JP2891198B2 - 放射線強度分布測定装置 - Google Patents
放射線強度分布測定装置Info
- Publication number
- JP2891198B2 JP2891198B2 JP24013196A JP24013196A JP2891198B2 JP 2891198 B2 JP2891198 B2 JP 2891198B2 JP 24013196 A JP24013196 A JP 24013196A JP 24013196 A JP24013196 A JP 24013196A JP 2891198 B2 JP2891198 B2 JP 2891198B2
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- light
- optical fiber
- detection element
- excitation light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measurement Of Radiation (AREA)
Description
装置に関し、特に光ファイバを用い放射線検出光を光伝
送して放射線強度分布を計測する放射線強度分布測定装
置に関する。
して放射線分布を計測する放射線分布測定装置に係る出
願には特願平5−249247号,特開平6−258446号などに示
されている。前者はシンチレーションファイバを用いる
ものであり、後者は複数のシンチレータを伝送用光ファ
イバの途中に設ける構成のものである。これらはファイ
バ両端のシンチレーション光到達時間差からシンチレー
ション位置を決定し、各位置での発光頻度から放射強度
分布を求める。
o-photo luminescence、以下RPLと略称)を示す物質
と光ファイバを用いた放射線検出器では、NUREG/
CR−5100に報告されている。これは、一つのRP
L素子に光ファイバを一本接続し、励起光をパルス状に
入射したときの放射光を測定し、放射線強度を求めるも
のである。
nescence、以下RSLと略称)を示す物質はこれまで主
にイメージングプレートとして使用されていた。PSL
はX線などの一次励起の後に、可視光による二次励起を
行うと一次励起の強度に比例した発光を示すものであ
る。イメージングプレートはPSLを示す物質をプラス
チックフィルムに塗布し、放射線強度の二次元センサと
して、X線フィルムや原子核乾板などの代替に使用され
ている。
ョンファイバを用いる方式はシンチレーションファイバ
の光伝送損失が大きく、数10m以上の伝送が難しい。
このため、伝送距離が長くなる(100m以上)大規模
な分布測定システムは構築できない。また、一つの伝送
用光ファイバの途中に複数のシンチレータを設けた場
合、シンチレータの設置数が多くなると個々の測定点で
の許容計数率で制限されるようになる。このため、この
方式も大規模な分布測定システムは構築できない。図2
に従来の放射線分布測定装置の構成の一例を示す。従来
の方法はいずれも一つの時間波高変換器(time-to-ampli
tude combertor、以下TACと略称)を用いてシンチレ
ーション光の到達時間差を分析する。このため、用いる
シンチレーションファイバの長さや伝送用光ファイバの
途中に設けるシンチレータの数によっては最大許容計数
率(計測可能な計数率)が著しく低下することになる。
図3は一般的な計測装置を用いた時の、シンチレータ1
個当たりの最大許容計数率とシンチレータ数の関係を示
す。通常の放射線計測はデッドタイムが10%以下で行
う。図3からも明らかなように従来方式では、測定点1
0で最大許容計数率が数100cps となり、放射線強度
分布測定は10点程度が限界となる。大規模なシステム
では測定点が100点以上必要となり、従来方式では計
数率3桁以上の分布計測は困難である。また、ファイバ
長が長くなったり、または放射線強度の増加によって発
光間隔が短くなると、検出光がファイバの両端に届くよ
り以前に次の検出光が発生し、到達時間差を特定し誤る
事態が発生する頻度が増加する。このため、高線量率時
の計測、またファイバの長距離化は制限される。
の放射線強度計は、測定点1点に対してレーザー,光検
出器などの電子系統を一系統用意する必要があるので、
放射線強度分布測定に適用すると高価であり、設置場所
を多く要するという欠点があった。
光と放射光を光ファイバで伝送して放射線分布を計測す
る放射線強度分布設定において、測定点が100以上、
個々の許容計数率が3桁以上となる大規模分布システム
を極めて安価に構築できる装置を提供することにある。
LまたはPSLを示す素子を光ファイバで結合し、励起
光の入射から放射光の光電子変換素子への到達までの時
間から発光位置を、放射光強度から放射線強度を特定
し、放射線強度分布を測定するものである。
励起光を照射すると、励起光の波長と異なる光を照射線
量に比例した光強度で放射する。この放射光の強度は照
射された線量と比例関係にある。RPLとPSLを示す
素材だけでなく、放射線を照射した後に、励起光を照射
すると、励起光の波長と異なる光を照射線量に比例した
光強度で放射する素材であれば、本発明に使用できる。
シンチレーションとRPL,PSLの放射線検出原理を
図4に示す。
起された電子が緩和されるときに蛍光を発するものであ
る。
り励起された電子は緩和されるときに、一部が活性化物
質準位へと緩和される。ここへ外部から励起光(hν
1)を入射すると活性化物質準位の電子が励起され、そ
の緩和に際して、励起光とは異なる波長の光(hν2)
を放射する。これがRPLである。照射励起の緩和の際
にシンチレーション光を発生する材料もある。
ム,サマリウム活性硫化ストロンチウムが挙げられる。
セリウム,サマリウム活性硫化ストロンチウムは、中心
波長300nmの光を入射したとき最も効率的に発光
し、中心波長1000nmの光を放射する。
す物質であり、紫外線での励起により照射線量に比例し
た強度のオレンジ色の蛍光を発する。
り励起された活性化物質の電子は材料内のイオン空格子
に捕獲され、準安定状態を形成する。励起光を照射する
と、捕獲されていた電子は伝導帯へと励起され、活性化
物質へと緩和される。この際に準位間のエネルギー差に
相当する光を放射する。これがPSLである。
ーロピウム活性バリウムフロロブロマイド結晶が挙げら
れるが、放射線の照射後の波長600nm程度の光に応
答し、照射線量に対応する強度の中心波長400nm程
度の光を放射する。
示す素子を光ファイバで結合し、励起光の入射から放射
光の光電子変換素子への到達までの時間から発光位置を
特定し、放射線強度分布を特定するものである。RPL
またはPSLを示す素子からの発光は励起光に入射によ
り開始されるので、励起光の入射から放射光の光電子変
換素子への到達までの時間は、検出光を放射したRPL
またはPSLを示す素子から光電子変換素子までの光路
長に比例する。従って、本装置設置時に各RPLまたは
PSLを示す素子の位置と光電子変換素子までの光路長
を演算装置にあらかじめ記録しておけば、本装置での測
定により、測定範囲での放射線強度分布を求めることが
できる。
の同じ端からRPLによる放射光を計測すると、光ファ
イバの励起光入射端からの光路長に比例した時間で放射
光の応答が開始される。すなわち、放射光の開始時間が
光ファイバの励起光入射端からの光路長に比例し、放射
光の強度が素子の受けた線量に比例する。従って、励起
光の入射により、長距離にわたっての放射線強度分布を
測定することが可能である。
射光を光ファイバで伝送して放射線分布を計測すること
により、放射線強度分布を測定できることになる。
する。図1は本発明を応用した放射線強度分布計の一例
である。本実施例では、RPLまたはPSLを示す検出
素子1として、セリウム,サマリウム活性硫化ストロン
チウム結晶(以下硫化ストロンチウムと略称)を使用し
た場合について説明する。
を光分配器を用いて光ファイバ2に接続する。光ファイ
バは紫外線の伝送について、特に伝送損失を低く作って
ある紫外線用の光ファイバを使用する。
す。光分配器501に光ファイバ502,503,50
4を接続すると、光ファイバ502に右側から入射した
光は、光ファイバ503の左端と光ファイバ504の左
端に到達する。光ファイバ503の左端から入射した光
は光ファイバ502の右端には到達するが、光ファイバ
504の左端には到達しない。光ファイバ504の左端
から入射した光は光ファイバ502の右端には到達する
が、光ファイバ503の左端には到達しない。
べて光ファイバ2に到達し、他検出素子1側へは到達し
ない。また、光ファイバ2からの光は、すべての検出素
子への分岐した光伝送ファイバ3に到達するように光フ
ァイバを接続する。また、分岐した光伝送ファイバ3と
光ファイバ2を接続した端面に装置外からの光以外が入
らないよう、接続部は遮光する。分岐した光伝送ファイ
バ3には、硫化ストロンチウムを光学的に接続して取り
付ける。このとき、光ファイバと硫化ストロンチウムを
接続した端面に装置外からの光が入らないよう、硫化ス
トロンチウム及び分岐した光伝送ファイバ3と硫化スト
ロンチウムとの接続面を遮光する。
光ファイバ中心軸に合わせて励起光レーザー4を設置す
る。励起光レーザー4の波長は300nmである。光フ
ァイバ2の端面は鏡面仕上げをし、異物の付着がないよ
うにする。光ファイバ2と励起光レーザー4の間に、ハ
ーフミラー5を設置する。光ファイバ2からの光が、ハ
ーフミラー5で反射されて到達する位置に光電子変換装
置6を設置する。光ファイバ2の端面、励起光レーザー
4,ハーフミラー5,光電子変換素子6は外部からの光
を遮光するため、暗箱に格納する(図示せず)。
線を照射すると、硫化ストロンチウムの価電子帯から伝
導帯へ、電子が励起される。励起される電子の数は、硫
化ストロンチウムが吸収した放射線の強度に比例する。
伝導帯の電子の大半は価電子帯へ緩和されるが、一定の
割合で活性化物質であるセリウムの作る不純物準位で準
安定状態をとる。準安定状態になった電子は、一定の割
合でサマリウムの作る不純物準位に移動し、準安定状態
をとる。すなわち、硫化ストロンチウムが吸収した放射
線の強度に比例する数の電子が、サマリウムの作る不純
物準位に準安定状態として存在する。
を入射する。励起光の波長は300nmである。光ファ
イバが励起光を各硫化ストロンチウムに伝送する。励起
光が硫化ストロンチウムで吸収されると、硫化ストロン
チウム内でサマリウムの作る不純物準位に準安定状態と
して存在する電子は励起される。励起された電子が再度
サマリウムの作る不純物準位に緩和されるときに中心波
長1000nmの光を放射する。中心波長1000nm
の放射光の強度は、サマリウムが硫化ストロンチウム内
に作る不純物準位に準安定状態として存在する電子の数
に比例する。
何学的形状に基づいた確率で光ファイバへと入射する。
光ファイバは、中心軸から一定の角度の光のみを伝送す
る。断面が円形の石英ファイバの場合、中心軸と光の進
行方向との間の角度が17.7度以内の光のみを伝送する。
このため、光ファイバに入射した光の内、伝送条件に合
うもののみが光ファイバによって伝送される。
バ2から出た後、ハーフミラー5によって方向を変え、
フィルタ21により中心波長を1000nmとする励起
光以外の光を取り除き、光電子変換装置6に入射する。
射光強度の変化の模式図を、図6に時系列的に示す。波
長300nmの励起光を光ファイバに入射し、光ファイ
バ2からの中心波長1000nmの放射光強度を計測す
る。光ファイバ2の励起光入射端から各測定点までの光
路長に比例した時間tで、放射光の応答が開始する。す
なわち、放射光の開始時間が光ファイバの励起光入射端
から測定点までの光路長に比例する。放射光の強度は検
出素子の受けた線量に比例する。
比例した電圧を出力するが、この電圧は微弱であるた
め、前置増幅器7,増幅器8により、信号を増幅する。
この信号をアナログ/デジタル変換器9によりデジタル
信号に変換し、マルチチャンネルアナライザ10を用い
て信号強度の時間変化を記録する。
励起光入射間隔,放射光の応答までの時間と応答強度等
を複数の条件下で事前校正する。各測定点の位置と校正
データは演算装置11に記録しておく。マルチチャンネ
ルアナライザからの信号と、励起光入射間隔,演算装置
内に記録してある各測定点の校正データを比較し、各測
定点における線量率を算出する。各測定点における線量
率と、演算装置内に記録してある各測定点の位置を用い
て、放射線強度分布を表示装置13に出力する。
て、該当位置からの放射光強度が弱く、演算装置に記録
しておいた要求精度に達しない場合、励起光を入射する
間隔を広げることを決定し、コントローラ12に変更し
た励起光入射間隔を伝達する。コントローラ12は演算
装置11からの信号を受け、励起光レーザー4を制御す
る。これにより、各検出素子1(硫化ストロンチウム)
の持つ3桁以上のダイナミックレンジを測定範囲全体に
わたって、有効に利用できる。
系統を設置しなくてはならなかったが、本発明により、
系統数を削減し、容易に、かつ安価に分布の連続測定を
行うことができる。測定点が100点の場合、従来方式
では10系統の装置を設置する必要があった。本装置を
設置すれば1系統で測定を行うことができる。光ファイ
バを用いた放射線強度分布測定装置においては、光ファ
イバ,検出部が価格に占める割合は極めて少なく、系統
数の削減により、約90%のコスト低減になる。さら
に、従来装置の測定点数10点に比べ10倍以上の大規
模システムを容易に構築可能となる。
性バリウムフロロブロマイド結晶に光ファイバ2を一本
ずつ接続し、励起光入射端を一つに束ねた場合の変形を
示す図である。ユーロピウム活性バリウムフロロブロマ
イド結晶は、励起光波長600nm程度、放射光中心波長
400nm程度であるので、図1に示す実施例と異な
り、一般の石英光ファイバで構成できる。図1の実施例
の場合、励起光入射端から遠い硫化ストロンチウムほど
入射する励起光強度が減少するが、本変形例では各検出
素子1により均一な励起光が供給でき、各検出素子の感
度特性が均一となる高精度の放射線強度分布測定装置を
提供できる。
したときに放射される蛍光を励起光の入射間隔決定に利
用する場合の変形例である。検出素子1(硫化ストロン
チウム)からの光は光ファイバ2の両端に到達し、励起
光レーザー4からの光は各素子に伝送される。光ファイ
バ2の接続部及び検出素子1から外部の光が装置に進入
しないよう、接続部及び検出素子1は遮光する。検出素
子1に放射線が入射すると、シンチレータと同様に蛍光
が放射される。この蛍光を光ファイバ2の両端の光電子
変換装置6,前置増幅器7,増幅器8で計測する。両端
の一方の信号は遅延回路17で遅延させ、遅延させない
他方の信号を開始信号に、遅延させた信号を停止信号に
利用する。この開始,停止信号を用いて時間波高変換器
(TAC)18で到達時間差を振幅信号として取り出す。
アナログ/デジタル変換器9で時間差信号をデジタル信
号に変換し、マルチチャンネルアナライザ10で一定の
時間の間信号を積算した後、演算装置11で各計測位置
での線量率を演算し、表示装置13に表示する。また、
各計測位置での線量率から、コントローラ12で励起光
の最適な入射間隔を決定、励起光レーザー4と切替器2
0を制御する。検出素子1(硫化ストロンチウム)から
の蛍光を測定することにより、各素子での集積線量が推
定でき、励起光の最適な入射間隔が決定できるので、放
射線強度分布の変動に追従した高精度の放射線強度分布
測定装置を提供可能になる。
1に複数の材料を使用した場合の変形例である。RPL
またはPSLを示す物質の励起光波長には幅があり、同
一の波長の光で励起することができる素材がある。検出
素子1には放射光波長が異なる素材を用いるのが最適で
ある。励起光波長が異なる物質を使用する場合は、励起
光レーザー4を素材に合わせて2種類以上設け、同時、
あるいは別々に励起光を入射する。フィルタ21はそれ
ぞれの素子の放射光のみを取り出すことができるように
選択し、励起光レーザー4と連動して測定を行う。異な
る材質のRPLまたはPSLを示す検出素子1を用いる
ことにより、単独のRPLまたはPSLを示す検出素子
1を使用した場合より狭い距離間隔で測定を行うことが
可能になる。これにより測定点の細密分解が可能にな
り、より高精細の分布計測が可能になる。
納容器内に設置した場合の適用例である。複数のRPL
またはPSLを示す検出素子1の接続された光ファイバ
2を原子炉格納容器内に設置し、原子炉格納容器内の放
射線強度分布を連続測定する。装置の構成は図1に示し
た実施例と同じである。原子炉格納容器内の放射線強度
分布測定は設置場所の特性上、各点のダイナミックレン
ジが広いことが要求される大規模システムである。従来
の放射線強度分布測定装置では多数の系統を設置しなく
てはならなかったが、本発明により、系統数を削減し、
容易に、かつ安価に分布の連続測定を行うことができ
る。放射線強度分布測定結果は、放射線管理,出力変動
時の状態監視,通常運転時の異常監視,作業員の被爆低
減等に有効に活用できる。特に、従来の作業前放射線管
理は放射線管理員が測定装置を持って現場に赴き、放射
線強度分布を直接測定している。この測定には多大の時
間を要し、放射線管理員の被爆が避けられなかった。本
発明による放射線強度分布測定装置を作業頻度の高い場
所に重点的に設置すれば、作業時間が短縮され、放射線
管理員の被爆を大幅に低減できる。また、放射線作業を
行う場所の正確な空間放射線強度分布を事前に把握でき
れば、放射線作業計画を綿密に立案でき、放射線作業者
自体の被爆低減に大きな効果を発揮できる。
形例である。複数のRPLまたはPSLを示す検出素子
1の接続された光ファイバ2を当該実験室内に設置し、
実験室内の放射線強度分布を連続測定する。装置の構成
は図1に示した実施例と同じである。従来の加速器50
周囲の放射線強度分布計測は測定点数が少なく、加速器
関連設備周囲の運転時の放射線強度分布測定は正確に把
握するのは難しい状況であった。本発明を適用すること
によって、加速器周囲の放射線強度分布を容易に連続測
定可能となる。図11の変形例では、光ファイバ2はA
系統とB系統の2系統に分岐するケースである。この場
合A系統とB系統の終端までの距離が同等になる場合も
ある。この場合は、A,B系統の位置分解能を向上させ
るため、任意に距離調節ファイバ51を設けるのが効果
的である。これは図10の変形例の如く大規模システム
になるほど重要な役割を果たすことになる。本発明の適
用により、加速器の運転に連動した放射線強度分布変化
を正確に測定できる。従って、放射線管理上問題ない範
囲を明確にでき、作業効率の向上を適正かつ安価に行う
ことができる。
またはPSLによる放射光を光ファイバで伝送して放射
線分布を計測することにより、従来装置に比べ1/10
以下の低コスト化が図れ、10倍以上の大規模放射線強
度分布測定装置を容易に構成できる。従って、放射線強
度の分布測定を大幅に簡素化できる。さらに、本発明の
装置を用いることによって、各種放射線取り扱い施設に
おける新しい運転監視,被爆管理システムが構築でき
る。
る。
レータ数と最大許容計数率の関係を示した図である。
出原理を示した図である。
強度の変化の模式図を時系列的に示した図である。
Lを示す検出素子1一つ一つに光ファイバ2を接続し、
励起光入射端を束ねたものに変更した場合の変形例を示
した図である。
光を利用して各RPLまたはPSLを示す検出素子1で
の集積線量を見積もり、励起光の入射間隔を決定する場
合の変形例を示した図である。
SLを示す材料を複数使用した場合の変形例を示した図
である。
測定装置を設置した場合の変形例を示した図である。
定装置を設置した場合の変形例を示した図である。
バ、3…分岐した光伝送ファイバ、4…励起光レーザ
ー、5…ハーフミラー、6…光電子変換装置、7…前置
増幅器、8…増幅器、9…アナログ/デジタル変換器、
10…マルチチャンネルアナライザ、11…演算装置、
12…コントローラ、13…表示装置、14…シンチレ
ータ、15…波長変換ファイバ、16…光ガイド、17
…遅延回路、18…時間波高変換器、19…シンチレー
ションファイバ、20…切替器、21…フィルタ、50
…加速器、51…距離調節ファイバ、501…光分配
器、502,503,504…光ファイバ。
Claims (3)
- 【請求項1】一本の光ファイバの一端を基部とし、該光
ファイバからそれぞれ枝分した光ファイバの先端部にそ
れぞれ放射線発光検出素子を該光ファイバと光学的に結
合し、前記光ファイバの基部には光検出器及び光ファイ
バに光を入射させることができる光源とを光学的に接続
し、前記放射線発光検出素子から光源及び光検出器まで
の光路長の和がそれぞれ異なるように接続し、光の入射
から光検出器へ放射線検出光が到達するまでの時間から
該放射線発光検出素子の位置を各々特定するための演算
装置と、前記検出器により検知した該放射線発光検出素
子の発光強度から放射線量を求める演算装置とを有する
ことを特徴とする放射線測定装置。 - 【請求項2】複数の放射線測定点において各々同種の放
射線発光検出素子を有し、該放射線発光検出素子は単一
の光ファイバの一端に各々光学結合され、該光ファイバ
の他端は共通な一つの基部にそれぞれ光学結合され、該
基部には光検出器及び光ファイバに光を入射させること
ができる光源とを光学的に接続し、該放射線発光検出素
子から該光源及び該光検出器までの光路長の和がそれぞ
れ異なるように接続し、光の入射から該光検出器へ該放
射線検出光が到達するまでの時間から該放射線発光検出
素子の位置を各々特定するための演算装置と、前記検出
器により検知した該放射線発光検出素子の発光強度から
放射線量を求める演算装置とを有することを特徴とする
放射線測定装置。 - 【請求項3】請求項1又は請求項2記載の放射線測定装
置において、同種の放射線発光検出素子に替えて、同一
又は異なる波長の励起光を放射線発光検出素子に照射し
た際、放射する放射光波長がそれぞれ異なる種類の放射
線発光検出素子にし、該放射線発光検出素子及び、同一
または異なる波長の光を光ファイバに入射できる光源と
を該放射線測定装置に光学的に接続することを特徴とす
る放射線測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24013196A JP2891198B2 (ja) | 1996-09-11 | 1996-09-11 | 放射線強度分布測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24013196A JP2891198B2 (ja) | 1996-09-11 | 1996-09-11 | 放射線強度分布測定装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1090414A JPH1090414A (ja) | 1998-04-10 |
JP2891198B2 true JP2891198B2 (ja) | 1999-05-17 |
Family
ID=17054967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24013196A Expired - Fee Related JP2891198B2 (ja) | 1996-09-11 | 1996-09-11 | 放射線強度分布測定装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2891198B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013122425A (ja) * | 2011-12-12 | 2013-06-20 | Hitachi Ltd | 放射線モニタ及び放射線量をモニタする方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3591275B2 (ja) * | 1998-02-20 | 2004-11-17 | 株式会社日立製作所 | 放射線強度計測装置 |
JP2923500B1 (ja) | 1998-06-04 | 1999-07-26 | 株式会社東芝 | 放射線検出器および放射線計測システム、並びに放射線計測プログラムを記録したコンピュータ読み取り可能な記録媒体 |
JP5816542B2 (ja) * | 2011-12-27 | 2015-11-18 | 株式会社日立製作所 | 線量率計測システム及び線量率計測方法 |
JP6038514B2 (ja) * | 2012-07-12 | 2016-12-07 | 株式会社ホクコン | 放射性廃棄物容器の保管管理システム |
JP2017122588A (ja) * | 2016-01-05 | 2017-07-13 | 株式会社トクヤマ | 酸化マグネシウムを用いた線量計 |
JP6932619B2 (ja) * | 2017-11-10 | 2021-09-08 | 株式会社日立製作所 | 放射線モニタ、及び放射線の測定方法 |
-
1996
- 1996-09-11 JP JP24013196A patent/JP2891198B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013122425A (ja) * | 2011-12-12 | 2013-06-20 | Hitachi Ltd | 放射線モニタ及び放射線量をモニタする方法 |
Also Published As
Publication number | Publication date |
---|---|
JPH1090414A (ja) | 1998-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7655912B2 (en) | Direction finding radiation detector, and radiation monitoring method and apparatus | |
US6479829B1 (en) | Apparatus and method for detecting radiation that uses a stimulate phosphor | |
EP0740167B1 (en) | Radiation detector and method of detecting radiation | |
US5905263A (en) | Depth dose measuring device | |
JP3327602B2 (ja) | 放射線検出光伝送装置 | |
JP5816542B2 (ja) | 線量率計測システム及び線量率計測方法 | |
JP2891198B2 (ja) | 放射線強度分布測定装置 | |
JPH10288671A (ja) | 位置検出型放射線検出装置 | |
JP2017161378A (ja) | 放射線モニタ及び放射線測定方法 | |
JP6420637B2 (ja) | 放射線計測装置及びその計測方法 | |
JP3591275B2 (ja) | 放射線強度計測装置 | |
JP6012171B2 (ja) | 放射線モニタ及び放射線量をモニタする方法 | |
JP2001141830A (ja) | 温度補償型光伝送式放射線計測装置及びその計測システム | |
JP2000249796A (ja) | 輝尽性蛍光体を用いた放射線計測装置及びその計測方法 | |
JP3793651B2 (ja) | 放射線検出器 | |
JPH03108687A (ja) | 放射線計測装置の放射線検出部 | |
WO2022224541A1 (ja) | 検出器及び放射線モニタ | |
JP2001311777A (ja) | 薄型放射線表面汚染検出器 | |
KR100267615B1 (ko) | 방사선 검출기의 제조방법 | |
Fields et al. | Simple scheme for light collection from large-area plastic scintillators | |
CN116228883A (zh) | 一种IsCMOS相机动态范围标定系统 | |
JPH0274827A (ja) | ガンマ線レベル計 | |
JPH0553395B2 (ja) | ||
Kawata et al. | Development of an accelerator beam loss monitor using an optical fiber | |
JP2001083254A (ja) | 光ファイバ式放射線検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080226 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20090226 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090226 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20100226 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100226 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20110226 |
|
LAPS | Cancellation because of no payment of annual fees |