキサイド部分の重合度23
2分子ff11112.新中村工業(株)製)21gを
ジメチルスルホキシド(以下DMSOと略記)3570
gに溶解した後、メタクリル酸メチル(以下MMAと略
記>375gと2.2′−アゾビス−2,4−ジメチル
バレロニトリル(以下ADVNと略記>1.190を加
えて通常のラジカル重合を行な−っだ。得られたM−2
3G ”共重合ポリメタクリル酸メチル(以下3 PMMAと略記)共重合体のC−NMRで測定したポリ
エチレンオキサイド単位含有率は3.2重量%で、GP
C法による重量平均分子量は22.8万であった。
Example 1 Methoxypolyethylene glycol methacrylate-1-, “
'M-23G' (polymerization degree of ethylene oxide part 23
2 molecules ff11112. 21g of Shin Nakamura Kogyo Co., Ltd.) and 3570g of dimethyl sulfoxide (hereinafter abbreviated as DMSO)
375 g of methyl methacrylate (hereinafter abbreviated as MMA) and 2,2'-azobis-2,4-dimethylvaleronitrile (hereinafter abbreviated as ADVN >1.190 g) to perform normal radical polymerization. -dah. Obtained M-2
The polyethylene oxide unit content measured by C-NMR of the 3G'' copolymerized polymethyl methacrylate (hereinafter abbreviated as 3PMMA) copolymer was 3.2% by weight;
The weight average molecular weight by method C was 228,000.

°上記共重合体350Qとグリニヤ触媒で重合した重量
平均分子ff166万のアイソタクチシチの高いメタク
リル酸メチル重合体(以下iso −PMMAと略記)
70qとをジメチルスルホキシド980gに加えて12
0℃で12時間攪拌溶解して紡糸原液を調製した。この
紡糸原液は透明であり、落球法粘度11s−28803
)は11’0℃において360ポイズであった。
° High isotactic methyl methacrylate polymer (hereinafter abbreviated as iso-PMMA) with a weight average molecular weight ff of 1.66 million and polymerized with the above copolymer 350Q using a Grignard catalyst.
Add 70q to 980g of dimethyl sulfoxide and make 12
A spinning stock solution was prepared by stirring and dissolving at 0° C. for 12 hours. This spinning stock solution is transparent and has a falling ball viscosity of 11s-28803.
) was 360 poise at 11'0°C.

この紡糸原液を120℃に保温した紡糸装置の原液貯槽
に移した俊、15時間i1¥1置して脱泡を行なった。
This spinning stock solution was transferred to a stock solution storage tank of a spinning device kept at 120° C., and then left for 15 hours to defoam.

該紡糸装置は貯槽の他、ギアポンプ、吐出部からなる。The spinning device includes a storage tank, a gear pump, and a discharge section.

特に吐出部は他とは独立して温度制御ができるようにな
っている。この紡糸装置に外径1.8mwn、内径1.
5mの環状オリフィスからなる口金孔内に中空細管を有
する口金を装着し。
In particular, the temperature of the discharge section can be controlled independently of the others. This spinning device has an outer diameter of 1.8 mwn and an inner diameter of 1.8 mwn.
A cap having a hollow tube was installed in the cap hole consisting of a 5 m annular orifice.

中空mtttから窒素ガスを注入しつつ、ギアポンプに
より紡糸原液を1 、950/minの割合で空中に吐
出しl〔。保温した口金の温瓜は100’Cであった。
While injecting nitrogen gas from the hollow mttt, the spinning stock solution was discharged into the air at a rate of 1.950/min using a gear pump. The temperature of the melon in the heated mouthpiece was 100'C.

口金面から20cm下方に設置した凝固浴に到る間で該
吐出糸条を冷却した後、凝固浴を通過させた。凝固浴は
12℃の5%ジメチルスルホキシド水溶液からなり浴中
ガイドローラがとりつけられている。しかる復通常の方
法で水洗後、グリセリン水溶液で熱処理を施してカセに
巻き取った後、切断してサンプルとした。最終巻取速度
は28 m/minであった。
The discharged yarn was cooled while reaching a coagulation bath installed 20 cm below the mouth surface, and then passed through the coagulation bath. The coagulation bath consisted of a 5% dimethyl sulfoxide aqueous solution at 12° C., and a guide roller was installed in the bath. After washing with water in a conventional manner, the sample was heat-treated with an aqueous glycerin solution, wound up into a skein, and cut into samples. The final winding speed was 28 m/min.

このようにして得た’M−23G”共重合ポリメチルメ
タクリレ−1・の中空uA維は゛完全に透明で。
The hollow uA fibers of 'M-23G' copolymerized polymethyl methacrylate-1 thus obtained were 'completely transparent.

内径240μ、膜厚40μであった。又テンシロン(東
洋ボールドウィン社製:LJM−111)を用いて測定
した中空繊維の強力は47g、伸度は22%で充分な強
さを備えていた。
The inner diameter was 240μ and the film thickness was 40μ. Further, the strength of the hollow fiber measured using Tensilon (manufactured by Toyo Baldwin Co., Ltd.: LJM-111) was 47 g, and the elongation was 22%, indicating sufficient strength.

両端に環流液用の孔を備えたガラス製のケースに該中空
繊維を挿入し、市販のボッティング剤を用いて有効膜面
積46dの小型透析装置(ミニチアモジュール)を作製
した。この装置を、恒温槽(37℃)中に浸して中空糸
内側←水圧をかけ。
The hollow fiber was inserted into a glass case equipped with holes for reflux fluid at both ends, and a small dialysis device (mini-chia module) with an effective membrane area of 46 d was produced using a commercially available botting agent. This device was immersed in a constant temperature bath (37°C) and water pressure was applied to the inside of the hollow fiber.

膜をとおして外側へ透過する一定時間の水の量と有効膜
面積J3よび膜間圧力差から紳出した水の透過速度ハ5
.4.ml/ hr、mmH(1,vn2であツl〔。
The amount of water that permeates to the outside through the membrane in a certain period of time, the effective membrane area J3, and the permeation rate of water discharged from the membrane pressure difference H5
.. 4. ml/hr, mmH (1, vn2 [.

又。or.

該ミニチアモジュールを用いて、中空糸内側に尿素の水
溶液を流し、中空糸の外側には大流量の水を向流で、し
かも膜間圧力差をゼロにするJ:うに循環さヒて、定常
状態での内側および外側の入口。
Using the mini chia module, a urea aqueous solution is flowed inside the hollow fiber, and a large flow of water is counterflowed to the outside of the hollow fiber, and the pressure difference between the membranes is zero. Inner and outer entrances in the state.

出口での尿素濃度と流向とから算出した溶質透過性の目
安どなる尿素の透過膜抵抗は24.0mi++/Cl1
lであり、半透膜として優れた性能を示した。
As a guideline for solute permeability calculated from the urea concentration and flow direction at the outlet, the permeation membrane resistance of urea is 24.0 mi++/Cl1
1, and showed excellent performance as a semipermeable membrane.

同様のミニチアモジュールを用いて中空繊維内部に血小
板懸濁液(PRP:血小板数20万個/μm)を流速Q
 、 51/ min (ずり速度200/Sec )
で37℃に保温しながら3時間循環した。
A platelet suspension (PRP: 200,000 platelets/μm) was applied inside the hollow fiber at a flow rate of Q using a similar mini-chia module.
, 51/min (shear rate 200/Sec)
The mixture was circulated for 3 hours while being kept at 37°C.

生理食塩水で洗浄した後3%グルタルアルデヒド生理食
塩水で固定し、中空繊維内面に付着した蛋白質(11を
アミノ酸分析により測定した。付着聞は2μg/cy+
fであり、中空111Fの内面は汚染されていないこと
がわかった。
After washing with physiological saline and fixing with 3% glutaraldehyde physiological saline, the protein (11) attached to the inner surface of the hollow fiber was measured by amino acid analysis.The attached amount was 2 μg/cy+
It was found that the inner surface of the hollow 111F was not contaminated.

比較例1 グリニ(7触媒で車台したiso −PMMA 84 
Gとラジカル重合法で得たメタクリル酸メチル重合体(
以下syn−PMMΔと略記)168Q、およびパラス
チレンスルボン酸ソーダ塩を2.5モル%共車合したメ
タクリル酸メチル共重合体252QとをDMSOl 2
96Qに120℃で溶解して得た紡糸D;iM (11
0℃において1200ボイス)から実施例1に示した紡
糸方法により中空繊維を得た。ここで得られた中空繊維
は内径240μ9膜厚40μで水の透過速度は4.2m
l/hr−awnl−IQ ・TI、2であった。また
実施例1と同様の方法で血小板懸濁液循環実験の後に付
着した蛋白質の母は20μ(1/a?であった。
Comparative Example 1 Grini (iso-PMMA 84 chassis with 7 catalysts)
G and methyl methacrylate polymer obtained by radical polymerization method (
168Q (hereinafter abbreviated as syn-PMMΔ) and methyl methacrylate copolymer 252Q, which is a copolymer of 2.5 mol% of p-styrene sulfonic acid sodium salt, were mixed in DMSOl 2
Spun yarn D obtained by dissolving in 96Q at 120°C; iM (11
Hollow fibers were obtained by the spinning method shown in Example 1. The hollow fiber obtained here has an inner diameter of 240 μ9, a membrane thickness of 40 μ, and a water permeation rate of 4.2 m.
l/hr-awnl-IQ ・TI, was 2. Further, after a platelet suspension circulation experiment was carried out in the same manner as in Example 1, the size of the attached protein was 20μ (1/a?).

実施例2 メトキシポリエチレングリコールメタクリレ−1−”M
−100G” (エチレンオキサイド部分のtfi台度
100. 分子m4500.東邦化学(株)/新中村工
業(株)製)2’7.30をDMS01697gに溶解
した後、MMA、163(Jと重合開始剤としてADV
N567moを加え、公知の方法にしたがって重合を行
なった。かかる重合操作を3回くりかえして得られた共
重合体中のポリエチレンオキサイド単位含有率は11.
4重量%であった。
Example 2 Methoxypolyethylene glycol methacrylate-1-”M
-100G" (tfi degree of ethylene oxide part 100. Molecule m4500. Manufactured by Toho Chemical Co., Ltd./Shin Nakamura Kogyo Co., Ltd.) 2'7.30 was dissolved in 1697 g of DMS, and polymerization started with MMA, 163 (J). ADV as a drug
N567mo was added and polymerization was carried out according to a known method. The polyethylene oxide unit content in the copolymer obtained by repeating this polymerization operation three times was 11.
It was 4% by weight.

上記共重合体175gとiso−PMMA35(Jとを
490gのDMSOに加え、120℃で14時間撹拌溶
解し紡糸原液を調製した。得られた紡糸原液の110℃
における粘度は1270ボイズであった。この紡糸原液
を実施例1と同様に1.03g/lnの割合で口金から
窒素ガスを注入しつつ吐出し、空中で冷却して10℃の
水から成る凝固浴に導き、凝固、水洗、熱処理、グリセ
リン置換を施して、 19 If/minでドラムに巻
取った。 得られた中空繊維の内径は220μ、膜厚は
32μであった。実施例゛1と同様の方法でミニデアモ
ジュールを作製して、この中空繊維の水の透過速度を測
定したところ4.6ml/br・庇HO・m2であった
。このミニチアモジュールの中空繊維内部に生血清アル
ブミンの1%水溶液をずり速度115/Secで15分
間還流して蛋白質の付着テストを行なった。しかる後に
該ミニチアモジコールを用いて、再度測定した水の透過
速度は4、In+1/旧゛・mm I−1(1・1T1
2であり、該中空IIの透水性保持率は89%であった
。比較例1で示した中空繊維の透水°性保持率は60%
であり1本実施例にお(〕る中空繊維は蛋白質の付着に
よる膜面での目づまりが抑制されていることがわかった
175 g of the above copolymer and iso-PMMA35 (J) were added to 490 g of DMSO and stirred and dissolved at 120°C for 14 hours to prepare a spinning stock solution.The resulting spinning stock solution was heated to 110°C.
The viscosity was 1270 voids. This spinning stock solution was discharged while injecting nitrogen gas from the spinneret at a rate of 1.03 g/ln as in Example 1, cooled in the air, introduced into a coagulation bath consisting of water at 10°C, coagulated, washed with water, and heat treated. , glycerol substitution was performed, and the sample was wound onto a drum at 19 If/min. The inner diameter of the obtained hollow fibers was 220μ, and the film thickness was 32μ. A MiniDare module was prepared in the same manner as in Example 1, and the water permeation rate of this hollow fiber was measured to be 4.6 ml/br/eaves HO/m2. A protein adhesion test was carried out by refluxing a 1% aqueous solution of live serum albumin inside the hollow fibers of this minichia module at a shear rate of 115/Sec for 15 minutes. Thereafter, the water permeation rate measured again using the minithiamodicol was 4, In+1/old mm I-1 (1 T1
2, and the water permeability retention rate of the hollow II was 89%. The water permeability retention rate of the hollow fiber shown in Comparative Example 1 was 60%.
Therefore, it was found that the hollow fibers in this example suppressed clogging on the membrane surface due to protein adhesion.

実施例3 アクリロニトリル182重足部とメトキシポリエチレン
グリコールメタクリレ−h”MlooG”78部をDM
S01474部に加え9重合開始剤どしてADVNl、
4部を添加し、50℃で24時間重合した後、水/メタ
ノ、−ルで再沈、精製して’ M 100 G ”共重
合ポリアクリロニトリルを冑た。該共重合体中のポリエ
チレンオキサイド単位含有率は29%であった。
Example 3 DM 182 parts of acrylonitrile and 78 parts of methoxypolyethylene glycol methacrylate h"MlooG"
In addition to 4 parts of S014, 9 polymerization initiators were added to ADVNl,
After polymerizing at 50° C. for 24 hours, it was reprecipitated with water/methanol and purified to obtain a 'M 100 G' copolymerized polyacrylonitrile.The polyethylene oxide units in the copolymer The content was 29%.

該共重合体105部をD M 8024.5部に加えて
80℃で8時間攪拌溶解した。このようにして調製され
た紡糸原液は、均一でかつ透明であ290℃における粘
度は130ボイズであった。実施例1と同様の紡糸装置
を用いて中空口金から窒素ガスを注入しつつ該紡糸原液
を0.83(]/ll1inの割合で1口金面から6m
l11下方に配置した8’C26%DMSO水溶液から
なる凝固浴に導いた。
105 parts of the copolymer was added to 8024.5 parts of D M and dissolved with stirring at 80° C. for 8 hours. The spinning stock solution thus prepared was uniform and transparent, and had a viscosity of 130 voids at 290°C. Using the same spinning device as in Example 1, while injecting nitrogen gas from the hollow nozzle, the spinning dope was spread 6 m from the nozzle surface at a rate of 0.83(]/ll1in).
It was introduced into a coagulation bath consisting of an 8'C 26% DMSO aqueous solution placed below L11.

凝固、水洗、熱処坤を施して19.5 m/minで巻
取った。
The material was coagulated, washed with water, heat treated, and wound at a speed of 19.5 m/min.

得られた中空繊維の内径は200μ、膜厚は35μであ
った。水の透過速度は3.4ml/hr・mm H(J
 ・1T12で尿素おJ:びビタミンB12の透過膜抵
抗は10.2 min/amおよび113 min/c
+1+で非常に優れた溶質透過性を示した。さらに5%
牛血清アルブミン水溶液を透過させて原液と濾液との濃
度比から測定した蛋白の阻止率は99.9%テコ(7)
 時(7) 水(D透過速度は3 、Qml/hr−m
ml−1(1・Tl12であり1選択透過性の高い半透
膜であった。
The inner diameter of the obtained hollow fibers was 200μ, and the film thickness was 35μ. The water permeation rate is 3.4 ml/hr・mm H(J
・At 1T12, the permeation membrane resistance of urea, J: and vitamin B12 is 10.2 min/am and 113 min/c.
+1+ showed very excellent solute permeability. Another 5%
The protein rejection rate measured from the concentration ratio of the stock solution and filtrate after passing through an aqueous solution of bovine serum albumin was 99.9% (7)
Time (7) Water (D permeation rate is 3, Qml/hr-m
ml-1 (1.Tl12), and was a semipermeable membrane with high 1-selective permeability.

また、実施例1と同様の方法により測定した血小板懸濁
液循環実験後の付着蛋白質の量は0.1μO/antで
あり、非常に良好な耐汚染性を示した3実施例4 実施例2ど同様の方法で” M −100G ”共重合
PMMΔを調製した。共重合体中のポリエチレンAキリ
イドq1位の含有率は2368重量%であった。上記共
重合体i ooc+をDMS0400Gに110℃で1
5時間1η拌溶解し、透明な紡糸原液をty)だ。該紡
糸原液の粘度は90℃で445ボイスであった。実施例
1の紡糸装置を用いて、該紡糸原液をLJ金から1.0
6CI/minの割合で窒素ガスを18.5’nwll
Δqの注入圧をかけながら同時に空中へ吐出した。乾式
部の長さを270111にして冷風をふきつ()ながら
、16℃5%DMSO水溶液からなる凝固浴へ導いた。
In addition, the amount of attached protein after the platelet suspension circulation experiment measured by the same method as in Example 1 was 0.1 μO/ant, showing very good stain resistance.Example 4 Example 2 "M-100G" copolymerized PMMΔ was prepared in a similar manner. The content of the q1 position of polyethylene A kylide in the copolymer was 2368% by weight. The above copolymer i ooc+ was added to DMS0400G at 110°C.
Stir and dissolve for 5 hours to obtain a transparent spinning stock solution. The viscosity of the spinning dope was 445 voices at 90°C. Using the spinning apparatus of Example 1, the spinning stock solution was mixed with 1.0% of LJ gold.
18.5'nwll of nitrogen gas at a rate of 6CI/min
It was simultaneously discharged into the air while applying an injection pressure of Δq. The length of the dry section was set to 270,111 mm, and the tube was introduced into a coagulation bath consisting of a 5% DMSO aqueous solution at 16° C. while blowing cold air.

凝固、水洗の後60%グリセリン水溶液に置換し、さら
に80℃の78%グリセリン水溶液で5%の弛緩熱処理
を施した後、191Il/ll1inr:巻取った。得
られた中空m紺の内径は230μで膜厚は34μであっ
た。
After coagulation and washing with water, it was replaced with a 60% aqueous glycerin solution, and further subjected to a 5% relaxation heat treatment with a 78% aqueous glycerin solution at 80° C., and then wound up at 191 Il/1 inr. The inner diameter of the obtained hollow m dark blue was 230μ and the film thickness was 34μ.

実施例1と同様の方法で膜面積22a?のミニチアモジ
コールを作製して測定した水の透過速度は20 、61
111/hr−mml−1gmm1−lであった。その
後実施例2と同じように1%牛血清アルブミン水溶液を
還流した後の水の透過速度は15 、0ml/br・m
mH(+ ・tn2で透水性保持率は73%と高い値を
示しこの場合も耐汚染性が同士していることがわかった
。また5%アルブミン水溶液で測定しl〔アルブミンの
阻止率は91%で実質的にアルブミンを透過しなかった
In the same manner as in Example 1, the membrane area 22a? The water permeation rate measured by preparing mini thiamodicol was 20,61
It was 111/hr-mml-1gmm1-l. Thereafter, the 1% bovine serum albumin aqueous solution was refluxed in the same manner as in Example 2, and the water permeation rate was 15,0 ml/br・m.
The water permeability retention rate was as high as 73% at mH(+ tn2), and it was found that the stain resistance was the same in this case as well.Also, when measured with a 5% albumin aqueous solution, the retention rate of albumin was 91%. %, virtually no albumin was permeated.

比較例2 グリニヤ触媒で重合しl; iso = PMM△50
 (Jと通常のラジカル重合法で得たsyn −PMM
A250gをDMSOl 200c+に溶解し、実施例
1の紡糸装置を用いて内径250μ、膜厚30μの中空
繊維を得た。該中空繊維をミニチアモジュールに組立て
、測定した水の透過速度は22.8ml/ hr−mm
 l−l (J −tn’であった。その後実施例2の
方法にしたがって測定した1%牛血清アルブミン水溶液
還流後の水の透過速度は8.2 ml/ Ilr = 
mmHg・Tl12でその保持率は36%であった。
Comparative Example 2 Polymerization with Grignard catalyst; iso = PMM△50
(J and syn-PMM obtained by normal radical polymerization method
250 g of A was dissolved in DMSOl 200c+, and the spinning apparatus of Example 1 was used to obtain hollow fibers with an inner diameter of 250 μm and a membrane thickness of 30 μm. The hollow fiber was assembled into a minichia module, and the measured water permeation rate was 22.8 ml/hr-mm.
The water permeation rate after refluxing the 1% bovine serum albumin aqueous solution, which was then measured according to the method of Example 2, was 8.2 ml/Ilr =
The retention rate was 36% at mmHg・Tl12.

実施例5 アクリロニトリル’5951Jとメトキシポリエチレン
グリコールメタクリレ−1〜”M−100G”1’05
ger)MSO3,5Mkl加え2重合開始剤としてA
DVN4.36CIを添加し、実施例3と同様に”M−
100G”共重合ポリアクリロニトリルを得た。該共重
合体中のポリエチレンオキサイド単位含イj率は14%
であっIC5該共ル合体120gをDMSO480Qに
70’CT” 8時間攪拌溶解して均一透明な紡糸原液
を得た。原液の粘度は70℃で163ボイスであった。
Example 5 Acrylonitrile '5951J and methoxypolyethylene glycol methacrylate-1~"M-100G"1'05
ger) Add 3,5 Mkl of MSO and add A as a 2-polymerization initiator.
DVN4.36CI was added and "M-" was added in the same manner as in Example 3.
100G" copolymerized polyacrylonitrile was obtained. The content of polyethylene oxide units in the copolymer was 14%.
120 g of the IC5 colloid was dissolved in DMSO480Q under stirring for 8 hours at 70'CT'' to obtain a homogeneous and transparent spinning stock solution.The viscosity of the stock solution was 163 voices at 70°C.

実施例1と同様の紡糸装置を用いて、a)中空口金から
窒素ガスを注入しつつ、該紡糸原液の吐出速度を0.7
0g/minにして吐出した。乾式部分の長さは5(1
)ぐ52℃16%DMSO水溶液からなる凝固浴を通過
させた後、水洗、熱処理を施して19m/Ill目)の
速度で巻取った。b)また。
Using the same spinning device as in Example 1, a) while injecting nitrogen gas from the hollow nozzle, the discharge rate of the spinning stock solution was set to 0.7;
It was discharged at 0 g/min. The length of the dry part is 5 (1
) After passing through a coagulation bath consisting of a 16% DMSO aqueous solution at 52° C., it was washed with water, heat treated, and wound up at a speed of 19 m/Illth). b) Again.

注入流体としてn−オクタンを用い、吐出速度を1.0
g/minにして同様の条件下でサンプリングを行なっ
た。
Using n-octane as the injection fluid, the discharge rate was 1.0.
Sampling was carried out under similar conditions.

得られた中空繊維の品質ならびに性能は次のとおりであ
った。
The quality and performance of the obtained hollow fibers were as follows.

表中 内径/膜W:μ 水の透過速度: ml/1tr−mmt−1(+ ・t
n2前:1%アルブミン水j?流前 後: 後 またアルブミンの阻止率はいずれも99.8%以上で非
常に高い選択透過性を示した。
Inner diameter/membrane W in the table: μ Water permeation rate: ml/1tr-mmt-1(+ ・t
Before n2: 1% albumin water j? Before and after flow: The rejection rate of albumin after flow was both 99.8% or more, indicating extremely high permselectivity.

特許出願人 東 し 株 式 会 社Patent applicant Higashi Shikikai Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 重合瓜5以−[のポリエチレンオキサイド単位と重合性
炭素−炭素二重−合結合とを同一分子内に有づる単量体
、 JJよび重合性炭素−炭素二重結合を有する単量体
からなる共重合体を少なくとも一つの構成成分とする選
択透過性中空NJAta。
A monomer having a polyethylene oxide unit of 5 or more and a polymerizable carbon-carbon double bond in the same molecule, JJ, and a monomer having a polymerizable carbon-carbon double bond A permselective hollow NJAta containing at least one component of a copolymer.
JP12216083A 1983-07-05 1983-07-05 Selective permeable hollow fiber Granted JPS6022901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12216083A JPS6022901A (en) 1983-07-05 1983-07-05 Selective permeable hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12216083A JPS6022901A (en) 1983-07-05 1983-07-05 Selective permeable hollow fiber

Publications (2)

Publication Number Publication Date
JPS6022901A true JPS6022901A (en) 1985-02-05
JPH0451216B2 JPH0451216B2 (en) 1992-08-18

Family

ID=14829074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12216083A Granted JPS6022901A (en) 1983-07-05 1983-07-05 Selective permeable hollow fiber

Country Status (1)

Country Link
JP (1) JPS6022901A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176359A (en) * 1985-01-30 1986-08-08 工業技術院長 Serum separation membrane
JPS61200833A (en) * 1985-03-01 1986-09-05 Agency Of Ind Science & Technol Carbon dioxide permselective membrane
JPS61209011A (en) * 1985-03-07 1986-09-17 ガムブロ ダイアリイサトレン コマンデイツトゲゼルシヤフト Production of semipermeable hollow fiber membrane
JPS62132504A (en) * 1985-12-03 1987-06-15 Asahi Chem Ind Co Ltd Production of hollow yarn-like semipermeable membrane
JPS63130103A (en) * 1986-11-19 1988-06-02 Toray Ind Inc Polyacrylonitrile-base semipermeable membrane and manufacturing thereof
US5254249A (en) * 1989-04-25 1993-10-19 Toray Industries, Inc. Anti-thrombogenic blood treating system
JP2006124714A (en) * 1992-09-29 2006-05-18 Toray Ind Inc Contamination resistant material and contamination resistant semipermeable membrane
JP2009172083A (en) * 2008-01-23 2009-08-06 Toshiyuki Nakajima Footwear
JP2013104057A (en) * 2011-11-17 2013-05-30 Sumitomo Rubber Ind Ltd Copolymer, rubber composition, and pneumatic tire
JP2013132579A (en) * 2011-12-26 2013-07-08 Sekisui Chem Co Ltd Polymer water treatment membrane
JP2016026238A (en) * 2010-03-04 2016-02-12 積水化学工業株式会社 Vinyl chloride-based resin, vinyl chloride-based resin solution and production method of the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365222B2 (en) * 1985-01-30 1991-10-11
JPS61176359A (en) * 1985-01-30 1986-08-08 工業技術院長 Serum separation membrane
JPS61200833A (en) * 1985-03-01 1986-09-05 Agency Of Ind Science & Technol Carbon dioxide permselective membrane
JPS61209011A (en) * 1985-03-07 1986-09-17 ガムブロ ダイアリイサトレン コマンデイツトゲゼルシヤフト Production of semipermeable hollow fiber membrane
JPH0644978B2 (en) * 1985-12-03 1994-06-15 旭化成工業株式会社 Method for producing hollow fiber semipermeable membrane
JPS62132504A (en) * 1985-12-03 1987-06-15 Asahi Chem Ind Co Ltd Production of hollow yarn-like semipermeable membrane
JPS63130103A (en) * 1986-11-19 1988-06-02 Toray Ind Inc Polyacrylonitrile-base semipermeable membrane and manufacturing thereof
US5254249A (en) * 1989-04-25 1993-10-19 Toray Industries, Inc. Anti-thrombogenic blood treating system
JP2006124714A (en) * 1992-09-29 2006-05-18 Toray Ind Inc Contamination resistant material and contamination resistant semipermeable membrane
JP2009172083A (en) * 2008-01-23 2009-08-06 Toshiyuki Nakajima Footwear
JP2016026238A (en) * 2010-03-04 2016-02-12 積水化学工業株式会社 Vinyl chloride-based resin, vinyl chloride-based resin solution and production method of the same
JP2013104057A (en) * 2011-11-17 2013-05-30 Sumitomo Rubber Ind Ltd Copolymer, rubber composition, and pneumatic tire
JP2013132579A (en) * 2011-12-26 2013-07-08 Sekisui Chem Co Ltd Polymer water treatment membrane

Also Published As

Publication number Publication date
JPH0451216B2 (en) 1992-08-18

Similar Documents

Publication Publication Date Title
US6432309B1 (en) Polysulfone-base hollow-fiber hemocathartic membrane and processes for the production thereof
US4439322A (en) Polymethyl methacrylate membrane
US4810384A (en) Hydrophilic PVDF semipermeable membrane
WO1994007931A1 (en) Hydrophilic material and semipermeable membrane made therefrom
WO1986002575A1 (en) Permselective hollow yarn membrane, method of producing the same, method of separating plasma components, and plasma component separator
JPS6022901A (en) Selective permeable hollow fiber
KR100224115B1 (en) High flux hollow fiber membrane
JPS61238834A (en) Porous polysulfone resin membrane
US6632359B1 (en) Blood purifying apparatus
JPS6397205A (en) Treatment of polysulfone resin semipermeable membrane
JP2510540B2 (en) Polyacrylonitrile-based semipermeable membrane and method for producing the same
JPS6397202A (en) Polyether sulfone resin semipermeable membrane and its production
JPH11309355A (en) Polysulfone hollow fiber type blood purifying membrane and its production
JP4352709B2 (en) Polysulfone-based semipermeable membrane and artificial kidney using the same
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JPS62102801A (en) Selective permeable hollow composite fiber
US11155785B2 (en) Incubated platelet concentration module and method for producing platelet preparation using same
JP4190445B2 (en) Hollow fiber plasma component separator with low protein adsorption
JP2873967B2 (en) Polyacrylonitrile-based hollow fiber membrane and method for producing the same
JP4386607B2 (en) Polysulfone blood purification membrane production method and polysulfone blood purification membrane
JPH0143562B2 (en)
JP2000210544A (en) Production of semipermeable membrane
JPS6399325A (en) Hollow yarn membrane of polysulfone resin and production thereof
JP3537539B2 (en) Method for producing vinyl alcohol-based copolymer hollow fiber membrane
JPS5876104A (en) Polymethyl methacrylate separation membrane and preparation thereof