JP2510540B2 - Polyacrylonitrile-based semipermeable membrane and method for producing the same - Google Patents

Polyacrylonitrile-based semipermeable membrane and method for producing the same

Info

Publication number
JP2510540B2
JP2510540B2 JP61273868A JP27386886A JP2510540B2 JP 2510540 B2 JP2510540 B2 JP 2510540B2 JP 61273868 A JP61273868 A JP 61273868A JP 27386886 A JP27386886 A JP 27386886A JP 2510540 B2 JP2510540 B2 JP 2510540B2
Authority
JP
Japan
Prior art keywords
membrane
polyacrylonitrile
polymer
semipermeable membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61273868A
Other languages
Japanese (ja)
Other versions
JPS63130103A (en
Inventor
和実 田中
政治 島村
昭二 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61273868A priority Critical patent/JP2510540B2/en
Publication of JPS63130103A publication Critical patent/JPS63130103A/en
Application granted granted Critical
Publication of JP2510540B2 publication Critical patent/JP2510540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐汚染性および選択透過性に優れたポリア
クリロニトリル系半透膜に関するものであり、産業用お
よび医療用分野において、限外濾過膜として用いられ
る。
TECHNICAL FIELD The present invention relates to a polyacrylonitrile-based semipermeable membrane excellent in stain resistance and selective permeation, and is used for ultrafiltration in the industrial and medical fields. Used as a membrane.

(従来の技術) 近年、高分子材料の産業・医療分野への応用が進み、
とりわけ物質の分離に関して、選択透過性膜いわゆる半
透膜の利用が盛んに行われている。例えば逆浸透・透析
・限外濾過・気体分離などの分野において、膜の応用に
ついて多くの技術報告がなされている。しかしながら、
これらの操作においては、処理物質により膜が汚染され
て、処理能力が低下することや、膜自体の分離性能が必
ずしも十分でないことが問題となっている。
(Prior art) In recent years, application of polymer materials to the industrial and medical fields has advanced,
In particular, regarding the separation of substances, the use of permselective membranes, so-called semipermeable membranes, has been actively performed. For example, in the fields of reverse osmosis, dialysis, ultrafiltration, gas separation, etc., many technical reports have been made on the application of membranes. However,
In these operations, there are problems that the membrane is contaminated with the treatment substance, the treatment capacity is lowered, and the separation performance of the membrane itself is not always sufficient.

このような半透膜の素材としては、従来から再生セル
ロース、各種セルロース誘導体、ポリアクリロニトリル
系重合体、ポリビニルアルコール系重合体、ポリメチル
メタクリレート系重合体、ポリスルホン系重合体等が取
り上げられてきた。さらには耐汚染性を高める目的で、
2−ヒドロキシエチルメタクリレート、N−ビニルピロ
リドン、アクリルアミド、あるいは(メタ)アクリル酸
などの親水性成分を含有する合成高分子が検討されてき
た。
As materials for such a semipermeable membrane, regenerated cellulose, various cellulose derivatives, polyacrylonitrile-based polymers, polyvinyl alcohol-based polymers, polymethylmethacrylate-based polymers, polysulfone-based polymers and the like have been hitherto taken up. Furthermore, for the purpose of increasing the stain resistance,
Synthetic polymers containing hydrophilic components such as 2-hydroxyethylmethacrylate, N-vinylpyrrolidone, acrylamide, or (meth) acrylic acid have been investigated.

しかしこれらの素材からなる膜は、水や溶質などの物
質透過性が不十分であったり、あるいはさらに多量の共
重合成分を導入し、その性能が達成できても、一方で機
械的強度が低下し、実用上の膜としての機能が損なわれ
てしまった。さらにこれらの膜を用いて、各種蛋白質溶
液の濃縮、液体食品の無菌化あるいは排水処理工程にお
いて限外濾過分離を行うに際し、溶質成分の膜面への付
着、堆積によって目詰まり現象を起こし、目的の操作が
阻害されていた。さらにこれらの膜を医療用として用
い、血液や体液などに接触した場合には血小板、白血
球、赤血球、線維芽細胞などの有形成分の付着が不可避
であり、これらが膜表面における血栓の生成や補体系の
活性化による免疫機能の低下などをもたらすと推定され
た。
However, membranes made of these materials have insufficient permeability to substances such as water and solutes, or even introduced a large amount of copolymerization components to achieve their performance, but also reduced mechanical strength. However, the function as a practical film has been impaired. Furthermore, using these membranes, when performing concentration of various protein solutions, sterilization of liquid foods, or ultrafiltration separation in the wastewater treatment process, clogging phenomenon occurs due to adhesion and deposition of solute components on the membrane surface. Operation was hindered. Furthermore, when these membranes are used for medical purposes and come into contact with blood or body fluid, adherence of tangible components such as platelets, leukocytes, erythrocytes and fibroblasts is unavoidable, which causes the formation of thrombus on the membrane surface and It was presumed that activation of the complement system causes a decrease in immune function.

(発明が解決しょうとする問題点) 本発明者らは既に親水性高分子材料としてポリエチレ
ンオキサイド単位を有する重合体からなる選択透過性中
空繊維を提案した(特開昭60−22901)。しかしなが
ら、その後の膜性能に対する要求は一段と高まり、その
濾過性能を満足させることが困難となってきた。この様
な状況に鑑み、さらに該親水性高分子材料に関して、鋭
意研究をすすめた結果、ポリエチレンオキサイドを有す
る共重合体および、超高重合度ポリアクリロニトリル系
ポリマーを含む半透膜が、優れた耐汚染性、選択透過性
を有し、かつ十分な機械的強度を備えた実用的な半透膜
として使用出来ることを見いだし本発明に到達した。
(Problems to be Solved by the Invention) The present inventors have already proposed, as a hydrophilic polymer material, a selectively permeable hollow fiber made of a polymer having a polyethylene oxide unit (JP-A-60-22901). However, the requirements for the membrane performance thereafter have further increased, and it has become difficult to satisfy the filtration performance. In view of such a situation, as a result of further intensive research on the hydrophilic polymer material, a copolymer having polyethylene oxide and a semipermeable membrane containing an ultra-high degree of polymerization polyacrylonitrile polymer have excellent resistance. They have found that they can be used as a practical semipermeable membrane having stain resistance and selective permeability and having sufficient mechanical strength, and thus reached the present invention.

(問題点を解決するための手段) 本発明は、次の構成を有する。(Means for Solving Problems) The present invention has the following configurations.

(1)重合度5以上のポリエチレンオキサイド単位と重
合性炭素−炭素二重結合とを同一分子内に有する単量体
とアクリロニトリルとの共重合体、および極限粘度2.0
以上であるアクリロニトリル系ポリマーとからなるポリ
アクリロニトリル系半透膜。
(1) A copolymer of acrylonitrile with a monomer having a degree of polymerization of 5 or more and a polymerizable carbon-carbon double bond in the same molecule, and an intrinsic viscosity of 2.0
A polyacrylonitrile-based semipermeable membrane comprising the acrylonitrile-based polymer described above.

(2)重合度5以上のポリエチレンオキサイド単位が全
体の1重量%以上含有する特許請求の範囲第1項に記載
のポリアクリロニトリル系半透膜。
(2) The polyacrylonitrile-based semipermeable membrane according to claim 1, which contains 1% by weight or more of the total of polyethylene oxide units having a degree of polymerization of 5 or more.

(3)極限粘度2.0以上のアクリロニトリル系ポリマー
が全体の10重量%以上含有する特許請求の範囲第1項に
記載のポリアクリロニトリル系半透膜。
(3) The polyacrylonitrile-based semipermeable membrane according to claim 1, which contains 10% by weight or more of the acrylonitrile-based polymer having an intrinsic viscosity of 2.0 or more.

(4)重合度5以上のポリエチレンオキサイド単位と重
合性炭素−炭素二重結合とを同一分子内に有する単量体
とアクリロニトリルとの共重合体、および極限粘度2.0
以上のアクリロニトリル系ポリマーを溶媒に溶解した溶
液を製膜原液として用いることを特徴とするポリアクリ
ロニトリル系半透膜の製造法。
(4) A copolymer of acrylonitrile and a monomer having a polyethylene oxide unit having a degree of polymerization of 5 or more and a polymerizable carbon-carbon double bond in the same molecule, and an intrinsic viscosity of 2.0
A method for producing a polyacrylonitrile-based semipermeable membrane, which comprises using a solution prepared by dissolving the above acrylonitrile-based polymer in a solvent as a membrane-forming stock solution.

本発明を構成する重合度5以上のポリエチレンオキサ
イド単位と重合性炭素−炭素ニ重結合とを同一分子内に
有する単量体とは、例えば一般式(1) ここでn≧5 R1はH、CH3 R2は水酸基、C1〜C4のアルコキシ基 またはOCHφ(φはフェニル基) であらわされるアクリル酸、またはメタクリル酸エステ
ル類、あるいは一般式(2) ここでn≧5 R1はHまたはCH3 であらわされるビニル単量体である。
Examples of the monomer constituting the present invention having a polyethylene oxide unit having a degree of polymerization of 5 or more and a polymerizable carbon-carbon double bond in the same molecule include those represented by the general formula (1). Here, n ≧ 5 R 1 is H, CH 3 R 2 is a hydroxyl group, C 1 to C 4 alkoxy group or acrylic acid or methacrylic acid ester represented by OCHφ 2 (φ is a phenyl group), or a general formula ( 2) Here, n ≧ 5 R 1 is a vinyl monomer represented by H or CH 3 .

これらの付加重合性化合物の製法は公知であり、その重
合性炭素−炭素二重結合により、特別な装置、手法を用
いなくとも、通常のラジカル開始剤、たとえばアゾビス
イソブチロニトリル、ベンゾイルパーオキサイドなどを
用いて容易に重合でき、さらに他の単量体あるいは重合
体との共重合も可能であり、ポリエチレンオキサイド単
位を有する高分子組成物を効率よく、また再現性よく形
成することができる。特に式(1)で示される成分
(1)としてはメトキシポリエチレングリコールモノメ
タクリレートが好ましく用いられる。共重合体中のポリ
エチレンオキサイド含有量は、たとえば元素分析、赤外
線吸収スペクトル、核磁気共鳴スペクトルなど通常の手
法により確認することができる。
Methods for producing these addition-polymerizable compounds are known, and due to the polymerizable carbon-carbon double bond, ordinary radical initiators such as azobisisobutyronitrile and benzoylperoxide are used without using a special device or method. It can be easily polymerized using oxides, etc., and can be copolymerized with other monomers or polymers, so that a polymer composition having a polyethylene oxide unit can be formed efficiently and reproducibly. . In particular, methoxypolyethylene glycol monomethacrylate is preferably used as the component (1) represented by the formula (1). The content of polyethylene oxide in the copolymer can be confirmed by ordinary methods such as elemental analysis, infrared absorption spectrum and nuclear magnetic resonance spectrum.

本発明の半透膜を構成する重合体中にはn≧5のポリ
エチレンオキサイド単位が少なくとも1重量%以上含有
されることが必要である。これを達成するのに必要な共
重合体中の成分(1)の量は、該成分中に含まれるポリ
エチレンオキサイドの重量分率、即ちnに依存する。例
えばn=9の場合0.135モル%以上必要なのに対し、n
=100の場合には0.012モル%以上でよい。通常、同じ添
加量ではnの大きいほうが該重合体はゲル化を起こしに
くい。
It is necessary that the polymer forming the semipermeable membrane of the present invention contains at least 1% by weight or more of polyethylene oxide units of n ≧ 5. The amount of component (1) in the copolymer needed to achieve this depends on the weight fraction of polyethylene oxide, i.e., n, contained in the component. For example, when n = 9, 0.135 mol% or more is required, while n
= 100, 0.012 mol% or more is sufficient. Generally, when the addition amount is the same, the larger n is, the more difficult the polymer is to gel.

該半透膜に対して目標の性能を達成するのに必要なポ
リエチレンオキサイド単位含有率を与えた場合、そのポ
リエチレンオキサイド単位の重合度n<5では、紡糸安
定性が悪い、得られた半透膜の機械的強度が不十分、な
どの理由で使用できない。すなわち、ポリエチレンオキ
サイド単位の重合度がn<5であり、またポリエチレン
オキサイド単位の含有率が1重量%未満の場合には、得
られた半透膜は本発明の目的とする性質、すなわち耐汚
染性、優れた選択透過性などの特徴を持ち得ない。好ま
しいポリエチレンオキサイド単位の重合度は9〜300特
に好ましくは20〜150であり、また好ましいポリエチレ
ンオキサイド単位の含有率は3〜50重量%である また他の構成成分である超高重合度のアクリロニトリ
ル系重合体は、その極限粘度が2.0以上、好ましくは2.5
〜3.6の重合度を有するものである。さらに該重合体は
その特徴を失わない範囲でアクリロニトリルに対して共
重合可能なビニル化合物を10モル%以下、好ましくは5
モル%以下共重合することも可能である。上記ビニル化
合物としては、公知のアクリロニトリルに対して共重合
性を有する各種の化合物であればよく、好ましい共重合
成分としては、アクリル酸、アクリル酸メチル、メタク
リル酸メチル、イタコン酸、酢酸ビニル、アリルスルホ
ン酸ソーダ、メタリルスルホン酸ソーダ、p−スチレン
スルホン酸ソーダ、2−アクリルアミド2−メチルプロ
パンスルホン酸などが用いられる。
When the content of polyethylene oxide units required to achieve the target performance is given to the semipermeable membrane, the obtained semipermeable membrane shows poor spinning stability when the degree of polymerization n <5 of the polyethylene oxide units is poor. It cannot be used because the mechanical strength of the film is insufficient. That is, when the degree of polymerization of polyethylene oxide units is n <5 and the content of polyethylene oxide units is less than 1% by weight, the obtained semipermeable membrane has the desired property of the present invention, that is, stain resistance. Characteristics and excellent selective permeability. The preferred degree of polymerization of polyethylene oxide units is from 9 to 300, particularly preferably 20 to 150, and the preferred content of polyethylene oxide units is from 3 to 50% by weight. Another constituent component, an ultra high degree of polymerization acrylonitrile type The polymer has an intrinsic viscosity of 2.0 or more, preferably 2.5.
It has a degree of polymerization of ~ 3.6. Further, the polymer contains 10 mol% or less, preferably 5 mol% or less of a vinyl compound copolymerizable with acrylonitrile within a range not losing its characteristics.
It is also possible to carry out copolymerization at a mol% or less. The vinyl compound may be any compound having copolymerizability with known acrylonitrile, and preferable copolymerization components include acrylic acid, methyl acrylate, methyl methacrylate, itaconic acid, vinyl acetate, allyl. Sodium sulfonate, sodium methallyl sulfonate, sodium p-styrene sulfonate, 2-acrylamido 2-methylpropane sulfonic acid and the like are used.

さらにこれらに加えて、数種類のビニル化合物との共
重合体や、分子量の異なった重合体を混合することも可
能である。
In addition to these, it is also possible to mix copolymers with several kinds of vinyl compounds and polymers having different molecular weights.

次に本発明で用いられる製膜原液の溶媒としては、前
記共重合体等を同時に溶解しうる溶媒は、すべて使用可
能であり、例えばジメチルホルムアミド、ジメチルスル
ホキシド、ジメチルアセタミド、N−メチルピロリドン
などが好ましく用いられる。またこれらの相互混合物な
どを使用することも可能である。
Next, as a solvent for the film-forming stock solution used in the present invention, any solvent capable of simultaneously dissolving the copolymer and the like can be used, and examples thereof include dimethylformamide, dimethylsulfoxide, dimethylacetamide, and N-methylpyrrolidone. Etc. are preferably used. It is also possible to use a mutual mixture of these.

これらの溶媒に該共重合体などを溶解するにあたって
は、要求される性能、機械的特性、製膜性を考慮する必
要がある。すなわち製膜原液の重合体濃度は、膜の透過
性、および機械的特性と密接に関連しており、濃度を高
くしすぎると膜の物質透過性が低下し、逆に低くなりす
ぎると、膜の機械的特性が低下して、実用に耐えられな
くなる。また製膜原液の粘度は、製膜性の重要な因子で
あり、良好な膜を形成するためにも重合体の濃度は、5
〜40重量%の範囲で使用されるべきである。
In dissolving the copolymer and the like in these solvents, it is necessary to consider required performance, mechanical properties, and film-forming properties. That is, the polymer concentration of the membrane-forming stock solution is closely related to the permeability of the membrane, and the mechanical properties.If the concentration is too high, the substance permeability of the membrane is reduced, and conversely, if it is too low, the membrane concentration is low. The mechanical properties of are deteriorated and cannot be put to practical use. Further, the viscosity of the stock solution for film formation is an important factor for the film forming property, and the concentration of the polymer is 5 in order to form a good film.
It should be used in the range of ~ 40% by weight.

さらに膜の孔径を制御する目的で、塩や水、グリセリ
ンやポリエチレングリコールなどのアルコール(多価を
含む)、あるいは尿素といった水に可溶な添加剤を加え
ることも、通常行われる手段である。
Further, for the purpose of controlling the pore diameter of the membrane, adding a water-soluble additive such as salt, water, alcohol (including polyhydric) such as glycerin or polyethylene glycol, or urea is also a commonly practiced means.

次に中空糸膜の製膜について説明する。上記のごとく
得られた製膜原液を口金から吐出する場合は、滑らかな
糸条形成と同時に、中空糸の形態保持についても十分考
慮しなければならない。安定に吐出するためには原液の
粘度は重要な因子であり、このため口金温度を調節し
て、吐出時の原液粘度を制御することも可能であるが、
条件によっては口金温度が膜の性能に影響することがあ
るので、留意しなければならない。通常、工程中で延伸
を行わない場合には、凝固浴でほぼ中空糸寸法が決定さ
れる。目標寸法に比べて大きな口径の中空口金を使用す
る場合、あるいは原液温度と凝固浴温度とを独立に制御
するような場合には、紡糸原液を一旦空中へ吐出し、し
かる後に凝固浴へ浸漬、凝固させる、いわゆる乾湿式紡
糸法は有効な手段である。
Next, the production of the hollow fiber membrane will be described. When the stock solution for film formation obtained as described above is discharged from the spinneret, it is necessary to sufficiently consider the shape retention of the hollow fiber at the same time as forming the smooth yarn. The viscosity of the undiluted solution is an important factor for stable ejection. Therefore, it is possible to control the viscosity of the undiluted solution at the time of ejection by adjusting the die temperature.
It should be noted that the die temperature may affect the performance of the film depending on the conditions. Usually, when drawing is not carried out during the process, the hollow fiber size is almost determined by the coagulation bath. When using a hollow spinneret with a diameter larger than the target size, or when controlling the temperature of the stock solution and the coagulation bath temperature independently, the spinning solution is once discharged into the air and then immersed in the coagulation bath, The so-called dry-wet spinning method of solidifying is an effective means.

中空糸形態保持のためには、中空糸の内部に液体を注
入することが行われる。注入される液体としては、例え
ば、該紡糸原液に用いられている溶媒および水やアルコ
ール(多価を含む)などの凝固剤やあるいは水溶性のポ
リマー、あるいはこれらの混合物、さらには該共重合体
などの非溶媒であるような疎水性の液体、例えばn−オ
クタン、流動パラフィンなどの脂肪族炭化水素、ミリス
チン酸イソプロピルのような脂肪酸エステルなども使用
できる。しかしながら、これらの注入液の組成は膜の性
能と密接に関連しているため、その選択にあたっては、
十分配慮する必要がある。また凝固性の高い注入液の場
合には、紡糸時のドラフトを小さくして、紡糸安定性を
保持できるよう、小口径の中空口金を用いる必要があ
る。
In order to maintain the hollow fiber form, a liquid is injected into the hollow fiber. The liquid to be injected is, for example, a solvent used in the spinning dope, a coagulant such as water or alcohol (including polyvalent), a water-soluble polymer, a mixture thereof, or a copolymer thereof. Hydrophobic liquids such as non-solvents such as n-octane, aliphatic hydrocarbons such as liquid paraffin, and fatty acid esters such as isopropyl myristate can also be used. However, the composition of these infusates is closely related to the performance of the membrane, so in choosing them,
It is necessary to give due consideration. Further, in the case of an injection liquid having a high solidification property, it is necessary to use a hollow nozzle having a small diameter so that the draft during spinning can be reduced and spinning stability can be maintained.

吐出糸条が空中での温度変化によってゲル化したり、
凝固によって速やかに強固な膜構造を形成する場合に
は、自己吸引や圧入によって、窒素ガスなどの不活性気
体を用いることができる。気体注入法は、口金寸法など
の制約を受けない、また内部注入液の除去、回収が不要
などプロセス的に優れた方法である。ただし乾式部分で
ゲル化を伴わない原液の場合には、乾式部分の長さを調
節して、局部的な膨らみが生じないよう、また急激なド
ラフトにならないよう配慮する必要がある。通常、好ま
しい乾式部分の長さは2〜10mmである。
The discharged yarn may gel due to temperature changes in the air,
In the case of rapidly forming a strong film structure by solidification, an inert gas such as nitrogen gas can be used by self-suction or press-fitting. The gas injection method is an excellent process method because it is not restricted by the size of the die and does not require removal or recovery of the internal injection liquid. However, in the case of an undiluted solution that does not cause gelation in the dry part, it is necessary to adjust the length of the dry part so that local swelling does not occur and sudden draft does not occur. Generally, the preferred dry section length is 2-10 mm.

凝固浴は通常、水やアルコール(多価を含む)などの
凝固剤、または紡糸原液を構成している溶媒との混合物
からなる。凝固浴の組成はその凝固性によって、紡糸安
定性や中空糸の膜構造に大きく影響する。また凝固浴の
温度は膜の透過性の重要な要因となっている。さらに浴
の組成によっては膜の寸法安定性にも関与してくるた
め、目標の膜性能に対し、凝固浴の組成と共に適切な条
件で組み合わされる。
The coagulation bath is usually composed of a coagulant such as water or alcohol (including polyvalent), or a mixture with a solvent constituting the spinning dope. The composition of the coagulation bath greatly affects the spinning stability and the membrane structure of the hollow fiber due to its coagulability. The temperature of the coagulation bath is also an important factor in the permeability of the membrane. Furthermore, since it depends on the dimensional stability of the film depending on the composition of the bath, it is combined with the composition of the coagulation bath under appropriate conditions for the target film performance.

凝固後十分な水洗を行なってから、含水状態の中空糸
が乾燥によって、その膜構造を破壊されるのを防ぐた
め、膜内部の水をグセリンあるいはエチレングリコール
などで置換しておく。さらに必要に応じてグリセリン水
溶液などで熱処理を施し、寸法安定性を付与することも
可能である。
After coagulation, sufficient washing with water is performed, and then water inside the membrane is replaced with glycerin or ethylene glycol in order to prevent the membrane structure of the hollow fiber from being destroyed by drying. Further, if necessary, heat treatment may be performed with a glycerin aqueous solution or the like to impart dimensional stability.

一方、平膜を得るためにも、公知の方法を用いること
ができる。温度および湿度のコントロールされた雰囲気
下で、ガラス板上に該製膜原液を流涎し、市販のアプリ
ケーターなどで、必要な膜厚に製膜した後、凝固浴中に
浸漬し、凝固、脱溶媒を行なって、目標の膜を得る。こ
の場合にも、製膜原液、凝固浴、後処理などが、その膜
性能に大きく影響するので、中空糸の場合と同様に適切
な条件を選択する必要がある。
On the other hand, a known method can be used to obtain a flat film. Under a controlled atmosphere of temperature and humidity, the solution for film formation is dripped onto a glass plate, and after being formed into a film having a required film thickness by a commercially available applicator, etc., it is immersed in a coagulation bath to coagulate and desolvate. To obtain the target membrane. In this case as well, the membrane forming stock solution, the coagulation bath, the post-treatment, etc. have a great influence on the membrane performance, so it is necessary to select appropriate conditions as in the case of the hollow fiber.

以下、実施例によってさらに詳しく説明するが、本発
明はこれらに限定されるものではない。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

(実施例) ポリマーの重合度および膜性能などの測定は、以下の
方法によった。
(Example) The degree of polymerization of the polymer and the film performance were measured by the following methods.

−ポリマーの重合度− 重合体の極限粘度[η]として該重合体を0.3g/dlの
濃度で0.1Nのチオシアン酸ナトリウムのジメチルホルム
アミド溶液に溶解して、20℃でηspを測定し、下式によ
り計算して求めた。
-Polymerization degree-The polymer is dissolved in a dimethylformamide solution of 0.1 N sodium thiocyanate at a concentration of 0.3 g / dl as an intrinsic viscosity [η] of the polymer, and η sp is measured at 20 ° C., It was calculated by the following formula.

(Journal of Polymer Science(A−1)第6巻、147
〜157頁(1968年)参考) −透水性− 中空糸を挿入した小型のガラス製モジュールを作製
し、37℃の恒温槽中で中空糸内部に水または5%牛血清
アルブミン水溶液を通して圧力をかけ、膜を通して外側
へ透過する水の量と、有効膜面積、および膜間圧力差か
ら透水性を算出した。
(Journal of Polymer Science (A-1) Volume 6, 147
(See page 157 (1968))-Water permeability-Make a small glass module with hollow fiber inserted, and apply water or 5% bovine serum albumin aqueous solution to the inside of the hollow fiber in a constant temperature bath at 37 ° C to apply pressure. The water permeability was calculated from the amount of water permeating through the membrane, the effective membrane area, and the transmembrane pressure difference.

−蛋白阻止率− 供給液のアルブミン濃度(Ci)と、濾過液のアルブミ
ン濃度(Cf)を紫外分光器を用いて測定し、次式から算
出した。
-Protein inhibition rate-The albumin concentration (Ci) of the feed solution and the albumin concentration (Cf) of the filtrate were measured using an ultraviolet spectroscope and calculated from the following formula.

−蛋白付着率− 透水性測定に用いたものと同様の小型モジュールに、
家兎全血あるいは、血小板懸濁液をずり速度400/secで3
7℃に保温しながら3時間循環した。生理食塩水で洗浄
した後、3%グルタルアルデヒド生理食塩水で固定し、
中空糸表面に付着した蛋白質量をアミノ酸分析により測
定した。
-Protein attachment rate-In a small module similar to that used for water permeability measurement,
Rabbit whole blood or platelet suspension at shear rate of 400 / sec 3
It was circulated for 3 hours while keeping the temperature at 7 ° C. After washing with physiological saline, fix with 3% glutaraldehyde physiological saline,
The amount of protein attached to the surface of the hollow fiber was measured by amino acid analysis.

また走査型電子顕微鏡によって、膜表面に付着した血
小板などの状態を観察した。
In addition, the state of platelets and the like adhering to the film surface was observed with a scanning electron microscope.

実施例1 メトキシポリエチレングリコールモノメタクリレート
“M100G"27部とアクリロニトリル(以下ANと略記)143
部をジメチルスルホキシド(以下DMSOと略記)838部に
加え2,2アゾビス2,4ジメチルバレロニトリル0.3部を添
加し、40℃で7時間重合した後、水/メタノールで再
沈、精製してポリエチレンオキサイド(以下PEOと略
記)単位含有量25.5%の“M100G"共重合ポリアクリロニ
トリル(以下共重合PANと略記)を得た。
Example 1 27 parts of methoxypolyethylene glycol monomethacrylate "M100G" and acrylonitrile (hereinafter abbreviated as AN) 143
To 838 parts of dimethylsulfoxide (abbreviated as DMSO), 0.3 parts of 2,2azobis2,4dimethylvaleronitrile was added, polymerized at 40 ° C for 7 hours, reprecipitated with water / methanol and purified to obtain polyethylene. "M100G" copolymerized polyacrylonitrile (hereinafter abbreviated as copolymerized PAN) having an oxide (hereinafter abbreviated as PEO) unit content of 25.5% was obtained.

一方、公知の方法によってAN100%をDMSO中で重合
し、[η]=3.2、ポリマー濃度16.5%の超高分子量重
合体のDMSO溶液を得た。次に前記の“M100G"共重合体66
部、同じく超高分子量重合体DMSO溶液237部とをDMSO390
部に加え、ゲル化防止剤として、ハイドロキノンモノメ
チルエーテル(以下HQMEと略記)0.03部を添加して90℃
で6時間溶解した。
On the other hand, AN100% was polymerized in DMSO by a known method to obtain a DMSO solution of an ultrahigh molecular weight polymer having [η] = 3.2 and a polymer concentration of 16.5%. Next, the above-mentioned "M100G" copolymer 66
Parts, also 237 parts of ultra high molecular weight polymer DMSO solution and DMSO390
In addition to 10 parts, 0.03 parts of hydroquinone monomethyl ether (hereinafter abbreviated as HQME) is added as a gelation inhibitor at 90 ° C.
Dissolved for 6 hours.

得られた防糸原液を63℃に保温された外径/内径=1.
0/0.7mmφの環状スリット型中空口金から、1.2g/minの
割合で空気中に吐出した。同時に中空内部には窒素ガス
を30mmAqの圧力で注入した。乾式部分の長さは4mm、凝
固浴には47℃の水を用いた。水洗後62%グリセリンで前
処理した後、85℃75%のグリセリン水溶液で5%の弛緩
熱処理を行なって19m/minでサンプリングした。
Outer diameter / inner diameter = 1.
It was discharged into the air at a rate of 1.2 g / min from an annular slit type hollow die of 0 / 0.7 mmφ. At the same time, nitrogen gas was injected into the hollow at a pressure of 30 mmAq. The dry portion had a length of 4 mm, and the coagulation bath was 47 ° C. water. After washing with water and pretreatment with 62% glycerin, relaxation heat treatment of 5% was performed with a 75% glycerin aqueous solution at 85 ° C., and sampling was performed at 19 m / min.

得られた中空糸のポリマー中に含まれるPEO単位の量
は16wt%であった。該中空糸膜の内径/膜厚は244/37μ
mで、透水性は84ml/hr.mmHg.m2、5%アルブミン水溶
液での透水性は14ml/hr.mmHg.m2、阻止率は99.8%であ
った。また、この膜の破断応力は13MPa、破断伸度は130
%であり、十分な力学特性を備えていた。さらに家兎新
鮮血評価による蛋白付着率は、22.6μg/cm2と少なく、
血小板の付着も認められなかった。
The amount of PEO units contained in the polymer of the obtained hollow fiber was 16 wt%. Inner diameter / thickness of the hollow fiber membrane is 244 / 37μ
The water permeability was 84 ml / hr.mmHg.m 2 , the water permeability in a 5% albumin aqueous solution was 14 ml / hr.mmHg.m 2 , and the blocking rate was 99.8%. The breaking stress of this film is 13 MPa and the breaking elongation is 130
%, And had sufficient mechanical properties. Furthermore, the protein attachment rate by rabbit fresh blood evaluation was as low as 22.6 μg / cm 2 ,
No platelet adhesion was observed.

実施例2 実施例1での方法と同様にして得たPEO単位含有量28w
t%の“M100G"共重合PAN43部と、おなじく[η]=3.1
の超高分子量PANの15.5%DMSO溶液691部とをDMSO266部
に、HQME0.02部とともに加え85℃で8時間溶解して870
ポイズ/70℃の紡糸原液を得た。
Example 2 PEO unit content obtained in the same manner as in Example 1 28 w
Same as [η] = 3.1 with 43% of tM% "M100G" copolymerized PAN
691 parts of 15.5% DMSO solution of ultra-high molecular weight PAN of was added to 266 parts of DMSO together with 0.02 part of HQME and dissolved at 85 ° C for 8 hours.
A spinning stock solution of poise / 70 ° C. was obtained.

外径/内径=0.5/0.25mmφの環状スリット型中空口金
を43℃に保温して、1.6g/minの吐出速度で、1.0cc/min
の注入液(水100%)とともに吐出した。乾式部分の長
さは200mm、凝固浴として62℃の水を用いた。水洗後、6
0℃65%のグリセリン水溶液で乾燥防止処理をしてドラ
ムに巻き取った。
Outer diameter / inner diameter = 0.5 / 0.25mmφ annular slit type hollow mouthpiece is kept at 43 ℃ and discharge rate is 1.6g / min, 1.0cc / min
It was discharged together with the injection liquid (100% of water). The dry portion had a length of 200 mm, and water at 62 ° C. was used as a coagulation bath. After washing with water, 6
It was dried and treated with a 65% aqueous glycerin solution at 0 ° C and wound on a drum.

PEO単位8wt%を含む該中空糸膜の透水性は340ml/hr.m
mHg.m2で、5%アルブミン水溶液では85ml/hr.mmHg.
m2、阻止率99.7%と高い濾過性能を示した。また蛋白付
着率は6.7μg/cm2で血小板の付着も僅かであった。
The water permeability of the hollow fiber membrane containing PEO unit of 8 wt% is 340 ml / hr.m.
mHg.m 2 and 85 ml / hr.mmHg.
It showed high filtration performance with m 2 and rejection rate of 99.7%. The protein adhesion rate was 6.7 μg / cm 2 , and platelet adhesion was slight.

実施例3 PEO単位含有量28wt%の“M100G"共重合体44部と、
[η]=3.2の超高分子量PANのDMSO溶液204部とをDMSO2
53部に、HQME0.02部とともに加え90℃で6時間溶解し
て、516ポイズ/70℃の紡糸原液を得た。ポリマー中のPE
O単位は16wt%であった。
Example 3 44 parts of "M100G" copolymer having a PEO unit content of 28 wt%,
DMSO2 with 204 parts of DMSO solution of ultra high molecular weight PAN with [η] = 3.2
HQME (0.02 parts) was added to 53 parts, and the mixture was dissolved at 90 ° C for 6 hours to obtain a spinning dope at 516 poise / 70 ° C. PE in polymer
The O unit was 16 wt%.

46℃に保温した口金(0.5/0.3mmφ)から、1.2g/min
の吐出速度で、1.2cc/minの注入液(水100%)とともに
吐出した。乾式部分は150mm、凝固浴として27℃の水を
用いた。水洗後、85℃72%のグリセリン水溶液で弛緩熱
処理と乾燥防止処理をしてリールに巻き取った。
1.2g / min from the base (0.5 / 0.3mmφ) kept warm at 46 ℃
It was discharged at a discharge rate of 1.2 cc / min together with the injection liquid (water 100%). The dry portion was 150 mm, and water at 27 ° C was used as a coagulation bath. After washing with water, relaxation heat treatment and anti-drying treatment were performed with a glycerin aqueous solution at 85 ° C and 72%, and the resultant was wound on a reel.

該中空糸膜の透水性は、48ml/hr.mmHg.m2で、5%ア
ルブミン水溶液では30ml/hr.mmHg.m2、阻止率99.5%で
あった。また蛋白付着率は0.2μg/cm2で血小板の付着も
1.3μg/cm2と非常に僅かであった。
Permeability of the hollow fiber membrane is at 48ml / hr.mmHg.m 2, in 5% albumin solution was 30ml / hr.mmHg.m 2, rejection of 99.5%. In addition, the protein adhesion rate is 0.2 μg / cm 2 and the adhesion of platelets
It was a very small amount of 1.3 μg / cm 2 .

比較例1 アクリロニトリル97mol%、アクリル酸メチル2mol
%、メタリルスルホン酸ナトリウム1mol%からなる
[η]が1.5の共重合体をDMSOに溶解し、ポリマー濃度2
2.2%の紡糸原液を得た。
Comparative Example 1 Acrylonitrile 97 mol%, methyl acrylate 2 mol
%, A copolymer of 1 mol% sodium methallylsulfonate [η] of 1.5 was dissolved in DMSO to give a polymer concentration of 2
A spinning dope of 2.2% was obtained.

実施例1と同様に中空内部に窒素ガスを注入しつつ乾
湿式紡糸を行い、内径231μm、膜厚33μmの中空糸を
得た。
Dry-wet spinning was performed in the same manner as in Example 1 while injecting nitrogen gas into the hollow to obtain a hollow fiber having an inner diameter of 231 μm and a film thickness of 33 μm.

該中空糸の透水性は94ml/hr.mmHg.m2、5%アルブミ
ンでは8ml/hr.mmHg.m2、阻止率は99.8%であったが、兎
血液評価後の中空糸内表面には116μg/cm2と多量の蛋白
が付着していた。
The water permeability of the hollow fiber was 94 ml / hr.mmHg.m 2 , 5% albumin was 8 ml / hr.mmHg.m 2 , and the inhibition rate was 99.8%. A large amount of protein was attached at 116 μg / cm 2 .

比較例2 実施例1とおなじようにAN100%をDMSO中で重合し
て、[η]=3.2の超高分子量PANのポリマー濃度15.5
%、原液の粘度1600ポイズ/70℃の紡糸原液を得た。
Comparative Example 2 As in Example 1, 100% of AN was polymerized in DMSO, and the polymer concentration of ultrahigh molecular weight PAN with [η] = 3.2 was 15.5.
%, And the viscosity of the stock solution was 1600 poise / 70 ° C. to obtain a spinning stock solution.

実施例2と同様に、内部に水を注入しつつ、60℃の口
金から、水30℃の凝固浴を通して紡糸を行った。得られ
た中空糸の透水性は364ml/hr.mmHg.m2で、蛋白付着率も
9.3μg/cm2と低かったが、中空糸内表面には多量に血小
板が付着していた。
In the same manner as in Example 2, while pouring water into the inside, spinning was performed from a spinneret at 60 ° C through a coagulating bath at 30 ° C in water. The resulting hollow fiber has a water permeability of 364 ml / hr.mmHg.m 2 and a protein attachment rate.
Although it was low at 9.3 μg / cm 2 , a large amount of platelets adhered to the inner surface of the hollow fiber.

比較例3 メトキシポリエチレングリコールモノメタクリレート
“M100G"18部とAN145部をDMSO836部に加え、2,2アゾビ
ス2,4ジメチルバレロニトリル0.3部を添加し、40℃で7
時間重合した後、水/メタノールで再沈、精製してPEO
含有量16%の共重合PANを得た。この共重合PAN152部をD
MSO848部に加え、HQME0.03部を添加して90℃で6時間溶
解した。得られた紡糸原液を63℃に保温された外径/内
径=1.0/0.7mmφの環状スリット型中空糸口金から、1.2
g/minの割合で空気中に吐出した。同時に中空糸内部に
は窒素ガスを30mmAqの圧力で注入した。乾式部分の長さ
は4mm、凝固浴には48℃の水を用いた。水洗後62%グリ
セリンで前処理した後、85℃75%のグリセリン水溶液で
5%の弛緩熱処理を行って19m/minの紡速でサンプリン
グした。
Comparative Example 3 18 parts of methoxypolyethylene glycol monomethacrylate "M100G" and 145 parts of AN were added to 836 parts of DMSO, 0.3 part of 2,2azobis2,4 dimethylvaleronitrile was added, and the mixture was mixed at 40 ° C. for 7 days.
After polymerization for a period of time, reprecipitate with water / methanol, purify and purify
A copolymerized PAN having a content of 16% was obtained. 152 parts of this copolymerized PAN
In addition to 848 parts of MSO, 0.03 part of HQME was added and dissolved at 90 ° C. for 6 hours. The obtained spinning solution was kept at 63 ° C and the outside diameter / inner diameter = 1.0 / 0.7mmφ annular slit type hollow fiber spinneret
It was discharged into the air at a rate of g / min. At the same time, nitrogen gas was injected into the hollow fiber at a pressure of 30 mmAq. The length of the dry part was 4 mm, and 48 ° C. water was used for the coagulation bath. After washing with water and pretreatment with 62% glycerin, relaxation heat treatment of 5% was performed with a 75% glycerin aqueous solution at 85 ° C., and sampling was performed at a spinning speed of 19 m / min.

得られた中空糸中のポリマー中に含まれるPEO単位量
は16wt%であった。該中空糸膜の内径/膜厚は242/38μ
mで、透水性は83ml/hr.mmHg.m2、5%アルブミン水溶
液での透水性は13ml/hr.mmHg.m2、阻止率は99.8%であ
った。家兎新鮮血評価による蛋白付着は少なく、血小板
の付着も認められなかった。しかしながら、この膜の破
断応力は7MPa、破断伸度は60%であり、実施例1に比べ
て著しく低い力学特性であった。
The amount of PEO unit contained in the polymer in the obtained hollow fiber was 16 wt%. Inner diameter / membrane thickness of the hollow fiber membrane is 242 / 38μ
In m, water permeability water permeability at 83ml / hr.mmHg.m 2, 5% aqueous albumin solution is 13ml / hr.mmHg.m 2, rejection was 99.8%. As a result of the rabbit fresh blood evaluation, there was little protein adhesion and no platelet adhesion was observed. However, the breaking stress of this film was 7 MPa and the breaking elongation was 60%, which was significantly lower than the mechanical properties of Example 1.

(発明の効果) 本発明のポリアクリロニトリル系半透膜は機械的強度
にも優れ、処理膜面の耐汚染効果に加えて、高い濾過性
能と選択透過性を有している。したがって公知の方法に
よって、目的のモジュールに装置化し、産業用、あるい
は医療用として幅広く使用できる。特にその耐汚染性の
高さは、血液濾過膜として、非へパリン連続的緩徐除水
装置として、あるいは携帯型人工腎臓として好ましく用
いられる。
(Effects of the Invention) The polyacrylonitrile-based semipermeable membrane of the present invention has excellent mechanical strength, and has high filtration performance and selective permeability in addition to the anti-staining effect of the treated membrane surface. Therefore, it can be widely used for industrial or medical use by converting it into a target module by a known method. In particular, its high resistance to contamination is preferably used as a blood filtration membrane, as a non-heparin continuous slow water removing device, or as a portable artificial kidney.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01F 6/18 D01F 6/18 A 6/54 6/54 D (56)参考文献 特開 昭56−9424(JP,A) 特開 昭55−90616(JP,A) 特開 昭60−22901(JP,A) 特開 昭61−176359(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location D01F 6/18 D01F 6/18 A 6/54 6/54 D (56) References JP-A-56 -9424 (JP, A) JP-A-55-90616 (JP, A) JP-A-60-22901 (JP, A) JP-A-61-176359 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重合度5以上のポリエチレンオキサイド単
位と重合性炭素−炭素二重結合とを同一分子内に有する
単量体とアクリロニトリルとの共重合体、および極限粘
度2.0以上であるアクリロニトリル系ポリマーとからな
るポリアクリロニトリル系半透膜。
1. A copolymer of acrylonitrile and a monomer having a polyethylene oxide unit having a degree of polymerization of 5 or more and a polymerizable carbon-carbon double bond in the same molecule, and an acrylonitrile polymer having an intrinsic viscosity of 2.0 or more. A polyacrylonitrile-based semipermeable membrane composed of and.
【請求項2】重合度5以上のポリエチレンオキサイド単
位が全体の1重量%以上含有する特許請求の範囲第1項
に記載のポリアクリロニトリル系半透膜。
2. A polyacrylonitrile-based semipermeable membrane according to claim 1, which contains 1% by weight or more of polyethylene oxide units having a degree of polymerization of 5 or more.
【請求項3】極限粘度2.0以上のアクリロニトリル系ポ
リマーが全体の10重量%以上含有する特許請求の範囲第
1項に記載のポリアクリロニトリル系半透膜。
3. The polyacrylonitrile-based semipermeable membrane according to claim 1, wherein the acrylonitrile-based polymer having an intrinsic viscosity of 2.0 or more is contained in an amount of 10% by weight or more of the whole.
【請求項4】重合度5以上のポリエチレンオキサイド単
位と重合性炭素−炭素二重結合とを同一分子内に有する
単量体とアクリロニトリルとの共重合体、および極限粘
度2.0以上のアクリロニトリル系ポリマーを溶媒に溶解
した溶液を製膜原液として用いることを特徴とするポリ
アクリロニトリル系半透膜の製造法。
4. A copolymer of acrylonitrile and a monomer having a polyethylene oxide unit having a degree of polymerization of 5 or more and a polymerizable carbon-carbon double bond in the same molecule, and an acrylonitrile polymer having an intrinsic viscosity of 2.0 or more. A method for producing a polyacrylonitrile-based semipermeable membrane, which comprises using a solution dissolved in a solvent as a membrane-forming stock solution.
JP61273868A 1986-11-19 1986-11-19 Polyacrylonitrile-based semipermeable membrane and method for producing the same Expired - Fee Related JP2510540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61273868A JP2510540B2 (en) 1986-11-19 1986-11-19 Polyacrylonitrile-based semipermeable membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61273868A JP2510540B2 (en) 1986-11-19 1986-11-19 Polyacrylonitrile-based semipermeable membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63130103A JPS63130103A (en) 1988-06-02
JP2510540B2 true JP2510540B2 (en) 1996-06-26

Family

ID=17533680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61273868A Expired - Fee Related JP2510540B2 (en) 1986-11-19 1986-11-19 Polyacrylonitrile-based semipermeable membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP2510540B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159067B1 (en) * 2009-12-24 2012-07-03 한국화학연구원 Acrylonitrile/polyethyleneglycolmethacrylate copolymer manufactured by bulk copolymerization, Preparing method thereof and Membrane for water-treatment manufactured by that

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920700048A (en) * 1989-04-25 1992-02-19 마에다 가쯔노스께 Antithrombotic Blood Treatment System
JP2006124714A (en) * 1992-09-29 2006-05-18 Toray Ind Inc Contamination resistant material and contamination resistant semipermeable membrane
JP3940546B2 (en) 1999-06-07 2007-07-04 株式会社東芝 Pattern forming method and pattern forming material
JP6709779B2 (en) 2015-04-10 2020-06-17 株式会社カネカ Acrylonitrile-containing fiber dyeable with disperse dye, method for producing the same and fiber product containing the same
CN110052174B (en) * 2019-04-04 2021-04-30 天津工业大学 Preparation method of high-flux bubble-containing polyacrylonitrile-based filter membrane
CN115337788B (en) * 2021-04-27 2023-10-24 南京工业大学 Method for reducing membrane pollution in organic wastewater treatment process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590616A (en) * 1978-12-23 1980-07-09 Nippon Zeon Co Ltd Production of hollow acrylonitrile fiber
JPS569424A (en) * 1979-07-04 1981-01-30 Nippon Zeon Co Ltd Hollow acrylonitrile fiber and its production
JPS6022901A (en) * 1983-07-05 1985-02-05 Toray Ind Inc Selective permeable hollow fiber
JPS61176359A (en) * 1985-01-30 1986-08-08 工業技術院長 Serum separation membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159067B1 (en) * 2009-12-24 2012-07-03 한국화학연구원 Acrylonitrile/polyethyleneglycolmethacrylate copolymer manufactured by bulk copolymerization, Preparing method thereof and Membrane for water-treatment manufactured by that

Also Published As

Publication number Publication date
JPS63130103A (en) 1988-06-02

Similar Documents

Publication Publication Date Title
US4439322A (en) Polymethyl methacrylate membrane
CA1294745C (en) Asymmetrical microporous hollow fiber for hemodialysis and a process for manufacturing such fibers
US4810384A (en) Hydrophilic PVDF semipermeable membrane
KR100284911B1 (en) Hydrophilic materials and semipermeable membranes using the same
EA000300B1 (en) Synthetic separation diaphragm
US4780205A (en) Permselective hollow fiber membrane, process for the preparation thereof, method and apparatus for plasma components separation
JP5857407B2 (en) Hollow fiber membrane and method for producing hollow fiber membrane
EP0066408B1 (en) Porous membrane
US6355730B1 (en) Permselective membranes and methods for their production
EP0750936B1 (en) Permselective membranes and methods for their production
JP3617194B2 (en) Permselective separation membrane and method for producing the same
JP2510540B2 (en) Polyacrylonitrile-based semipermeable membrane and method for producing the same
JP3966481B2 (en) Semipermeable membrane
KR100224115B1 (en) High flux hollow fiber membrane
JPH0451216B2 (en)
JPS6238205A (en) Semi-permeable membrane for separation
JPS6397202A (en) Polyether sulfone resin semipermeable membrane and its production
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
EP1129738A1 (en) Blood purifying apparatus
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JPH0317532B2 (en)
JPS62102801A (en) Selective permeable hollow composite fiber
JP2873967B2 (en) Polyacrylonitrile-based hollow fiber membrane and method for producing the same
JP2006124714A (en) Contamination resistant material and contamination resistant semipermeable membrane
JPH05111624A (en) Semipermeable membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees