JPH03212932A - Vacuum processing apparatus - Google Patents
Vacuum processing apparatusInfo
- Publication number
- JPH03212932A JPH03212932A JP931690A JP931690A JPH03212932A JP H03212932 A JPH03212932 A JP H03212932A JP 931690 A JP931690 A JP 931690A JP 931690 A JP931690 A JP 931690A JP H03212932 A JPH03212932 A JP H03212932A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- substrate heating
- wafer
- gas
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 48
- 239000000758 substrate Substances 0.000 claims abstract description 46
- 238000006243 chemical reaction Methods 0.000 claims abstract description 38
- 239000010453 quartz Substances 0.000 claims abstract description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 230000007246 mechanism Effects 0.000 claims abstract description 10
- 239000012212 insulator Substances 0.000 claims abstract description 9
- 239000007789 gas Substances 0.000 claims description 33
- 239000012495 reaction gas Substances 0.000 claims description 6
- 239000010409 thin film Substances 0.000 abstract description 15
- 229910052736 halogen Inorganic materials 0.000 abstract description 10
- 150000002367 halogens Chemical class 0.000 abstract description 10
- 239000000428 dust Substances 0.000 abstract description 6
- 239000010408 film Substances 0.000 abstract description 4
- 238000010276 construction Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 51
- 230000007723 transport mechanism Effects 0.000 description 14
- 230000032258 transport Effects 0.000 description 11
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は真空処理装置に関するものであって、特に、
化合物半導体を製造するプラズマCVD装置に係るもの
である。[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a vacuum processing apparatus, and in particular,
This relates to a plasma CVD apparatus for manufacturing compound semiconductors.
(従来の技術) 従来の真空処理装置は第6図に示されている。(Conventional technology) A conventional vacuum processing apparatus is shown in FIG.
同図において、反応室1内には反応室lの天板Iaを貫
通して取り付けられた上下動自在な高周波電極2と、シ
ーズヒータ3を内蔵した基板加熱電極4とが対向して配
設されている。高周波電極2の周囲にはアースシールド
5が隙間をもって取り付けられている。高周波電極2に
はガス導入管6が接続され、ガス導入管6を通ったガス
が高周波電極2内の通路(図示せず)を通って噴出口(
図示せず)より基板加熱電極4方向に噴出され、そして
、反応室1の側壁に設けられた排気ロアより排気される
ようになっている。基板加熱電極4の中心軸回りの複数
個の穴(図示せず)内には昇降自在なりフタ(図示せず
)が設けられ、そのリフタによって後述するウェハ用ト
レイの基板加熱電極4への受け渡しが行われる。基板加
熱電極4の少し上方にはチェーンローラ搬送機構8aが
配設されている。反応室1の横には仕切弁9を介して仕
込・取出室と兼用になった搬送室lOが連接されている
。この搬送室lO内にはチェーンローラ搬送機構8bが
配設され、チェーンローラ搬送機構8b上には、ウェハ
(図示せず)を載せたウェハ用トレイIIが載っている
。また、搬送室lO内のチェーンローラ搬送機構8bの
上方には/10ゲンランプ12が配設されている。なお
、図中、13は高周波電極2に接続された高周波電源、
14はガス導入管6に設けられたガス導入バルブである
。In the figure, in a reaction chamber 1, a high-frequency electrode 2 that is vertically movable and installed through the top plate Ia of a reaction chamber 1, and a substrate heating electrode 4 having a built-in sheathed heater 3 are arranged facing each other. has been done. An earth shield 5 is attached around the high frequency electrode 2 with a gap. A gas introduction pipe 6 is connected to the high-frequency electrode 2, and the gas that has passed through the gas introduction pipe 6 passes through a passage (not shown) in the high-frequency electrode 2, and then passes through a jet nozzle (not shown).
(not shown) in the direction of the substrate heating electrode 4, and is then exhausted from an exhaust lower provided on the side wall of the reaction chamber 1. A lid (not shown) that can be raised and lowered is provided in a plurality of holes (not shown) around the center axis of the substrate heating electrode 4, and the lifter transfers a wafer tray to the substrate heating electrode 4, which will be described later. will be held. A chain roller conveyance mechanism 8a is disposed slightly above the substrate heating electrode 4. Next to the reaction chamber 1, a transfer chamber 10, which also serves as a loading/unloading chamber, is connected via a gate valve 9. A chain roller transport mechanism 8b is disposed within the transport chamber IO, and a wafer tray II carrying wafers (not shown) is mounted on the chain roller transport mechanism 8b. Further, a /10 gen lamp 12 is disposed above the chain roller transport mechanism 8b in the transport chamber IO. In addition, in the figure, 13 is a high frequency power supply connected to the high frequency electrode 2,
14 is a gas introduction valve provided in the gas introduction pipe 6.
次に、上記真空処理装置の動作について説明する。Next, the operation of the vacuum processing apparatus will be explained.
まず、搬送室10内のチェーンローラ搬送機構8b上に
、ウェハを載せたウェハ用トレイ11を置いたのち、搬
送室lOを真空排気する。First, the wafer tray 11 carrying wafers is placed on the chain roller transport mechanism 8b in the transport chamber 10, and then the transport chamber IO is evacuated.
次に、ハロゲンランプ12でウェハ用トレイ11上のウ
ェハを100〜200℃に加熱する。Next, the wafers on the wafer tray 11 are heated to 100 to 200° C. using a halogen lamp 12 .
その次に、仕切弁9を開き、ウェハを載せたウェハ用ト
レイ11は、搬送室10内のチェーンローラ搬送機構8
bより反応室1内のチェーンローラ搬送機構8aに搬送
されてから、リフタにによって基板加熱電極4上に置か
れる。Next, the gate valve 9 is opened, and the wafer tray 11 carrying the wafer is transferred to the chain roller transport mechanism 8 in the transport chamber 10.
b to the chain roller transport mechanism 8a in the reaction chamber 1, and then placed on the substrate heating electrode 4 by a lifter.
その後、基板加熱電極4によってウェハ用トレイ10上
のウェハを200〜400℃に加熱する。Thereafter, the wafers on the wafer tray 10 are heated to 200 to 400° C. by the substrate heating electrode 4 .
最後に、ガス導入バルブ14を開き、高周波電極2の噴
出口よりガスを噴出するとともに、高周波電極2と基板
加熱電極4との間にプラズマを発生させて、ウェハの表
面に薄膜を形成する。Finally, the gas introduction valve 14 is opened, gas is ejected from the ejection port of the high-frequency electrode 2, and plasma is generated between the high-frequency electrode 2 and the substrate heating electrode 4 to form a thin film on the surface of the wafer.
なお、薄膜の形成されたウェハを搬送室10に戻すとき
には、上述と逆の動作が行なわれる。Note that when returning the wafer on which the thin film has been formed to the transfer chamber 10, the operation opposite to that described above is performed.
(発明が解決しようとする課題)
従来の真空処理装置は、上記のように高周波電極2の周
囲にはアースシールド5が隙間をもって囲むようにして
いるので、この隙間による理容静電容量が大きく、電力
消費が多くなる問題が起きた。また、上記のように高周
波電極2の噴出口(図示せず)より基板加熱電極4方向
に噴出されたガスは、排気ロアより排気されるようにな
っているが、反応室1内でガスの流れを調整するための
特別な手段が設けられていないため、ガスの流れに偏り
ができ、ウェハの表面に形成される薄膜の膜厚分布が悪
くなる問題が起きた。更に、上記のように反応室1にも
チェーンローラ搬送機構8aを配設しているので、この
チェーンローラ搬送機構8a等からダストが発生する問
題が起きた。更にそのうえ、搬送室10内にハロゲンラ
ンプ12を配設しているので、搬送室IOが大型化する
問題等が起きた。(Problem to be Solved by the Invention) In the conventional vacuum processing apparatus, as mentioned above, the high frequency electrode 2 is surrounded by the earth shield 5 with a gap, so the barber capacitance due to this gap is large, and power consumption is reduced. A problem has arisen that increases the number of Further, as mentioned above, the gas ejected from the ejection port (not shown) of the high-frequency electrode 2 in the direction of the substrate heating electrode 4 is exhausted from the exhaust lower; Since no special means for adjusting the flow is provided, the gas flow becomes uneven, resulting in a problem that the thickness distribution of the thin film formed on the surface of the wafer deteriorates. Furthermore, since the chain roller transport mechanism 8a is also disposed in the reaction chamber 1 as described above, a problem arises in that dust is generated from the chain roller transport mechanism 8a and the like. Furthermore, since the halogen lamp 12 is disposed within the transfer chamber 10, there arises a problem that the transfer chamber IO becomes larger.
この発明の目的は、従来の問題を解決して、電力消失が
少なく、しかも、ダストの発生も少なくて、薄膜の膜厚
分布を良くすることができ、搬送室の小型化等を可能に
する真空処理装置を提供することにある。The purpose of this invention is to solve the conventional problems, reduce power dissipation, generate less dust, improve the thickness distribution of the thin film, and make it possible to downsize the transfer chamber. An object of the present invention is to provide a vacuum processing device.
(課題を解決するための手段)
上記目的を達成するために、この発明は、反応室と搬送
室とを仕切弁を介して連接した真空処理装置において、
上記反応室は、その室壁の第1の開口にこれを閉塞する
ように誘電率の低い絶縁物を介して取り付けられた内部
に反応ガス通路を有する高周波電極と、室壁の第2の開
口にこれを閉塞するように取り付けられ、室壁のその他
の部分と間隔をもって室内に突出したヒータ内蔵の基板
加熱電極とが室内で対向して配置されているとともに、
基板加熱電極と室壁のその他の部分との間にガス整流板
が設けられ、このガス整流板を通過した反応ガスを排気
する排気口が室壁に設けられ、上記基板加熱電極の中心
より偏心した位置に設けられた穴に、表面および裏面を
ブラスト処理して梨地状に荒らしたウェハ用トレイを受
け渡すためのリフターの昇降軸が設けられ、上記搬送室
は、その室内に上記ウェハ用トレイを搬送する搬送機構
が配設され、室壁に石英窓が設けられ、その石英窓の近
傍の室外に加熱ランプが配設され、上記搬送室の横には
上記ウェハ用トレイを収容するカセットを備えたカセッ
ト室が連通されていることを特徴とするものである。(Means for Solving the Problems) In order to achieve the above object, the present invention provides a vacuum processing apparatus in which a reaction chamber and a transfer chamber are connected via a gate valve.
The reaction chamber includes a high-frequency electrode having a reaction gas passage therein, which is attached to a first opening in the chamber wall through an insulator with a low dielectric constant so as to close the first opening, and a second opening in the chamber wall. A substrate heating electrode with a built-in heater is attached to the chamber wall so as to close it and protrudes into the chamber at a distance from other parts of the chamber wall, and is disposed facing each other in the chamber.
A gas rectifying plate is provided between the substrate heating electrode and other parts of the chamber wall, and an exhaust port for exhausting the reaction gas that has passed through the gas rectifying plate is provided in the chamber wall. A lifting shaft of a lifter for transferring the wafer tray whose front and back surfaces have been blasted and roughened is provided in the hole provided at the position where the wafer tray is placed. A quartz window is provided on the chamber wall, a heating lamp is provided outdoors near the quartz window, and a cassette for storing the wafer tray is placed next to the transfer chamber. It is characterized in that the provided cassette chambers are communicated with each other.
(作用)
この発明においては、上記のように高周波電極が誘電率
の低い絶縁物を介して反応室の室壁の第1の開口にこれ
を閉塞するように取り付けられているので、浮遊静電容
量が小さくなり、電力消失が少なくなる。また、基板加
熱電極と室壁のその他の部分との間にガス整流板が設け
られ、このガス整流板を通過した反応ガスが室壁に設け
られた排気口より排気されるので、反応室内を流れるガ
スの流れに偏りがなくなり、ウェハの表面に形成される
薄膜の膜厚分布が良くなる。更に、基板加熱電極の中心
より偏心した位置に設けられた穴にリフターの昇降軸を
設けているので、基板加熱電極の中央部にシーズヒータ
を巻回して内蔵でき、そのため、基板加熱電極上に載せ
られたウェハ用トレイ上の基板を十分に加熱でき、その
温度分布をよくすることができる。更にそのうえ、搬送
室の室壁に設けられた石英窓の近傍の室外に加熱ランプ
が配設されているので、搬送室を小型化することができ
る。更に、搬送室の室内にだけウェハ用トレイを搬送す
る搬送機構が配設されているので、反応室でのダストの
発生がすくなくなり、ウェハの表面に形成される薄膜の
膜質が良くなる。(Function) In this invention, as described above, the high-frequency electrode is attached to the first opening of the chamber wall of the reaction chamber via an insulator with a low dielectric constant so as to close the first opening, so that stray static Smaller capacity and less power dissipation. In addition, a gas rectifying plate is provided between the substrate heating electrode and other parts of the chamber wall, and the reaction gas that has passed through this gas rectifying plate is exhausted from the exhaust port provided in the chamber wall. The gas flow becomes even, and the thickness distribution of the thin film formed on the wafer surface is improved. Furthermore, since the lifting shaft of the lifter is provided in a hole provided eccentrically from the center of the substrate heating electrode, the sheathed heater can be wound around and built into the center of the substrate heating electrode. The substrate on the wafer tray placed thereon can be sufficiently heated, and its temperature distribution can be improved. Furthermore, since the heating lamp is disposed outdoors near the quartz window provided on the wall of the transfer chamber, the transfer chamber can be made smaller. Furthermore, since the transport mechanism for transporting the wafer tray is provided only within the transport chamber, dust generation in the reaction chamber is reduced, and the quality of the thin film formed on the surface of the wafer is improved.
(実施例)
以下、この発明の実施例について図面を参照しながら説
明する。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.
第1図はこの発明の実施例の真空処理装置を示しており
、同図において、仕切弁21を介して反応室22と搬送
室23とが連接され、そして、その搬送室23の横には
カセット室38が連通してる。まず、反応室22は、高
周波電極24が誘電率の低いテフロン(商標)製の絶縁
物25を介して天部の開口22aに取り付けられ、高周
波電極24の一面側が反応室22内に位置している。そ
して、高周波電極24の外周の一部は誘電率の低いテフ
ロン(商標)製の絶縁物25で囲まれ、そのため、浮遊
静電容量が小さくなり、電力消費が少な(なっている。FIG. 1 shows a vacuum processing apparatus according to an embodiment of the present invention, in which a reaction chamber 22 and a transfer chamber 23 are connected via a gate valve 21, and a side of the transfer chamber 23 is The cassette chamber 38 is in communication. First, in the reaction chamber 22, a high-frequency electrode 24 is attached to an opening 22a at the top via an insulator 25 made of Teflon (trademark) with a low dielectric constant, and one side of the high-frequency electrode 24 is located inside the reaction chamber 22. There is. A part of the outer periphery of the high-frequency electrode 24 is surrounded by an insulator 25 made of Teflon (trademark) with a low dielectric constant, so that stray capacitance is reduced and power consumption is reduced.
また、高周波電極24には高周波電源26が接続されて
いる一方で、ガス導入管27も接続され、このガス導入
管27内を流れたガスが高周波電極24内の通路(図示
せず)を通って噴出口(図示せず)より基板加熱電極2
8方向に噴出される。基板加熱電極28は反応室22の
底部の開口22bに取り付けられ、反応室22の側壁と
間隔をもって反応室22内に突出し、高周波電極24と
所定の間隔をおいて対向している。基板加熱電極28は
第2図および第3図に詳細に示されるように中心より所
定の距離だけ偏心した位置に穴28aが設けられ、この
穴28aには昇降機(図示せず)によって昇降されるリ
フタ29の昇降軸29aが挿入されている。リフタ29
の昇降軸29aの先端には、ニッケル製の基部29b、
と、この両端よりそれぞれ平行に伸びたアルミナ製の爪
部29b、とによってコの字型に形成されたフォーク部
29bが取り付けられ、この爪部29b2間に基板加熱
電極28の中心が位置するようになっている。基板加熱
電極28の上面28bには、リフタ29が下降したとき
に、フォーク部29bを埋没させる溝3oが形成されて
いる。そのため、リフタ29が上昇したときには、フォ
ーク部29bが基板加熱電極28の上面28bより出没
するが、反対に、リフタ29が下降したときには、フォ
ーク部29bが溝3o内に埋没するようになる。基板加
熱電極28内にはシーズヒータ31が内蔵されているが
、そのシーズヒータ31は基板加熱電極28の中央部に
おいても内蔵されている。そのため、基板加熱電極28
上に載せられたウェハ用トレイ(後述する)上のウェハ
(図示せず)の温度が十分に上昇し、その温度分布がよ
くなる。再び、第1図に戻れば、基板加熱電極28と反
応室22の側壁22cとの間にはリング状のガス整流板
32が設けられ、このガス整流板32の下方の反応室2
2の側壁22cには排気口33が設けられ、ガス整流板
32を通過したガスが排気口33より排気されるように
なっている。Further, while a high frequency power supply 26 is connected to the high frequency electrode 24, a gas introduction pipe 27 is also connected, and the gas flowing through the gas introduction pipe 27 passes through a passage (not shown) in the high frequency electrode 24. substrate heating electrode 2 from the spout (not shown)
It is ejected in 8 directions. The substrate heating electrode 28 is attached to the opening 22b at the bottom of the reaction chamber 22, projects into the reaction chamber 22 at a distance from the side wall of the reaction chamber 22, and faces the high frequency electrode 24 at a predetermined distance. As shown in detail in FIGS. 2 and 3, the substrate heating electrode 28 is provided with a hole 28a at a position eccentric from the center by a predetermined distance, and is raised and lowered into this hole 28a by an elevator (not shown). The lifting shaft 29a of the lifter 29 is inserted. Lifter 29
At the tip of the lifting shaft 29a, there is a base 29b made of nickel,
and claws 29b made of alumina extending in parallel from both ends of the fork part 29b, which is formed in a U-shape, is attached, and the center of the substrate heating electrode 28 is positioned between the claws 29b2. It has become. A groove 3o is formed in the upper surface 28b of the substrate heating electrode 28, in which the fork portion 29b is buried when the lifter 29 is lowered. Therefore, when the lifter 29 is raised, the fork portion 29b protrudes and retracts from the upper surface 28b of the substrate heating electrode 28, but on the other hand, when the lifter 29 is lowered, the fork portion 29b is buried in the groove 3o. A sheathed heater 31 is built in the substrate heating electrode 28, and the sheathed heater 31 is also built in the center of the substrate heating electrode 28. Therefore, the substrate heating electrode 28
The temperature of the wafer (not shown) on the wafer tray (described later) placed thereon rises sufficiently, and its temperature distribution becomes better. Returning to FIG. 1 again, a ring-shaped gas rectifying plate 32 is provided between the substrate heating electrode 28 and the side wall 22c of the reaction chamber 22, and the reaction chamber 22 below the gas rectifying plate 32
An exhaust port 33 is provided in the side wall 22c of No. 2, so that the gas that has passed through the gas rectifying plate 32 is exhausted from the exhaust port 33.
次に、搬送室23内には搬送機構34が配設され、搬送
機構34は第4図および第5図に詳細に示されるように
、その回転軸34aの先端にアーム機構34bが取り付
けられ、そのアーム機構34bの先端に支持台34cが
取り付けられている。Next, a transfer mechanism 34 is disposed within the transfer chamber 23, and as shown in detail in FIGS. 4 and 5, the transfer mechanism 34 has an arm mechanism 34b attached to the tip of its rotating shaft 34a. A support stand 34c is attached to the tip of the arm mechanism 34b.
支持台34c上にはウェハ(図示せず)を置いたウェハ
用トレイ35が載せられ、そのウェハ用トレイ35の表
面および裏面はブラスト処理によって梨地状に荒らされ
ている。搬送室23の室壁には透明な石英窓36が取り
付けられ、この石英窓36付近の室外にはハロゲンラン
プ37が配置され、このハロゲンランプ37からの光が
石英窓36だけを通ってウェハ用トレイ35上のウェハ
に照射され、それによって、ウェハが搬送室23内で予
備加熱されるようになる。なお、加熱ランプの種類はハ
ロゲンランプでなくても、もちろん構わない。A wafer tray 35 with wafers (not shown) placed thereon is placed on the support stand 34c, and the front and back surfaces of the wafer tray 35 are roughened into a matte finish by blasting. A transparent quartz window 36 is attached to the wall of the transfer chamber 23, and a halogen lamp 37 is placed outside near the quartz window 36. Light from the halogen lamp 37 passes only through the quartz window 36 and is directed toward the wafer. The wafers on the tray 35 are irradiated, thereby causing the wafers to be preheated in the transfer chamber 23. Note that the type of heating lamp does not necessarily have to be a halogen lamp.
その次に、カセット室38内にはカセット39が備えら
れ、そのカセット39内にはウェハ用トレイ35が収容
されている。Next, a cassette 39 is provided in the cassette chamber 38, and a wafer tray 35 is accommodated in the cassette 39.
このような上記実施例の動作について説明する。The operation of the above embodiment will be explained.
まず、反応室22を真空排気し、その次に、ウェハを置
いたウェハ用トレイ35をカセット38内に収容してか
ら、カセット室24と搬送室23とを真空排気する。First, the reaction chamber 22 is evacuated, then the wafer tray 35 on which the wafers are placed is accommodated in the cassette 38, and then the cassette chamber 24 and the transfer chamber 23 are evacuated.
次に、搬送機構34によってウェハ用トレイ35を搬送
室23内に搬送し、停止してから、ハロゲンランプ37
からの光を石英窓36を通してウェハ用トレイ35上の
ウェハに照射し、30〜60秒でウェハを100〜20
0℃に予備加熱する。Next, the wafer tray 35 is transported into the transport chamber 23 by the transport mechanism 34, stopped, and then the halogen lamp 37
The wafers on the wafer tray 35 are irradiated with light through the quartz window 36, and the wafers are heated to 100 to 20
Preheat to 0°C.
この場合、搬送室23室壁に設けられた石英窓36の近
傍の室外にハロゲンランプ37が配設されているので、
搬送室23を小型化することができる。In this case, since the halogen lamp 37 is installed outside near the quartz window 36 provided on the wall of the transfer chamber 23,
The transport chamber 23 can be downsized.
その次に、仕切弁21を開き、搬送機構34によってウ
ェハ用トレイ35を搬送室23から反応室22内に搬送
してから、リフタ29によってウェハ用トレイ35を基
板加熱電極28上に置く。Next, the gate valve 21 is opened, the wafer tray 35 is transported from the transport chamber 23 into the reaction chamber 22 by the transport mechanism 34, and then the wafer tray 35 is placed on the substrate heating electrode 28 by the lifter 29.
そして、仕切弁21を閉じてから、基板加熱電極28上
に置かれたウェハ用トレイ35上のウェハを200〜4
00℃に加熱する。このとき、基板加熱電極28の中心
より偏心した位置に設けられた穴28aにリフター29
の昇降軸29aを設けているので、基板加熱電極28の
中央部にシーズヒータ31を巻回して内蔵でき、そのた
め、基板加熱電極28上に載せられたウェハ用トレイ3
5上のウェハを十分に加熱でき、その温度分布をよくす
ることができる。After closing the gate valve 21, the wafers on the wafer tray 35 placed on the substrate heating electrode 28 are
Heat to 00°C. At this time, the lifter 29 is inserted into the hole 28a provided at a position eccentric from the center of the substrate heating electrode 28.
Since the lifting shaft 29a is provided, the sheathed heater 31 can be wound around and built into the center of the substrate heating electrode 28. Therefore, the wafer tray 3 placed on the substrate heating electrode 28 can be
The wafer on 5 can be sufficiently heated and its temperature distribution can be improved.
最後に、仕切弁21を閉じてから、基板加熱電極24の
噴出口よりガスを噴出し、高周波電極24と基板加熱電
極28との間に発生するプラズマによって、ウェハの表
面に薄膜を形成する。このとき、高周波電極24が誘電
率の低い絶縁物25を介して反応室22の室壁の第1の
開口22aにこれを閉塞するように取り付けられている
ので、理容静電容量が小さくなり、電力消費が少なくな
る。また、基板加熱電極28と反応室22の側壁22c
との間にはリング状のガス整流板32が設けられ、この
ガス整流板32の下方の反応室22の側壁22cには排
気口33が設けられ、ガス整流板32を通過したガスが
排気口33より排気されるので、反応室22内を流れる
ガスの流れに偏りがなくなり、ウェハの表面に形成され
る薄膜の膜厚分布が良くなる。更に、反応室22内には
搬送機構34が設けられていないので、反応室22内で
のダストの発生がすくなくなり、ウェハの表面に形成さ
れる薄膜の膜質が良くなる。Finally, after closing the gate valve 21, gas is ejected from the ejection port of the substrate heating electrode 24, and the plasma generated between the high frequency electrode 24 and the substrate heating electrode 28 forms a thin film on the surface of the wafer. At this time, since the high-frequency electrode 24 is attached to the first opening 22a of the chamber wall of the reaction chamber 22 via the insulator 25 with a low dielectric constant so as to close the first opening 22a, the barber capacitance becomes small. Power consumption is reduced. In addition, the substrate heating electrode 28 and the side wall 22c of the reaction chamber 22
A ring-shaped gas rectifying plate 32 is provided between the gas rectifying plate 32 and an exhaust port 33 on the side wall 22c of the reaction chamber 22 below the gas rectifying plate 32. Since the gas is exhausted from the reaction chamber 33, the flow of gas in the reaction chamber 22 becomes even, and the thickness distribution of the thin film formed on the surface of the wafer is improved. Furthermore, since the transport mechanism 34 is not provided in the reaction chamber 22, the generation of dust in the reaction chamber 22 is reduced, and the quality of the thin film formed on the surface of the wafer is improved.
なお、薄膜の形成されたウェハをカセット室24に戻す
ときには、上述と逆の動作が行なわれる。Incidentally, when returning the wafer on which the thin film has been formed to the cassette chamber 24, the operation opposite to that described above is performed.
ところで、上記実施例は化合物半導体用プラズマCVD
装置に多く用いられるが、その他に、シリコン用プラズ
マCVD装置、ガラス基板用真空処理装置、プラズマエ
ツチング装置、プラズマ重合装置等にも用いられる。By the way, the above embodiment is based on plasma CVD for compound semiconductors.
It is often used in plasma CVD equipment for silicon, vacuum processing equipment for glass substrates, plasma etching equipment, plasma polymerization equipment, etc.
(発明の効果) この発明は、次のような効果を奏するようになる。(Effect of the invention) This invention provides the following effects.
■高周波電極が誘電率の低い絶縁物を介して反応室の室
壁の第1の開口にこれを閉塞するように取り付けられて
いるので、理容静電容量が小さくなり、電力消費が少な
くなる。(2) Since the high-frequency electrode is attached to the first opening in the wall of the reaction chamber via an insulator with a low dielectric constant so as to close the opening, the barber capacitance is reduced and power consumption is reduced.
■基板加熱電極と室壁のその他の部分との間にガス整流
板が設けられ、このガス整流板を通過した反応ガスが室
壁に設けられた排気口より排気されるので、反応室内を
流れるガスの流れに偏りがなくなり、ウェハの表面に形
成される薄膜の膜厚分布が良くなる。■A gas rectifying plate is provided between the substrate heating electrode and other parts of the chamber wall, and the reaction gas that has passed through this gas rectifying plate is exhausted from the exhaust port provided in the chamber wall, so that it flows inside the reaction chamber. There is no bias in the gas flow, and the thickness distribution of the thin film formed on the wafer surface is improved.
■基板加熱電極の中心より偏心した位置に設けられた穴
にリフターの昇降軸を設けているので、基板加熱電極の
中央部にシーズヒータを巻回して内蔵でき、そのため、
基板加熱電極上に載せられたウェハ用トレイ上の基板を
十分に加熱でき、その温度分布をよくすることができる
。■Since the lifting shaft of the lifter is provided in a hole located eccentrically from the center of the substrate heating electrode, the sheathed heater can be wound and built into the center of the substrate heating electrode.
The substrate on the wafer tray placed on the substrate heating electrode can be sufficiently heated, and the temperature distribution can be improved.
■搬送室の室壁に設けられた石英窓の近傍の室外に加熱
ランプが配設されているので、搬送室を小型化すること
ができる。(2) Since the heating lamp is placed outside near the quartz window provided on the wall of the transfer chamber, the transfer chamber can be made smaller.
■搬送室の室内にだけウェハ用トレイを搬送する搬送機
構が配設され、反応室内には配設されていないので、反
応室でのダストの発生がすくなくなり、ウェハの表面に
形成される薄膜の膜質が良くなる。■The transport mechanism that transports the wafer tray is installed only inside the transport chamber and not inside the reaction chamber, which reduces the generation of dust in the reaction chamber and prevents the formation of a thin film on the surface of the wafer. The film quality improves.
第1図はこの発明の実施例の全体を示す全体図、第2図
はこの発明の実施例に用いられる基板加熱電極の詳細を
示す平面図、第3図は第2図のII線で切断した断面図
、第4図はこの発明の実施例に用いられる搬送機構の平
面図、第5図は搬送機構の立面図である。第6図は従来
の真空処理装置を示す全体図である。
図中、
21・・・・・仕切弁
22・・・・・反応室
22a・・・・反応室の底部の開口(第1の開口)
22b・・・・反応室の底部の開口(第2の開口)
23・・・・・搬送室
24・・・・・高周波電極
25・・・・・絶縁物
28・・・・・基板加熱電極
28a・・・・基板加熱電極の穴
29・・・・・リフタ
29a・・・・リフタの昇降軸
31・・・・・シーズヒータ
32・・・・・ガス整流板
33・・・・・排気口
34・・・・・搬送機構
35・・・・・ウェハ用トレイ
36・・・・・石英窓
37・・・・・ハロゲンランプ
38・・・・・カセット室Fig. 1 is an overall view showing the entire embodiment of the present invention, Fig. 2 is a plan view showing details of the substrate heating electrode used in the embodiment of the invention, and Fig. 3 is a cut along line II in Fig. 2. FIG. 4 is a plan view of a conveyance mechanism used in an embodiment of the present invention, and FIG. 5 is an elevational view of the conveyance mechanism. FIG. 6 is an overall view showing a conventional vacuum processing apparatus. In the figure, 21... Gate valve 22... Reaction chamber 22a... Opening at the bottom of the reaction chamber (first opening) 22b... Opening at the bottom of the reaction chamber (second opening) opening) 23... Transfer chamber 24... High frequency electrode 25... Insulator 28... Substrate heating electrode 28a... Hole 29 of the substrate heating electrode... ... Lifter 29a ... Lifter lifting shaft 31 ... Sheathed heater 32 ... Gas rectifying plate 33 ... Exhaust port 34 ... Transport mechanism 35 ...・Wafer tray 36...Quartz window 37...Halogen lamp 38...Cassette chamber
Claims (1)
理装置において、上記反応室は、その室壁の第1の開口
にこれを閉塞するように誘電率の低い絶縁物を介して取
り付けられた内部に反応ガス通路を有する高周波電極と
、室壁の第2の開口にこれを閉塞するように取り付けら
れ、室壁のその他の部分と間隔をもって室内に突出した
ヒータ内蔵の基板加熱電極とが室内で対向して配置され
ているとともに、基板加熱電極と室壁のその他の部分と
の間にガス整流板が設けられ、このガス整流板を通過し
た反応ガスを排気する排気口が室壁に設けられ、上記基
板加熱電極の中心より偏心した位置に設けられた穴に、
表面および裏面をブラスト処理して梨地状に荒らしたウ
ェハ用トレイを受け渡すためのリフターの昇降軸が設け
られ、上記搬送室は、その室内に上記ウェハ用トレイを
搬送する搬送機構が配設され、室壁に石英窓が設けられ
、その石英窓の近傍の室外に加熱ランプが配設され、上
記搬送室の横には上記ウェハ用トレイを収容するカセッ
トを備えたカセット室が連通されていることを特徴とす
る真空処理装置。1. In a vacuum processing apparatus in which a reaction chamber and a transfer chamber are connected via a gate valve, the reaction chamber is provided with a first opening in the chamber wall through an insulator with a low dielectric constant so as to close the first opening. a high-frequency electrode having a reaction gas passage therein; and a substrate heating electrode with a built-in heater attached to a second opening in the chamber wall so as to close it and protruding into the chamber at a distance from other parts of the chamber wall. are arranged facing each other in the chamber, and a gas rectifying plate is provided between the substrate heating electrode and other parts of the chamber wall, and an exhaust port for exhausting the reaction gas that has passed through the gas rectifying plate is located in the chamber. In a hole provided in the wall and located eccentrically from the center of the substrate heating electrode,
A lifting shaft of a lifter is provided to transfer the wafer tray whose front and back surfaces have been blasted to have a rough texture, and the transfer chamber is provided with a transfer mechanism for transferring the wafer tray. A quartz window is provided on the chamber wall, a heating lamp is provided outdoors near the quartz window, and a cassette chamber equipped with a cassette for accommodating the wafer tray is connected to the side of the transfer chamber. A vacuum processing device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP931690A JP2779536B2 (en) | 1990-01-18 | 1990-01-18 | Vacuum processing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP931690A JP2779536B2 (en) | 1990-01-18 | 1990-01-18 | Vacuum processing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03212932A true JPH03212932A (en) | 1991-09-18 |
JP2779536B2 JP2779536B2 (en) | 1998-07-23 |
Family
ID=11717068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP931690A Expired - Lifetime JP2779536B2 (en) | 1990-01-18 | 1990-01-18 | Vacuum processing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2779536B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0714782A (en) * | 1993-06-25 | 1995-01-17 | Nec Corp | Semiconductor production equipment |
JPH09246347A (en) * | 1996-03-01 | 1997-09-19 | Applied Materials Inc | Multichamber wafer treatment system |
JP2000021788A (en) * | 1998-06-26 | 2000-01-21 | Shin Etsu Handotai Co Ltd | Apparatus for growing thin film and thin-film growing method using apparatus |
JP2000273640A (en) * | 1999-03-18 | 2000-10-03 | Toshiba Corp | Thin film forming device and formation of thin film |
CN113818076A (en) * | 2021-11-19 | 2021-12-21 | 华芯半导体研究院(北京)有限公司 | Bearing device and vapor phase epitaxy equipment |
-
1990
- 1990-01-18 JP JP931690A patent/JP2779536B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0714782A (en) * | 1993-06-25 | 1995-01-17 | Nec Corp | Semiconductor production equipment |
JPH09246347A (en) * | 1996-03-01 | 1997-09-19 | Applied Materials Inc | Multichamber wafer treatment system |
JP2000021788A (en) * | 1998-06-26 | 2000-01-21 | Shin Etsu Handotai Co Ltd | Apparatus for growing thin film and thin-film growing method using apparatus |
JP2000273640A (en) * | 1999-03-18 | 2000-10-03 | Toshiba Corp | Thin film forming device and formation of thin film |
JP4515550B2 (en) * | 1999-03-18 | 2010-08-04 | 東芝モバイルディスプレイ株式会社 | Thin film formation method |
CN113818076A (en) * | 2021-11-19 | 2021-12-21 | 华芯半导体研究院(北京)有限公司 | Bearing device and vapor phase epitaxy equipment |
Also Published As
Publication number | Publication date |
---|---|
JP2779536B2 (en) | 1998-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107154370B (en) | Substrate processing apparatus and method for manufacturing semiconductor device | |
JP5454575B2 (en) | Plasma processing apparatus and gas supply mechanism for plasma processing apparatus | |
US10546761B2 (en) | Substrate processing apparatus | |
TWI488253B (en) | Substrate support frame, and substrate processing apparatus including and method of loading and unloading substrate using the same | |
JP4547119B2 (en) | Vacuum processing equipment | |
JP2010283356A (en) | Substrate processing equipment and manufacturing method of semiconductor device | |
JP2004103990A (en) | Semiconductor manufacturing system and method for manufacturing semiconductor device | |
CN106920760B (en) | Substrate processing apparatus and method for manufacturing semiconductor device | |
JP2010272875A (en) | Method of coating and annealing large area glass substrate | |
KR20200062360A (en) | Single wafer processing environments with spatial separation | |
WO2007018139A1 (en) | Method of manufacturing semiconductor device and substrate treating device | |
JP2011049570A (en) | Substrate processing apparatus, and semiconductor device manufacturing method | |
KR20190111774A (en) | Substrate processing apparatus, method of manufacturing semiconductor device, and program | |
JP2015122503A (en) | Substrate processing apparatus | |
CN111172515A (en) | Cleaning method and film forming method | |
US10535513B2 (en) | Apparatus and methods for backside passivation | |
US20090194237A1 (en) | Plasma processing system | |
JPH03212932A (en) | Vacuum processing apparatus | |
JP2009266962A (en) | Substrate processing apparatus and method for manufacturing semiconductor device | |
KR20190107715A (en) | Manufacturing Method of Heating Element, Substrate Processing Apparatus and Semiconductor Device | |
KR20170064352A (en) | Chamber for transfer substrate and system for treating substrate | |
JP2008311555A (en) | Substrate treatment device | |
JP2000323551A (en) | Substrate processing apparatus | |
JP2004339566A (en) | Substrate treatment apparatus | |
KR102630443B1 (en) | Spatial wafer processing with improved temperature uniformity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100515 Year of fee payment: 12 |