JP2888026B2 - Plasma CVD equipment - Google Patents

Plasma CVD equipment

Info

Publication number
JP2888026B2
JP2888026B2 JP4111084A JP11108492A JP2888026B2 JP 2888026 B2 JP2888026 B2 JP 2888026B2 JP 4111084 A JP4111084 A JP 4111084A JP 11108492 A JP11108492 A JP 11108492A JP 2888026 B2 JP2888026 B2 JP 2888026B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
heat transfer
processing chamber
transfer plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4111084A
Other languages
Japanese (ja)
Other versions
JPH05306465A (en
Inventor
重之 山本
雄一郎 山田
隆三 宝珍
浩 田辺
智洋 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4111084A priority Critical patent/JP2888026B2/en
Priority to US08/054,137 priority patent/US5372648A/en
Priority to KR1019930007388A priority patent/KR960010051B1/en
Publication of JPH05306465A publication Critical patent/JPH05306465A/en
Application granted granted Critical
Publication of JP2888026B2 publication Critical patent/JP2888026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • H01L21/205
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5093Coaxial electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、プラズマCVD装置
に関し、詳しくは、比較的大型の基板に対してプラズマ
CVD法による薄膜形成を行うのに適したプラズマCV
D装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma CVD apparatus, and more particularly, to a plasma CVD apparatus suitable for forming a thin film on a relatively large substrate by a plasma CVD method.
It relates to the D device.

【0002】[0002]

【従来の技術】従来、プラズマCVD装置は、半導体製
造用のシリコン基板など、比較的小型の基板に対する薄
膜形成に利用されていたが、近年、大型液晶板のよう
に、面積の大きな基板に対する薄膜形成にも利用される
ようになってきた。また、従来のプラズマCVD装置で
は、一定枚数の基板毎に薄膜形成処理を行うバッチ式の
装置が多かったが、近年、基板の取り扱いを自動化し
て、基板を処理室に順番に送り込み、薄膜形成処理やそ
の前処理である加熱処理、後処理である冷却処理などを
連続的に行う連続式の装置も開発されている。
2. Description of the Related Art Conventionally, a plasma CVD apparatus has been used for forming a thin film on a relatively small substrate such as a silicon substrate for manufacturing a semiconductor, but recently, a thin film on a large area substrate such as a large liquid crystal plate has been used. It is also being used for formation. In addition, in the conventional plasma CVD apparatus, there were many batch-type apparatuses for performing a thin film forming process for every fixed number of substrates. A continuous apparatus for continuously performing a treatment, a heating treatment as a pre-treatment thereof, and a cooling treatment as a post-treatment has also been developed.

【0003】図6は、従来、大型液晶板などの作製に利
用されていたプラズマCVD装置の構造を表している。
ガラス等からなる基板1は、左右一対の基板トレー2
に、それぞれ複数枚づつ装着されており、基板トレー2
は、モータやギヤ機構を介して駆動されるコンベア2a
に取り付けられている。基板1は基板トレー2に取り付
けられた状態で、処理室3に順次連続的に送り込まれ、
処理が終了すれば、処理室3から運び出される。処理室
3内には、左右の基材トレー2の隙間位置に、シーズヒ
ータパネル4が設置されており、このヒータパネル4
で、基板1を背面から加熱する。基板トレー2の左右外
側には、それぞれ、電極兼用のガス噴出プレート5が設
置されている。電極兼用ガス噴出プレート5には高周波
電源が接続され、ガス噴出プレート5の背面空間には反
応ガスが供給されるようになっており、電極兼用ガス噴
出プレート5と基板トレー2の間に電圧を印加しなが
ら、電極兼用ガス噴出プレート5の前面から基板1のほ
うに反応ガスを噴出することにより、基板1の表面に薄
膜が形成されるようになっている。
FIG. 6 shows a structure of a plasma CVD apparatus conventionally used for producing a large liquid crystal plate or the like.
A substrate 1 made of glass or the like includes a pair of left and right substrate trays 2.
, Each of which has a plurality of sheets,
Is a conveyor 2a driven via a motor or a gear mechanism.
Attached to. The substrate 1 is sequentially and continuously fed into the processing chamber 3 while being attached to the substrate tray 2,
When the processing is completed, it is carried out of the processing chamber 3. In the processing chamber 3, a sheathed heater panel 4 is installed at a gap position between the left and right base material trays 2.
Then, the substrate 1 is heated from the back. On the left and right outer sides of the substrate tray 2, gas ejection plates 5 also serving as electrodes are provided. A high-frequency power supply is connected to the electrode / gas ejection plate 5, and a reaction gas is supplied to the space behind the gas / ejection plate 5. A voltage is applied between the electrode / gas ejection plate 5 and the substrate tray 2. By ejecting the reaction gas from the front surface of the electrode / gas ejection plate 5 toward the substrate 1 while applying the voltage, a thin film is formed on the surface of the substrate 1.

【0004】また、図7に示すように、複数の処理室3
が並設された処理装置の場合、コンベア2aを、複数の
処理室3…を巡回するようにループ状に設置している。
図の左下部分に示すように、基板トレー2に基板1を収
容した後、この基板トレー2をコンベア2aに吊り下げ
る。コンベア2aが作動すると、基板トレー2は各処理
室3…を順番に通過し、各処理室3…では、基板1に所
定の処理が施されることになる。
As shown in FIG. 7, a plurality of processing chambers 3 are provided.
Are arranged side by side, the conveyor 2a is installed in a loop so as to go around a plurality of processing chambers 3.
As shown in the lower left part of the figure, after the substrate 1 is stored in the substrate tray 2, the substrate tray 2 is hung on the conveyor 2a. When the conveyor 2a operates, the substrate tray 2 sequentially passes through the processing chambers 3..., And in each processing chamber 3.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記のよう
な従来のプラズマCVD装置では、基板トレーに形成さ
れた薄膜が脱落して、この薄膜片が基板表面に付着し
て、表面の品質を低下させるという問題があった。
However, in the conventional plasma CVD apparatus as described above, the thin film formed on the substrate tray falls off, and this thin film piece adheres to the substrate surface, deteriorating the surface quality. There was a problem of letting it.

【0006】すなわち、前記したプラズマCVD装置で
は、基板1に薄膜が形成されるのと同時に基板トレー2
にも薄膜が形成される。基板トレー2は、コンベア2a
につり下げられて各処理室3…および外部空間を循環移
動して、繰り返し使用されるため、処理サイクル毎に、
加熱、真空加熱、成膜、冷却などが繰り返されることに
なり、温度や気圧の極端な変化を受ける。その結果、基
板トレー2に付着している薄膜が脱落する、いわゆる膜
はがれを起こすのである。基板トレー2から脱落した薄
膜片が基板1の表面に付着すれば、基板1表面の品質が
損なわれてしまう。さらに、基板トレー2を取り付けた
コンベア2aなどの搬送手段の構造部材の表面にも、薄
膜が形成され、この薄膜が脱落するという問題が生じて
いた。
That is, in the above-described plasma CVD apparatus, a thin film is formed on the substrate
A thin film is also formed. The substrate tray 2 is a conveyor 2a
And circulates through each of the processing chambers 3 and the external space, and is used repeatedly.
Heating, vacuum heating, film formation, cooling, and the like are repeated, and are subjected to extreme changes in temperature and pressure. As a result, the thin film adhering to the substrate tray 2 falls off, that is, the so-called film peeling occurs. If the thin film pieces dropped from the substrate tray 2 adhere to the surface of the substrate 1, the quality of the surface of the substrate 1 is impaired. Further, there is a problem that a thin film is also formed on the surface of a structural member of a conveying means such as a conveyor 2a to which the substrate tray 2 is attached, and the thin film falls off.

【0007】基板1表面への薄膜片の付着を防止するに
は、基板トレー2やその搬送構造から薄膜を除去すれば
よいが、このような薄膜の除去作業には、非常に手間と
時間がかかり、プラズマCVD装置の稼働率を低下させ
たり、保守管理のコストを増大させることになる。
In order to prevent the thin film pieces from adhering to the surface of the substrate 1, the thin film may be removed from the substrate tray 2 or its transport structure. As a result, the operating rate of the plasma CVD apparatus is reduced, and the cost of maintenance management is increased.

【0008】また、従来のプラズマCVD装置では、基
板1の加熱および冷却に時間およびエネルギーがかかる
という問題もあった。これは、ヒータパネル4で基板1
を加熱する際には、同時に基板トレー2にも熱が伝わ
る。基板トレー2は、かなり熱容量の大きなものである
ため、基板トレー2に熱エネルギーが奪われてしまい、
基板1の加熱が迅速に行えず、加熱エネルギーの無駄が
多いのである。基板1を冷却する際にも、熱容量の大き
な基板トレー2を同時に冷却しなければならないため、
冷却時間が長くかかり、冷却エネルギーの無駄も多くな
るのである。
Further, in the conventional plasma CVD apparatus, there is a problem that it takes time and energy to heat and cool the substrate 1. This is because the heater panel 4
When the substrate is heated, heat is transmitted to the substrate tray 2 at the same time. Since the substrate tray 2 has a considerably large heat capacity, the substrate tray 2 loses thermal energy,
The heating of the substrate 1 cannot be performed quickly, and there is much waste of heating energy. When cooling the substrate 1, the substrate tray 2 having a large heat capacity must be cooled at the same time.
The cooling time is long and the cooling energy is wasted.

【0009】基板トレー2のような基板1の保持手段を
使用せず、基板1のみを加熱冷却すれば、加熱冷却時間
は短くて済み、消費エネルギーも少なくなるが、基板1
のみを取り扱うのは非常に難しく、処理室3への搬送お
よび薄膜形成の間中、基板1を傷つけたり変形させたり
せずに、確実に取り扱うことは出来なかった。また、こ
の場合でも、基板1の取り扱い機構には、前記した薄膜
の形成および脱落の問題が残る。
If only the substrate 1 is heated and cooled without using the holding means for the substrate 1 such as the substrate tray 2, the heating and cooling time can be shortened and the energy consumption can be reduced.
It is very difficult to handle only the substrate 1 during the transportation to the processing chamber 3 and the formation of the thin film without damaging or deforming the substrate 1. Also in this case, the problem of the formation and detachment of the thin film remains in the handling mechanism of the substrate 1.

【0010】また、ヒータパネル4は、真空状態の処理
室3内で基板1との間に間隔をあけた状態で配置されて
いるため、ヒータパネル4から基板1への伝熱効率が悪
いという問題もある。これは、ヒータパネル4の熱は、
主に熱伝導により伝えられるので、基板1との間が真空
になっている状態では、基板1への熱伝達が効率良く行
われないのである。
Further, since the heater panel 4 is disposed in the processing chamber 3 in a vacuum state with an interval between the heater panel 4 and the substrate 1, the efficiency of heat transfer from the heater panel 4 to the substrate 1 is low. There is also. This is because the heat of the heater panel 4 is
Since heat is mainly transmitted by heat conduction, heat is not efficiently transferred to the substrate 1 when the space between the substrate 1 and the substrate 1 is in a vacuum state.

【0011】さらに、図7に示したように、コンベアラ
イン2aが、複数の処理室3を1方向に巡回し、処理室
3の外部を通って元に戻る循環構造になっていると、コ
ンベアライン2aの設置スペースが非常に広く必要であ
るという問題もある。
Further, as shown in FIG. 7, if the conveyor line 2a has a circulation structure that circulates through the plurality of processing chambers 3 in one direction and returns to the original state through the outside of the processing chamber 3, There is also a problem that the installation space of the line 2a is required to be very large.

【0012】そこで、この発明の課題は、前記したよう
なプラズマCVD装置における問題点を解消し、基板の
加熱性能に優れ、保守管理に手間がかからず、処理品質
も良好なプラズマCVD装置を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems in the plasma CVD apparatus, and to provide a plasma CVD apparatus which is excellent in substrate heating performance, requires no maintenance work, and has good processing quality. To provide.

【0013】[0013]

【課題を解決するための手段】上記課題を解決する、こ
の発明にかかるプラズマCVD装置は、処理室内に、連
結開口で連通する薄膜形成部と搬送加熱部とを備え、薄
膜形成部には、連結開口に向けて薄膜の堆積を行う薄膜
形成手段を備え、搬送加熱部には、基板を保持した基板
保持部材を処理室に出し入れする搬送手段と、基板保持
部材に保持された基板の背面に当接し、基板を基板保持
部材から連結開口を塞ぐ位置へと移送するとともに、基
板に熱を伝える伝熱移送板を備えている。
A plasma CVD apparatus according to the present invention, which solves the above-mentioned problems, includes a thin film forming section and a transfer heating section communicating with a connection opening in a processing chamber, and the thin film forming section includes: A thin film forming means for depositing a thin film toward the connection opening is provided.The transfer heating unit includes a transfer means for taking a substrate holding member holding the substrate into and out of the processing chamber, and A heat transfer plate that abuts and transfers the substrate from the substrate holding member to a position that closes the connection opening and that transfers heat to the substrate is provided.

【0014】プラズマCVD装置の基本的な構造は、通
常の装置と同様であり、真空排気が可能な処理室内に、
プラズマを形成させるための電圧を印加する電極部材
や、プラズマを構成する反応ガスを供給する反応ガスの
供給手段などからなる薄膜形成手段や基板を加熱するた
めの手段を備え、さらに、基板を保持する搬送パレット
あるいは基板トレーなどの基板保持部材が、コンベア等
の搬送手段によって、処理室の内部に出入り自在に設置
されている。基板は、プラズマCVDの目的に合わせ
て、ガラス基板その他の通常の基板材料が用いられ、ま
た、形成する薄膜の種類によって、任意の反応ガスを用
いることができる。
The basic structure of a plasma CVD apparatus is the same as that of an ordinary apparatus.
An electrode member for applying a voltage for forming plasma, a thin film forming means including a reaction gas supply means for supplying a reaction gas for forming the plasma, and a means for heating the substrate, and further holding the substrate. A substrate holding member such as a transfer pallet or a substrate tray is installed so as to be able to freely enter and exit the processing chamber by a transfer means such as a conveyor. As the substrate, a glass substrate or other ordinary substrate materials are used in accordance with the purpose of plasma CVD, and an arbitrary reaction gas can be used depending on the type of a thin film to be formed.

【0015】この発明では、処理室内で、薄膜形成手段
を備えた薄膜形成部と、加熱手段および搬送手段を備え
た搬送加熱部が、連結開口で連通しており、それ以外の
部分では互いに遮断分離されている。連結開口は、基板
を連結開口に配置したときに、連結開口全体がほぼ塞が
れるような形状および寸法に設定されている。薄膜形成
部の薄膜形成手段は、薄膜の堆積が、連結開口に向けて
行われるように配置されている。具体的には、連結開口
に対向して電極部材や反応ガスの噴出口が設けられてい
る。また、処理室内の真空排気装置は、薄膜形成部では
プラズマCVDに適した高い真空状態を形成できるよう
にしておくが、搬送加熱部では、薄膜形成部に比べれば
真空度が低くてもよい。特に、薄膜形成時に、搬送加熱
部側に不活性ガスを供給して、搬送加熱部を薄膜形成部
によりも高圧にしておけば、薄膜形成部から搬送加熱部
に反応ガスが漏れることを確実に防止できる。
According to the present invention, in the processing chamber, the thin film forming section having the thin film forming means and the transport heating section having the heating means and the transport means communicate with each other through the connection opening, and the other portions are isolated from each other. Are separated. The connection opening is set to have such a shape and dimensions that when the substrate is arranged in the connection opening, the entire connection opening is substantially closed. The thin film forming means of the thin film forming unit is arranged so that the thin film is deposited toward the connection opening. Specifically, an electrode member and a reaction gas outlet are provided opposite the connection opening. Further, the vacuum evacuation device in the processing chamber is configured to be able to form a high vacuum state suitable for plasma CVD in the thin film forming section, but the degree of vacuum may be lower in the transport heating section than in the thin film forming section. In particular, when a thin film is formed, an inert gas is supplied to the transfer heating unit side so that the pressure of the transfer heating unit is higher than that of the thin film formation unit, so that the reactive gas leaks from the thin film formation unit to the transfer heating unit. Can be prevented.

【0016】基板の保持部材は、基板を寝かせた状態で
載置して、その外周を保持する搬送パレットや、基板を
立てて置いたり、吊り下げてたりして保持するものな
ど、各種薄膜形成装置で用いられている通常の基板保持
手段が採用できる。但し、基板保持部材は、後述する伝
熱搬送板の作動によって、基板を伝熱搬送板側に移すこ
とができるような構造になっている必要がある。
The holding member for the substrate is formed of various thin films, such as a transport pallet for holding the substrate in a lying state and holding the outer periphery thereof, and a member for holding the substrate by standing or hanging the substrate. Normal substrate holding means used in the apparatus can be adopted. However, the substrate holding member needs to be structured so that the substrate can be transferred to the heat transfer plate side by the operation of the heat transfer plate described below.

【0017】基板保持部材は、コンベア等の搬送手段に
よって、処理室の外部から処理室内へと搬送される。搬
送手段は、ローラコンベア、ハンガーコンベアその他、
通常の機械装置で利用されている搬送装置の構造が用い
られる。プラズマCVD装置が、複数の薄膜形成用処理
室あるいは前処理用、後処理用の処理室などを備えてい
る場合、搬送手段は、基板保持部材を各処理室に順次移
し替えていけるようにしておく。なお、搬送手段で、ひ
とつの基板保持部材を、全ての処理室に順番に移し替え
ていくものであってもよいが、ひとつの基板保持部材
を、隣接する処理室の間だけで往復移動させるようにし
ておき、基板を隣接する基板保持部材に順番に移し替え
るようにしておいてもよい。さらに、基板保持部材は、
搬送手段に着脱自在になっていてもよいが、基板保持部
材と搬送手段が一体構造になっていてもよい。
The substrate holding member is transported from outside the processing chamber to the processing chamber by a transport means such as a conveyor. Conveying means, roller conveyor, hanger conveyor and others,
The structure of a transfer device used in a normal mechanical device is used. When the plasma CVD apparatus is provided with a plurality of processing chambers for forming a thin film or a processing chamber for pre-processing and post-processing, the transfer means can transfer the substrate holding member to each processing chamber sequentially. deep. Note that, although one substrate holding member may be sequentially transferred to all the processing chambers by the transport unit, one substrate holding member is reciprocated only between adjacent processing chambers. In this way, the substrates may be sequentially transferred to adjacent substrate holding members. Further, the substrate holding member is
Although it may be detachable from the transfer means, the substrate holding member and the transfer means may be integrated.

【0018】伝熱移送板は、基板保持部材に保持された
基板の背面に当接する。すなわち、伝熱移送板は、基板
および基板保持部材が搬送手段によって搬送されている
ときには、基板の背面から離れた位置にあって、必要な
ときに、基板の背面に当接する位置まで移動できるよう
になっている。また、伝熱移送板は、基板の背面に当接
した状態から、基板保持部材から基板を取り外して、基
板が連結開口を塞ぐ位置に配置される状態まで移送でき
るように、移動自在になっている。伝熱移送板の移動機
構は、通常の機械装置と同様の、モータやシリンダ機構
などを組み合わせた移動機構が採用できる。但し、伝熱
移送板の作動時に、基板保持部材や搬送手段が邪魔にな
らず、また、伝熱移送板が連結開口側に移動した状態
で、基板保持部材や搬送手段が作動するときにも、伝熱
移送板が邪魔にならないようにしておく。
The heat transfer plate comes into contact with the back surface of the substrate held by the substrate holding member. That is, when the substrate and the substrate holding member are being conveyed by the conveying means, the heat transfer plate is at a position away from the back surface of the substrate, and can be moved to a position where it contacts the back surface of the substrate when necessary. It has become. In addition, the heat transfer transfer plate is movable so that the substrate can be removed from the substrate holding member and transferred to a state where the substrate is disposed at a position where the connection opening is closed, from the state in contact with the back surface of the substrate. I have. As a moving mechanism of the heat transfer plate, a moving mechanism combining a motor, a cylinder mechanism, and the like, similar to a normal mechanical device, can be adopted. However, when the heat transfer plate is operated, the substrate holding member and the transfer unit do not interfere, and when the heat transfer plate is moved to the connection opening side, the substrate holding member and the transfer unit are operated. The heat transfer plate should not be in the way.

【0019】伝熱移送板は、加熱自在になっている。伝
熱移送板を加熱する手段としては、伝熱移送板にヒータ
などの加熱源を内蔵していてもよいが、次に説明する加
熱ランプを利用することもできる。
The heat transfer plate can be heated freely. As a means for heating the heat transfer plate, a heat source such as a heater may be built in the heat transfer plate, but a heating lamp described below can also be used.

【0020】すなわち、伝熱移送板は、吸熱性能の良い
金属などで形成しておくだけで、加熱源は備えておかな
い。そして、伝熱移送板と対向する処理室壁面には、光
透過窓を設け、光透過窓に隣接する処理室の外部に、加
熱ランプを設けておくのである。加熱ランプの照射光
が、光透過窓を通じて伝熱移送板の背面に当たり、その
結果、伝熱移送板が加熱されることになる。光透過窓
は、石英ガラスなどの光透過性材料で塞がれ、加熱ラン
プの光を良く透過すると同時に、処理室内の真空状態を
良好に維持できるようにしておく。伝熱移送板を加熱す
る際には、伝熱移送板を光透過窓の位置に出来るだけ近
づけて、加熱ランプからの輻射熱を出来るだけ有効に吸
収できるようにしておくのが好ましい。
That is, the heat transfer transfer plate is simply made of a metal having good heat absorption performance, but does not have a heating source. Then, a light transmission window is provided on the wall surface of the processing chamber facing the heat transfer plate, and a heating lamp is provided outside the processing chamber adjacent to the light transmission window. Irradiation light of the heating lamp impinges on the rear surface of the heat transfer plate through the light transmission window, and as a result, the heat transfer plate is heated. The light-transmitting window is closed with a light-transmitting material such as quartz glass so that light from the heating lamp can be transmitted well and a vacuum state in the processing chamber can be maintained well. When heating the heat transfer plate, it is preferable to bring the heat transfer plate as close as possible to the position of the light transmission window so as to absorb the radiant heat from the heating lamp as effectively as possible.

【0021】さらに、伝熱移送板を薄膜形成時に電極部
材と対向する電極として利用することができる。すなわ
ち、伝熱移送板をアースしておけば、この伝熱移送板が
基板の背面に当接した状態で、電圧印加される電極部材
と対向することになり、基板表面への薄膜の堆積が良好
に行えることになる。但し、伝熱移送板とは別に、連結
開口部分に基板に当接するアース電極を設けておいても
よいのは言うまでもない。
Further, the heat transfer plate can be used as an electrode facing the electrode member when forming a thin film. That is, if the heat transfer plate is grounded, the heat transfer plate will be opposed to the electrode member to which voltage is applied in a state in which the heat transfer plate is in contact with the back surface of the substrate, and the deposition of a thin film on the substrate surface will be prevented. It can be performed well. However, it goes without saying that, apart from the heat transfer transfer plate, a ground electrode that contacts the substrate may be provided at the connection opening.

【0022】[0022]

【作用】この発明では、薄膜形成部と搬送加熱部が、連
結開口以外では遮断されており、薄膜形成時には、連結
開口が基板で塞がれることになる。このような状態で、
薄膜形成を行えば、基板に形成される薄膜が、基板保持
部材や搬送手段などの構造部分にも形成されてしまうこ
とがなく、基板保持部材などから脱落した薄膜片が基板
表面に付着するという問題が解消される。なお、薄膜形
成部の内部は、真空度や温度などが常に一定の環境に保
たれているので、薄膜形成部の内部壁面などに薄膜が付
着していても、この薄膜が脱落することはない。
According to the present invention, the thin film forming section and the transport heating section are shut off except for the connection opening, and when the thin film is formed, the connection opening is closed by the substrate. In such a state,
When the thin film is formed, the thin film formed on the substrate is not formed on the structural parts such as the substrate holding member and the transport means, and the thin film pieces dropped from the substrate holding member and the like adhere to the substrate surface. The problem is solved. Since the inside of the thin film forming section is always kept in a constant environment such as the degree of vacuum and temperature, even if the thin film adheres to the inner wall surface of the thin film forming section, the thin film does not fall off. .

【0023】基板保持部材から連結開口まで基板を移送
する伝熱移送板が、基板に当接して熱を伝えるので、伝
熱移送板から基板への熱伝達は非常に効率良く行われ、
熱エネルギーの無駄がない。また、伝熱移送板から基板
に伝熱される際には、基板と基板保持部材が接触してい
ないので、基板保持部材に熱が逃げることもなく、熱エ
ネルギーの利用効率が高い。さらに、薄膜形成を終えた
基板は、伝熱移送板から基板保持部材に移し替えること
により、加熱状態の伝熱移送板から離れた基板が、迅速
に冷却されるので、冷却時間も短くなり、冷却に要する
エネルギーも削減できる。
Since the heat transfer plate for transferring the substrate from the substrate holding member to the connection opening contacts the substrate and transfers heat, the heat transfer from the heat transfer plate to the substrate is performed very efficiently.
There is no waste of heat energy. Further, when heat is transferred from the heat transfer plate to the substrate, the substrate and the substrate holding member are not in contact with each other, so that heat does not escape to the substrate holding member, and the heat energy utilization efficiency is high. Further, the substrate after the formation of the thin film is transferred from the heat transfer plate to the substrate holding member, so that the substrate separated from the heat transfer plate in a heated state is quickly cooled, so that the cooling time is shortened. Energy required for cooling can also be reduced.

【0024】[0024]

【実施例】ついで、この発明の実施例を図面を参照しな
がら以下に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】図3は、プラズマCVD装置の全体構造を
表している。予備加熱処理室10a、複数の薄膜形成処
理室10b、10c、10dおよび冷却処理室10e
が、それぞれの間に室間ゲートバルブ14を介して連結
されている。各処理室10a …を通じて、搬送手段であ
るローラコンベア50が設置されている。ローラコンベ
ア50の上には、基板保持部材である搬送パレット60
が載せられ、搬送パレット60には、薄膜形成を行う基
板40が収容されている。基板40は、各処理室10a
…を順番に移し替えられながら、所定の処理を施され、
処理が完了した基板40が装置の他端から送り出され
る。搬送パレット60は、まず、装置外から予備加熱処
理室10aおよび次の薄膜形成処理室10bの間を往復
移動する搬送パレット60が設けられている。すなわ
ち、図中のW1 の範囲を往復する搬送パレット60であ
る。つぎに、上記薄膜形成処理室10bと次の薄膜形成
処理室10cおよびその次の薄膜形成処理室10dの間
(図中、W2 の範囲)を往復移動する搬送パレット60
が設けられている。さらに、薄膜形成処理室10dと冷
却室10eおよび装置外(図中、W3 の範囲)を往復移
動する搬送パレット60が設けられている。したがっ
て、基板40は、これら複数の往復移動する搬送パレッ
ト60に順次移し替えられながら、装置の一端から他端
へと搬送されることになる。
FIG. 3 shows the overall structure of a plasma CVD apparatus. Preheating chamber 10a, multiple thin film forming chambers 10b, 10c, 10d and cooling chamber 10e
Are connected to each other through an inter-room gate valve 14. A roller conveyer 50 as a conveying means is provided through each processing chamber 10a. On the roller conveyor 50, a transport pallet 60 as a substrate holding member is provided.
And the substrate 40 on which the thin film is to be formed is accommodated in the transport pallet 60. The substrate 40 is provided in each processing chamber 10a.
… While being moved in order, given processing,
The processed substrate 40 is sent out from the other end of the apparatus. The transport pallet 60 is provided with a transport pallet 60 which reciprocates between the preliminary heating processing chamber 10a and the next thin film forming processing chamber 10b from outside the apparatus. That is, the transport pallet 60 for reciprocating the range of W 1 in FIG. Next, conveying pallet 60 the thin film formation process chamber 10b and the next film formation processing chamber 10c and between the next film formation processing chamber 10d which (in the figure, the range of W 2) to reciprocate
Is provided. Further, the thin film forming treatment chamber 10d and the cooling chamber 10e and the outside of the apparatus (in the figure, W range 3) transport pallet 60 to reciprocate is provided. Therefore, the substrate 40 is transferred from one end to the other end of the apparatus while being sequentially transferred to the plurality of reciprocating transfer pallets 60.

【0026】つぎに、図1は、プラズマCVD装置の薄
膜形成処理室10(10b、10c、10d)の内部構
造を示している。処理室10は、中央の搬送加熱部30
と、その上方に設けられた薄膜形成部20からなる。
FIG. 1 shows the internal structure of the thin film forming chamber 10 (10b, 10c, 10d) of the plasma CVD apparatus. The processing chamber 10 has a central heating and heating unit 30.
And a thin film forming section 20 provided thereabove.

【0027】搬送加熱部30の左右端は、室間ゲートバ
ルブ14を介して、隣の処理室10に連結されている。
搬送加熱部30を横断して、搬送手段であるローラコン
ベア50が設置されている。搬送加熱部30には、真空
排気口34や不活性ガス導入口32が設けられている。
ローラコンベア50の上には、基板保持部材である搬送
パレット40が載せられ、ローラコンベア50の駆動に
よって、水平方向に往復移動する。搬送パレット40
は、中央の処理室10と、両隣の処理室10、10の間
を往復移動する。搬送パレット40の上には、薄膜形成
を行う基板60が載せられている。
The left and right ends of the transport heating section 30 are connected to the adjacent processing chamber 10 via the inter-room gate valve 14.
A roller conveyer 50 serving as a conveying means is provided across the conveyance heating unit 30. The transport heating section 30 is provided with a vacuum exhaust port 34 and an inert gas inlet 32.
The transport pallet 40 as a substrate holding member is placed on the roller conveyor 50, and reciprocates in the horizontal direction by driving the roller conveyor 50. Transport pallet 40
Reciprocates between the central processing chamber 10 and the adjacent processing chambers 10, 10. A substrate 60 on which a thin film is to be formed is placed on the transport pallet 40.

【0028】搬送パレット40の通過経路の下方に、伝
熱移送板70が設けられている。伝熱移送板70は、断
熱部材74を挟んで昇降腕76に取り付けられ、この昇
降腕76はモータ78などで駆動されて昇降自在になっ
ている。また、伝熱移送板70は、輻射熱の吸収性が良
く、導電性のある金属などで形成されているとともに、
アースされている。
A heat transfer plate 70 is provided below the passage of the transport pallet 40. The heat transfer transfer plate 70 is attached to an elevating arm 76 with a heat insulating member 74 interposed therebetween. The elevating arm 76 is driven by a motor 78 or the like so as to be able to move up and down. In addition, the heat transfer plate 70 has good absorption of radiant heat and is formed of a conductive metal or the like.
Grounded.

【0029】伝熱移送板70の下方で、処理室10の下
壁面は貫通形成されて光透過窓16となっている。光透
過窓16は、石英ガラスなどからなる光透過板81で塞
がれている。光透過窓16のさらに下方で、処理室10
の外部に加熱ランプ80が設けられている。加熱ランプ
80は、ハロゲンランプまたは赤外線ランプからなる光
源ランプ82と反射板84などを備え、加熱ランプ80
の照射光が、光透過窓81を通過して、処理室10内の
伝熱移送板70に当たり、輻射熱によって伝熱移送板7
0を加熱する。
Below the heat transfer plate 70, the lower wall surface of the processing chamber 10 is formed so as to penetrate into the light transmission window 16. The light transmission window 16 is closed by a light transmission plate 81 made of quartz glass or the like. Further below the light transmission window 16, the processing chamber 10
Is provided with a heating lamp 80 outside. The heating lamp 80 includes a light source lamp 82 composed of a halogen lamp or an infrared lamp, a reflector 84, and the like.
Irradiation light passes through the light transmission window 81 and strikes the heat transfer plate 70 in the processing chamber 10, and the heat transfer plate 7
Heat 0.

【0030】伝熱移送板70は、上方に移動したとき
に、搬送パレット40の中央に貫通形成された空間42
を通過して基板60の背面に当接できるようになってい
る。基板60に当接した伝熱移送板70は、さらに上方
に移動して、搬送パレット40の上方に基板60を抜き
取り、基板60を連結開口12を塞ぐ位置まで持ち上げ
るようになっている。基板60が連結開口12に配置さ
れた状態では、上方の薄膜形成部20と下方の搬送加熱
部30は、ほぼ密閉分離されることになる。基板606
0もくしは伝熱移送板70で、連結開口12を完全に密
閉すれば、反応ガスが搬送加熱部30側に漏れるのを確
実に阻止できるが、少しぐらい隙間があいても実用上は
問題にならない。
When the heat transfer plate 70 moves upward, the heat transfer plate 70 extends through the space 42 formed through the center of the transport pallet 40.
And can abut on the back surface of the substrate 60. The heat transfer transfer plate 70 in contact with the substrate 60 moves further upward, pulls out the substrate 60 above the transport pallet 40, and lifts the substrate 60 to a position where the connection opening 12 is closed. In a state where the substrate 60 is disposed in the connection opening 12, the upper thin film forming section 20 and the lower transport heating section 30 are substantially hermetically separated. Substrate 606
If the connection opening 12 is completely sealed with the heat transfer plate 70, it is possible to reliably prevent the reaction gas from leaking to the side of the transport heating section 30, but even if there is a slight gap, there is no practical problem. do not become.

【0031】薄膜形成部20では、連結開口12の上方
に、ガス噴出プレート22が配置されている。ガス噴出
プレート22には、多数の噴出孔が貫通形成されてい
る。ガス噴出プレート22の上方には、隙間をあけて電
極部材21が取り付けられている。電極部材21には、
高周波電源25が接続されているとともに、絶縁材24
を介して、処理室10の内壁に固定されている。電極部
材21には、反応ガス導入配管23が接続され、電極部
材21とガス噴出プレート22の間に、薄膜形成用の反
応ガスを供給する。
In the thin film forming section 20, a gas ejection plate 22 is disposed above the connection opening 12. A large number of ejection holes are formed through the gas ejection plate 22. An electrode member 21 is mounted above the gas ejection plate 22 with a gap. The electrode member 21 includes
A high frequency power supply 25 is connected to the
, And is fixed to the inner wall of the processing chamber 10. A reaction gas introduction pipe 23 is connected to the electrode member 21 to supply a reaction gas for forming a thin film between the electrode member 21 and the gas ejection plate 22.

【0032】ガス噴出プレート22と連結開口12の間
の空間の外周には、反応ガスの排気路26が設けられて
いる。排気路26の内側面には多数の排気孔260が貫
通形成されている。また、排気路26は、排気口27に
連結されている。ガス噴出プレート22から噴出した反
応ガスは、連結開口12に配置された基板60に薄膜を
堆積させた後、排気路26の排気孔260を通じて、排
気口27から外部に排気される。
A reaction gas exhaust passage 26 is provided on the outer periphery of the space between the gas ejection plate 22 and the connection opening 12. A large number of exhaust holes 260 are formed through the inner surface of the exhaust path 26. Further, the exhaust path 26 is connected to an exhaust port 27. The reaction gas ejected from the gas ejection plate 22 deposits a thin film on the substrate 60 disposed in the connection opening 12 and is exhausted to the outside from the exhaust port 27 through the exhaust hole 260 of the exhaust path 26.

【0033】図2は、処理室10の内部構造を、さらに
詳しく表している。搬送パレット40は、多数のガイド
ローラを備えたローラコンベア50に、水平方向に移動
可能に支持されている。ローラコンベア50の駆動ピニ
オン52を、搬送パレット40に固定されたラック54
に噛み合わせて、駆動ピニオン52を回転駆動すれば、
搬送パレット50が水平方向に往復移動する。
FIG. 2 shows the internal structure of the processing chamber 10 in more detail. The transport pallet 40 is supported by a roller conveyor 50 having a number of guide rollers so as to be movable in the horizontal direction. The drive pinion 52 of the roller conveyor 50 is connected to a rack 54 fixed to the transport pallet 40.
When the drive pinion 52 is rotationally driven by meshing with
The transport pallet 50 reciprocates in the horizontal direction.

【0034】搬送パレット40の中央には、基板60の
外形に合わせた空間42が形成されている。搬送パレッ
ト40の、基板60の四隅外周に対応する位置には、セ
ラミック等の断熱材料からなる保持ブロック46が取り
付けられている。基板60は、保持ブロック46の内側
に嵌まり込んだ状態で、搬送パレット40に載せられて
いる。
At the center of the transport pallet 40, a space 42 is formed in accordance with the outer shape of the substrate 60. At the positions corresponding to the four corners of the substrate 60 on the transport pallet 40, holding blocks 46 made of a heat insulating material such as ceramic are attached. The substrate 60 is placed on the transport pallet 40 in a state of being fitted inside the holding block 46.

【0035】伝熱移送板70は、搬送パレット40の中
央空間42よりも少し小さな外形を有し、その1側辺に
突出腕部72が設けられ、この突出腕部72が断熱部材
74を介して昇降腕76に固定されている。搬送パレッ
ト40には、伝熱移送板70の突出腕部72に対応する
位置に、切り欠き44が形成されており、伝熱移送板7
0が、搬送パレット40を通過して自由に昇降できるよ
うになっている。
The heat transfer transfer plate 70 has an outer shape slightly smaller than the central space 42 of the transport pallet 40, and has a protruding arm 72 provided on one side thereof. And is fixed to the lifting arm 76. A notch 44 is formed in the transfer pallet 40 at a position corresponding to the projecting arm 72 of the heat transfer plate 70.
0 can freely move up and down through the transport pallet 40.

【0036】以上のような構造を備えたプラズマCVD
装置の作動について説明する。まず、伝熱移送板70
は、前記したように、加熱ランプ80の照射により、所
定の温度に加熱しておく。伝熱移送板70は上方に移動
するとき以外は、常に加熱ランプ80の照射を受けて、
所定の温度が維持されるようにしておく。
Plasma CVD having the above structure
The operation of the device will be described. First, the heat transfer plate 70
Is heated to a predetermined temperature by irradiation of the heating lamp 80 as described above. Except when the heat transfer plate 70 moves upward, the heat transfer plate 70 is always irradiated by the heating lamp 80,
A predetermined temperature is maintained.

【0037】搬送パレット40に載った基板60が、処
理室10に運び込まれると、真空排気口34から処理室
10全体を排気する。伝熱移送板70を上昇させて、基
板60の背面に当接させ、基板60を搬送パレット40
から持ち上げて、連結開口12の位置に配置する。伝熱
移送板70が基板60に当接すれば、伝熱移送板70か
らの熱伝導により基板60は迅速に加熱される。
When the substrate 60 placed on the transport pallet 40 is carried into the processing chamber 10, the entire processing chamber 10 is exhausted from the vacuum exhaust port 34. The heat transfer plate 70 is raised to abut the rear surface of the substrate 60, and the substrate 60 is transferred to the transport pallet 40.
From the connection opening 12. When the heat transfer plate 70 contacts the substrate 60, the substrate 60 is quickly heated by heat conduction from the heat transfer plate 70.

【0038】搬送加熱部30に、不活性ガス導入口32
から窒素ガスなどの不活性ガスを導入するとともに、真
空排気口34を閉じる。
An inert gas inlet 32 is provided in the transport heating section 30.
Then, an inert gas such as a nitrogen gas is introduced from the apparatus, and the vacuum exhaust port 34 is closed.

【0039】つぎに、薄膜形成部20の排気口27を開
き、反応ガス導入配管23から反応ガスを導入する。電
極部材21には電圧を印加する。その結果、ガス噴出プ
レート22から噴出した反応ガスプラズマが、伝熱移送
板70を介してアースされている基板60の表面に堆積
し、所定の厚みで薄膜形成が行われる。この実施例で
は、基板60がガス噴出プレート22や電極部材21と
非常に近い位置にあるので、搬送パレット40の位置の
ままで薄膜形成を行うのに比べて、薄膜の形成が良好に
行われ、高品質の薄膜が形成できる。
Next, the exhaust port 27 of the thin film forming section 20 is opened, and the reaction gas is introduced from the reaction gas introduction pipe 23. A voltage is applied to the electrode member 21. As a result, the reaction gas plasma ejected from the gas ejection plate 22 is deposited on the surface of the substrate 60 grounded via the heat transfer plate 70, and a thin film is formed with a predetermined thickness. In this embodiment, since the substrate 60 is located very close to the gas ejection plate 22 and the electrode member 21, the thin film can be formed more favorably than when the thin film is formed at the position of the transport pallet 40. A high quality thin film can be formed.

【0040】薄膜形成に利用されなかった反応ガスは、
排気路26および排気口27を通じて排気される。排気
路26が、基板60の直ぐ外周に配置されているので、
反応ガスは確実に排気路26に送り込まれ、連結開口1
2から下方に漏れることは少ない。しかも、搬送加熱部
30に不活性ガスが導入されているので、搬送加熱部3
0のほうが薄膜形成部20よりも圧力が高くなってお
り、反応ガスが連結開口12から搬送加熱部30側への
ガス漏れは確実に阻止できる。
The reaction gas not used for forming the thin film is:
Air is exhausted through the exhaust path 26 and the exhaust port 27. Since the exhaust path 26 is disposed immediately outside the substrate 60,
The reaction gas is reliably sent to the exhaust path 26, and the connection opening 1
There is little leakage from 2 below. Moreover, since an inert gas is introduced into the transport heating section 30, the transport heating section 3
The pressure of 0 is higher than the pressure of the thin film forming section 20, and the reaction gas can be reliably prevented from leaking from the connection opening 12 to the side of the transport heating section 30.

【0041】薄膜形成が終了した後、搬送加熱部30で
は、残留ガスを真空排気口34から排出する。伝熱移送
板70を下降させれば、薄膜形成が終了した基板60
は、搬送パレット40の上に戻される。さらに、真空排
気口34から処理室10全体の排気を行う。
After the formation of the thin film is completed, the residual gas is exhausted from the vacuum exhaust port 34 in the transport heating unit 30. By lowering the heat transfer plate 70, the substrate 60 on which the thin film formation has been completed
Is returned onto the transport pallet 40. Further, the entire processing chamber 10 is evacuated from the vacuum exhaust port 34.

【0042】搬送パレット40に戻された基板60は、
搬送パレット40の移動に伴って、次の処理室10へと
送られる。次の処理室10でも、上記同様の薄膜形成処
理が行われる。但し、この場合は、搬送パレット40か
ら伝熱移送板70に基板60を移し替えた後、搬送パレ
ット40を元の処理室10に戻し、さらに、この元の処
理室10のひとつ手前の処理室10まで搬送パレット4
0を戻して、次に処理を行う基板40を受け取る。すな
わち、基板60が伝熱移送板70に移っている間に、搬
送パレット40の復帰移動が行われるので、搬送パレッ
ト40の復帰動作に伴う時間のロスは最小限に止められ
る。
The substrate 60 returned to the transport pallet 40 is
As the transport pallet 40 moves, it is sent to the next processing chamber 10. In the next processing chamber 10, the same thin film formation processing as described above is performed. However, in this case, after transferring the substrate 60 from the transport pallet 40 to the heat transfer plate 70, the transport pallet 40 is returned to the original processing chamber 10, and further, the processing chamber immediately before the original processing chamber 10 Transfer pallet 4 to 10
Return 0 to receive the substrate 40 to be processed next. That is, while the substrate 60 is being transferred to the heat transfer transfer plate 70, the transport pallet 40 is returned and moved, so that the time loss associated with the return operation of the transport pallet 40 is minimized.

【0043】また、図3で、中央の薄膜形成処理室10
b、10c、10d(図中、W2 の範囲)を往復移動す
る搬送パレット40は、温度や真空度がほぼ一定の環境
に置かれることになるので、この搬送パレット40に薄
膜が形成されてしまったとしても、この薄膜が脱落する
ことはなく、薄膜片が基60の表面に付着する問題は生
じない。
In FIG. 3, the central thin film formation processing chamber 10 is shown.
b, 10c, (in the figure, W range 2) 10d conveying pallet 40 that reciprocates the, it means that the temperature and the degree of vacuum is almost placed in a constant environment, the thin film is formed on the transport pallet 40 Even if it does, the thin film does not fall off, and there is no problem that the thin film pieces adhere to the surface of the base 60.

【0044】上記した実施例では、基板60の搬送手段
として、各処理室10a〜10eにわたってローラコン
ベア50を設けるとともに、このローラコンベア50の
上で、一定範囲毎に複数の搬送パレット40を往復移動
させているため、従来のループ状コンベアのように、装
置外に搬送パレット40の復帰ラインを設置しておく必
要がなく、プラズマCVD装置全体の設置スペースが節
約できる。また、前記したように、薄膜形成処理室10
b、10c、10dを往復移動する搬送パレット40に
薄膜が形成されても、これが脱落する問題が生じないの
で、基板60の品質性能維持に有効であるとともに、搬
送パレット40の薄膜を除去する作業の手間が省ける。
In the above-described embodiment, the roller conveyor 50 is provided as a means for transporting the substrate 60 over each of the processing chambers 10a to 10e, and a plurality of transport pallets 40 are reciprocally moved on the roller conveyor 50 in a predetermined range. This eliminates the need to install a return line for the transport pallet 40 outside the apparatus, unlike a conventional loop conveyor, and saves installation space for the entire plasma CVD apparatus. Further, as described above, the thin film formation processing chamber 10
Even if a thin film is formed on the transport pallet 40 that reciprocates between b, 10c, and 10d, there is no problem that the thin film is dropped off. Time is saved.

【0045】つぎに、図4および図5には、上記実施例
とは基板60の搬送手段の構造が異なる実施例を示して
いる。この実施例では、ローラコンベア50を用いる代
わりに、搬送アーム500を用いる。この搬送アーム5
00以外の構造は、前記実施例と共通するので、説明を
省略する。
Next, FIGS. 4 and 5 show an embodiment in which the structure of the means for transporting the substrate 60 is different from that of the above embodiment. In this embodiment, a transfer arm 500 is used instead of using the roller conveyor 50. This transfer arm 5
Structures other than 00 are the same as those in the above-described embodiment, and thus description thereof is omitted.

【0046】搬送アーム500は、複数のアーム部材5
02と、アーム部材502を屈曲作動させる多数の歯車
機構504からなり、歯車機構504に連結された駆動
軸506をモータ508で駆動するようになっている。
アーム部材502の先端には、前記同様の搬送パレット
40が固定取り付けされている。アーム部材502が屈
曲作動することによって、搬送パレット40が水平方向
に往復移動する。
The transfer arm 500 includes a plurality of arm members 5
02, and a number of gear mechanisms 504 for bending the arm member 502. The drive shaft 506 connected to the gear mechanism 504 is driven by a motor 508.
The transport pallet 40 similar to the above is fixedly attached to the tip of the arm member 502. The bending operation of the arm member 502 causes the transport pallet 40 to reciprocate in the horizontal direction.

【0047】図4に示すように、搬送アーム500が図
中の右側に伸びた状態で、搬送アーム500に取り付け
られた搬送パレット40が、処理室10の中央すなわち
伝熱移送板70の上方に配置される。搬送アーム500
が縮まれば、搬送パレット40は駆動軸506の位置に
配置され、さらに、搬送アーム500が反対側に伸びれ
ば、搬送パレット40は、隣の処理室10まで入ること
ができる。すなわち、基板60を、隣接する処理室10
に移し替えることができる。搬送アーム500の最大伸
縮長さを適当に設定すれば、各処理室10に設置された
搬送アーム500に、基板60を順番に移し替えて、基
板60を送っていくことができる。
As shown in FIG. 4, with the transfer arm 500 extending to the right in the figure, the transfer pallet 40 attached to the transfer arm 500 is placed at the center of the processing chamber 10, that is, above the heat transfer plate 70. Be placed. Transfer arm 500
When the transfer pallet 40 is contracted, the transfer pallet 40 is disposed at the position of the drive shaft 506, and when the transfer arm 500 extends to the opposite side, the transfer pallet 40 can enter the adjacent processing chamber 10. That is, the substrate 60 is transferred to the adjacent processing chamber 10.
Can be transferred to If the maximum expansion and contraction length of the transfer arm 500 is appropriately set, the substrates 60 can be transferred to the transfer arms 500 installed in each processing chamber 10 in order and the substrates 60 can be sent.

【0048】[0048]

【発明の効果】以上に述べた、この発明にかかるプラズ
マCVD装置は、薄膜形成部と搬送加熱部をつなぐ連結
開口を基板で塞いだ状態で、薄膜形成部における薄膜形
成処理が行われるので、搬送加熱部側の基板保持部材な
どに薄膜が形成されてしまい、この薄膜がその後に脱落
して基板の表面に付着し基板の仕上がり品質を損なう、
という問題が生じない。
As described above, in the plasma CVD apparatus according to the present invention, the thin film forming process is performed in the thin film forming section while the connection opening connecting the thin film forming section and the transport heating section is closed by the substrate. A thin film is formed on the substrate holding member or the like on the side of the transport heating unit, and this thin film is subsequently dropped and adheres to the surface of the substrate, impairing the finish quality of the substrate,
Does not occur.

【0049】また、薄膜形成時には、処理室全体の雰囲
気を調整しなくても、薄膜形成部の内部空間のみを、必
要な真空度などに設定すればよいので、薄膜形成処理も
行い易くなる。
Further, when forming a thin film, it is only necessary to set a necessary degree of vacuum or the like in the internal space of the thin film forming part without adjusting the atmosphere of the entire processing chamber, so that the thin film forming process can be easily performed.

【0050】基板保持部材から、基板の背面に当接する
伝熱移送板に基板を移して、伝熱移送板からの熱伝導に
よって基板を加熱するので、伝熱効率が良好になり、基
板を迅速に加熱できる。基板保持部材に熱が逃げないの
で、熱エネルギーも有効に利用できる。また、基板から
伝熱移送板を離せば、熱容量の小さな基板は直ちに冷却
するので、冷却時間も短くて済み、冷却のためのエネル
ギーも不要である。その結果、加熱冷却に要する機構が
簡略化でき、消費エネルギーを低減して、プラズマCV
D装置の設備コストおよび稼働コストを大幅で削減でき
る。
The substrate is transferred from the substrate holding member to the heat transfer plate in contact with the back surface of the substrate, and the substrate is heated by heat conduction from the heat transfer plate. Can be heated. Since heat does not escape to the substrate holding member, heat energy can be effectively used. Further, when the heat transfer plate is separated from the substrate, the substrate having a small heat capacity is immediately cooled, so that the cooling time can be shortened and no energy is required for cooling. As a result, the mechanism required for heating and cooling can be simplified, energy consumption can be reduced, and plasma CV
The equipment cost and operation cost of the D device can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す断面構造図FIG. 1 is a sectional structural view showing an embodiment of the present invention.

【図2】要部の一部切欠斜視図FIG. 2 is a partially cutaway perspective view of a main part.

【図3】装置全体の外観斜視図FIG. 3 is an external perspective view of the entire apparatus.

【図4】別の実施例を示す断面構造図FIG. 4 is a sectional structural view showing another embodiment.

【図5】搬送アームの斜視構造図FIG. 5 is a perspective structural view of a transfer arm.

【図6】従来例の断面構造図FIG. 6 is a sectional structural view of a conventional example.

【図7】同上の装置全体の外観斜視図FIG. 7 is an external perspective view of the whole device.

【符号の説明】[Explanation of symbols]

10 処理室 12 連結開口 20 薄膜形成部 21 電極部材 22 ガス噴出プレート 30 搬送加熱部 40 搬送パレット(基板保持部材) 50 ローラコンベア(搬送手段) 60 基板 70 伝熱移送板 80 加熱ランプ DESCRIPTION OF SYMBOLS 10 Processing chamber 12 Connection opening 20 Thin film formation part 21 Electrode member 22 Gas ejection plate 30 Transport heating part 40 Transport pallet (substrate holding member) 50 Roller conveyor (transport means) 60 Substrate 70 Heat transfer plate 80 Heating lamp

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田辺 浩 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 奥村 智洋 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (58)調査した分野(Int.Cl.6,DB名) C23C 16/50 C23C 16/46 H01L 21/31 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hiroshi Tanabe 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (58) Investigated field (Int.Cl. 6 , DB name) C23C 16/50 C23C 16/46 H01L 21/31

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 処理室内に、連結開口で連通する薄膜形
成部と搬送加熱部とを備え、薄膜形成部には、連結開口
に向けて薄膜の堆積を行う薄膜形成手段を備え、搬送加
熱部には、基板を保持した基板保持部材を処理室に出し
入れする搬送手段と、基板保持部材に保持された基板の
背面に当接し、基板を基板保持部材から連結開口を塞ぐ
位置へと移送するとともに、基板に熱を伝える伝熱移送
板を備えているプラズマCVD装置。
1. A processing chamber, comprising: a thin film forming unit communicating with a connection opening; and a transport heating unit, wherein the thin film forming unit includes a thin film forming unit for depositing a thin film toward the connection opening. The transfer means for taking the substrate holding member holding the substrate into and out of the processing chamber, and abutting the back surface of the substrate held by the substrate holding member to transfer the substrate from the substrate holding member to a position that closes the connection opening. A plasma CVD apparatus including a heat transfer plate for transferring heat to a substrate.
JP4111084A 1992-04-30 1992-04-30 Plasma CVD equipment Expired - Fee Related JP2888026B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4111084A JP2888026B2 (en) 1992-04-30 1992-04-30 Plasma CVD equipment
US08/054,137 US5372648A (en) 1992-04-30 1993-04-30 Plasma CVD system
KR1019930007388A KR960010051B1 (en) 1992-04-30 1993-04-30 Plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4111084A JP2888026B2 (en) 1992-04-30 1992-04-30 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH05306465A JPH05306465A (en) 1993-11-19
JP2888026B2 true JP2888026B2 (en) 1999-05-10

Family

ID=14551982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4111084A Expired - Fee Related JP2888026B2 (en) 1992-04-30 1992-04-30 Plasma CVD equipment

Country Status (3)

Country Link
US (1) US5372648A (en)
JP (1) JP2888026B2 (en)
KR (1) KR960010051B1 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525160A (en) * 1993-05-10 1996-06-11 Tokyo Electron Kabushiki Kaisha Film deposition processing device having transparent support and transfer pins
TW254030B (en) * 1994-03-18 1995-08-11 Anelva Corp Mechanic escape mechanism for substrate
US5558717A (en) * 1994-11-30 1996-09-24 Applied Materials CVD Processing chamber
JPH08316154A (en) * 1995-02-23 1996-11-29 Applied Materials Inc Simulated hot wall reaction chamber
JP3983831B2 (en) * 1995-05-30 2007-09-26 シグマメルテック株式会社 Substrate baking apparatus and substrate baking method
US5846332A (en) * 1996-07-12 1998-12-08 Applied Materials, Inc. Thermally floating pedestal collar in a chemical vapor deposition chamber
US5993916A (en) * 1996-07-12 1999-11-30 Applied Materials, Inc. Method for substrate processing with improved throughput and yield
RU2099440C1 (en) * 1997-01-24 1997-12-20 Плазма Текнололоджи Лимитед Method of surface treatment and device for its realization
US5960158A (en) 1997-07-11 1999-09-28 Ag Associates Apparatus and method for filtering light in a thermal processing chamber
US6073366A (en) 1997-07-11 2000-06-13 Asm America, Inc. Substrate cooling system and method
US6248624B1 (en) * 1997-08-27 2001-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming a dram stacked capacitor of zig-zag configuration
JP3966594B2 (en) * 1998-01-26 2007-08-29 東京エレクトロン株式会社 Preliminary vacuum chamber and vacuum processing apparatus using the same
US6037241A (en) * 1998-02-19 2000-03-14 First Solar, Llc Apparatus and method for depositing a semiconductor material
US6197181B1 (en) * 1998-03-20 2001-03-06 Semitool, Inc. Apparatus and method for electrolytically depositing a metal on a microelectronic workpiece
US6188044B1 (en) 1998-04-27 2001-02-13 Cvc Products, Inc. High-performance energy transfer system and method for thermal processing applications
US5970214A (en) 1998-05-14 1999-10-19 Ag Associates Heating device for semiconductor wafers
US5930456A (en) 1998-05-14 1999-07-27 Ag Associates Heating device for semiconductor wafers
US6086362A (en) * 1998-05-20 2000-07-11 Applied Komatsu Technology, Inc. Multi-function chamber for a substrate processing system
US6300600B1 (en) 1998-08-12 2001-10-09 Silicon Valley Group, Inc. Hot wall rapid thermal processor
US6462310B1 (en) * 1998-08-12 2002-10-08 Asml Us, Inc Hot wall rapid thermal processor
US6210484B1 (en) 1998-09-09 2001-04-03 Steag Rtp Systems, Inc. Heating device containing a multi-lamp cone for heating semiconductor wafers
US6957690B1 (en) 1998-09-10 2005-10-25 Asm America, Inc. Apparatus for thermal treatment of substrates
US6108937A (en) 1998-09-10 2000-08-29 Asm America, Inc. Method of cooling wafers
DE19841777C1 (en) * 1998-09-12 2000-01-05 Fraunhofer Ges Forschung Apparatus for plasma-technological precipitation of polycrystalline diamond on substrates with large plane areas
US6673155B2 (en) * 1998-10-15 2004-01-06 Tokyo Electron Limited Apparatus for forming coating film and apparatus for curing the coating film
KR100634642B1 (en) 1998-11-20 2006-10-16 스티그 알티피 시스템즈, 인코포레이티드 Fast heating and cooling apparatus for semiconductor wafers
US6771895B2 (en) 1999-01-06 2004-08-03 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US6281141B1 (en) 1999-02-08 2001-08-28 Steag Rtp Systems, Inc. Process for forming thin dielectric layers in semiconductor devices
JP2000286200A (en) * 1999-03-31 2000-10-13 Kokusai Electric Co Ltd Heat-treating method and system thereof
US6461801B1 (en) 1999-05-27 2002-10-08 Matrix Integrated Systems, Inc. Rapid heating and cooling of workpiece chucks
EP1073091A3 (en) * 1999-07-27 2004-10-06 Matsushita Electric Works, Ltd. Electrode for plasma generation, plasma treatment apparatus using the electrode, and plasma treatment with the apparatus
KR20020080954A (en) * 2001-04-18 2002-10-26 주성엔지니어링(주) Method and apparatus for cold wall Chemical Vapour Deposition
JP4121269B2 (en) * 2001-11-27 2008-07-23 日本エー・エス・エム株式会社 Plasma CVD apparatus and method for performing self-cleaning
JP3770238B2 (en) * 2002-03-22 2006-04-26 セイコーエプソン株式会社 Electronic device manufacturing apparatus and electronic device manufacturing method
JP3786091B2 (en) * 2002-03-22 2006-06-14 セイコーエプソン株式会社 Electronic device manufacturing apparatus, electronic device manufacturing method, and electronic device manufacturing program
KR100486692B1 (en) * 2002-03-29 2005-05-03 주식회사 엘지이아이 Continuous surface treatment device of heat exchanger
JP4311914B2 (en) * 2002-06-05 2009-08-12 住友電気工業株式会社 Heater module for semiconductor manufacturing equipment
CN100408721C (en) * 2002-08-19 2008-08-06 乐金电子(天津)电器有限公司 Heat exchanger surface treatment equipment
JP2005538566A (en) 2002-09-10 2005-12-15 アクセリス テクノロジーズ, インコーポレイテッド Substrate heating method in temperature variable process using chuck with fixed temperature
FR2856079B1 (en) * 2003-06-11 2006-07-14 Pechiney Rhenalu SURFACE TREATMENT METHOD FOR ALUMINUM ALLOY TILES AND BANDS
US7780787B2 (en) * 2004-08-11 2010-08-24 First Solar, Inc. Apparatus and method for depositing a material on a substrate
DE102005004311A1 (en) * 2005-01-31 2006-08-03 Aixtron Ag Depositing semiconductor layers on a series of substrates comprises passing each substrate through a series of process chambers in which a single layer is deposited
DE102005010005A1 (en) * 2005-03-04 2006-12-28 Nunner, Dieter Apparatus and method for coating small parts
US20070042118A1 (en) * 2005-08-22 2007-02-22 Yoo Woo S Encapsulated thermal processing
WO2008030047A1 (en) * 2006-09-06 2008-03-13 Seoul National University Industry Foundation Apparatus and method of depositing films using bias and charging behavior of nanoparticles formed during chemical vapor deposition
US20100243437A1 (en) * 2009-03-25 2010-09-30 Alliance For Sustainable Energy, Llc Research-scale, cadmium telluride (cdte) device development platform
JP5416570B2 (en) * 2009-12-15 2014-02-12 住友電気工業株式会社 Heating / cooling device and apparatus equipped with the same
FR2959756B1 (en) * 2010-05-04 2012-08-03 Global Technologies PYROLYTIC REACTOR WITH AXIAL PUMPING
US20110297088A1 (en) * 2010-06-04 2011-12-08 Texas Instruments Incorporated Thin edge carrier ring
CN102387653B (en) * 2010-09-02 2015-08-05 松下电器产业株式会社 Plasma processing apparatus and method of plasma processing
JP5263266B2 (en) * 2010-11-09 2013-08-14 パナソニック株式会社 Plasma doping method and apparatus
US20120024233A1 (en) * 2010-12-22 2012-02-02 Primestar Solar, Inc. Conveyor Assembly with Releasable Drive Coupling
CN103459664B (en) * 2011-03-25 2015-10-07 Lg电子株式会社 Plasma enhanced chemical vapor deposition equipment and control method thereof
EP2689048B1 (en) 2011-03-25 2017-05-03 LG Electronics Inc. Plasma enhanced chemical vapor deposition apparatus
CN110331378B (en) * 2019-07-18 2024-01-19 中国科学院金属研究所 HFCVD equipment for continuous preparation of diamond film and film plating method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010618A (en) * 1983-06-30 1985-01-19 Canon Inc Plasma cvd apparatus
JPS63114118A (en) * 1986-10-31 1988-05-19 Babcock Hitachi Kk Supporting device of press-bonding heater for forming thin film
US4979467A (en) * 1988-05-06 1990-12-25 Fujitsu Limited Thin film formation apparatus
US5304248A (en) * 1990-12-05 1994-04-19 Applied Materials, Inc. Passive shield for CVD wafer processing which provides frontside edge exclusion and prevents backside depositions

Also Published As

Publication number Publication date
KR930022464A (en) 1993-11-24
US5372648A (en) 1994-12-13
JPH05306465A (en) 1993-11-19
KR960010051B1 (en) 1996-07-25

Similar Documents

Publication Publication Date Title
JP2888026B2 (en) Plasma CVD equipment
JP4237939B2 (en) Vacuum processing equipment with improved substrate heating and cooling
US6460369B2 (en) Consecutive deposition system
US6949143B1 (en) Dual substrate loadlock process equipment
US5512320A (en) Vacuum processing apparatus having improved throughput
US5674786A (en) Method of heating and cooling large area glass substrates
JP3909888B2 (en) Tray transfer type in-line deposition system
KR0182772B1 (en) Sputtering apparatus, device for exchanging target and method for the same
JP2000286226A (en) Semiconductor wafer manufacturing apparatus
CN114908326B (en) Semiconductor processing apparatus and method for forming laminated film structure
CN111334763A (en) Film forming apparatus
JP2741156B2 (en) Cleaning method for multi-chamber processing equipment
JP2000323551A (en) Substrate processing apparatus
JP2000128345A (en) Gas floating carrier, heat treatment device and heat treatment method
JP4776061B2 (en) Thin film forming equipment
JP2014036159A (en) Transfer mechanism of workpiece and vacuum processing apparatus
JPH0542507B2 (en)
JPH09181060A (en) Thin-film formation device
EP1348777B1 (en) Vacuum deposition apparatus
JPH05306466A (en) Plasma cvd apparatus
WO2010013333A1 (en) Vacuum device and vacuum treatment method
JPH03212932A (en) Vacuum processing apparatus
JPH0630156U (en) Substrate processing equipment
JPH04183863A (en) Base plate treating device
JP2000119848A (en) Vacuum film forming device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees