JP2853414B2 - Paste type cadmium negative electrode and method for producing the same - Google Patents

Paste type cadmium negative electrode and method for producing the same

Info

Publication number
JP2853414B2
JP2853414B2 JP3279229A JP27922991A JP2853414B2 JP 2853414 B2 JP2853414 B2 JP 2853414B2 JP 3279229 A JP3279229 A JP 3279229A JP 27922991 A JP27922991 A JP 27922991A JP 2853414 B2 JP2853414 B2 JP 2853414B2
Authority
JP
Japan
Prior art keywords
cadmium
powder
negative electrode
metal
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3279229A
Other languages
Japanese (ja)
Other versions
JPH05121070A (en
Inventor
宏樹 竹島
勝己 山下
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3279229A priority Critical patent/JP2853414B2/en
Publication of JPH05121070A publication Critical patent/JPH05121070A/en
Application granted granted Critical
Publication of JP2853414B2 publication Critical patent/JP2853414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニッケルカドミウム蓄
電池等に用いられるペースト式カドミウム負極の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paste type cadmium negative electrode used for a nickel cadmium storage battery or the like.

【0002】[0002]

【従来の技術】アルカリ蓄電池用ペースト式カドミウム
負極は、一般に酸化カドミウム粉末又は水酸化カドミウ
ム粉末を主体とし、これにカーボニルニッケル、グラフ
ァイト等の導電性粉末、ポリビニルアルコール、カルボ
キシメチルセルロース等の結着剤及び水やエチレングリ
コール等の溶媒を加え混練してペーストとし、これをニ
ッケルメッキした開孔鋼板等の導電性芯体に塗着し、乾
燥した後、アルカリ溶液中で化成することによって製造
されるのが一般的である。前記の化成工程の目的は、活
物質材料に用いる酸化カドミウム及び水酸化カドミウム
等の放電状態のカドミウム化合物の一部又は全部を充電
状態の金属カドミウムに変換し、負極内に予備充電部分
を付与することにある。負極内に予備充電部分が存在し
ない場合には、負極の利用率が正極に比べて低いため放
電が負極支配となり、電池の高率放電特性が悪くなる。
また、負極が完全放電を受けるため電池の充放電サイク
ル特性の劣化が著しくなる。この様な理由により、予備
充電部分を付与する方法の一つとして化成が行われる。
この化成工程では負極容量の20〜100%の充電を行
うため、それに要する電力は大きい。また、化成工程で
充電状態の金属カドミウムを電極内に均一に形成させる
ことは容易ではなく、特性のバラツキを生じやすい。こ
の様な問題を解決するために、特公昭57−37986
号公報、特公昭57−5265号公報にみられるように
活性な金属カドミウム粉末を予備充電量相当として活物
質粉末混練時に添加することにより、化成工程を不要と
する方法が提案されている。
2. Description of the Related Art A paste-type cadmium negative electrode for an alkaline storage battery generally comprises a cadmium oxide powder or a cadmium hydroxide powder, a conductive powder such as carbonyl nickel and graphite, a binder such as polyvinyl alcohol and carboxymethyl cellulose. It is manufactured by adding a solvent such as water or ethylene glycol and kneading to form a paste, applying it to a conductive core such as a nickel-plated apertured steel sheet, drying and then forming it in an alkaline solution. Is common. The purpose of the chemical conversion step is to convert a part or all of a cadmium compound in a discharged state, such as cadmium oxide and cadmium hydroxide used as an active material, into a metal cadmium in a charged state, and to provide a precharged portion in the negative electrode. It is in. If the precharged portion does not exist in the negative electrode, the negative electrode has a lower utilization factor than the positive electrode, so that the discharge is dominated by the negative electrode and the high-rate discharge characteristics of the battery deteriorate.
In addition, since the negative electrode undergoes complete discharge, the charge / discharge cycle characteristics of the battery deteriorate significantly. For these reasons, formation is performed as one of the methods for providing a pre-charged portion.
In this chemical conversion step, 20 to 100% of the capacity of the negative electrode is charged, and the electric power required for charging is large. In addition, it is not easy to uniformly form charged metal cadmium in the electrode in the formation step, and characteristics are likely to vary. In order to solve such a problem, Japanese Patent Publication No. 57-37986 has been proposed.
As disclosed in Japanese Patent Application Publication No. 57-5265, a method has been proposed in which an active metal cadmium powder is added at the time of kneading the active material powder in an amount equivalent to the preliminary charge amount, thereby eliminating the need for a chemical conversion step.

【0003】[0003]

【発明が解決しようとする課題】しかし、以上の方法で
製造したペースト式カドミウム負極は、電池構成後、初
期の段階において、金属カドミウム粉末どうしの物理的
接触が弱く、十分な導電性マトリックスが形成されてい
ないため、化成工程を有するカドミウム負極に比べて充
放電特性が劣るという現象があった。また、一般にペー
スト式カドミウム負極は、極板強度が低く強度を上げる
ために補強材、結着材の添加を行っているが、これらは
容量密度を低下させる原因の一つとなっていた。本発明
は以上の課題を解決し、化成工程が不要な高性能のペー
スト式カドミウム負極を提供することを目的とする。
However, in the paste-type cadmium negative electrode manufactured by the above method, the physical contact between the metal cadmium powders is weak at the initial stage after the construction of the battery, and a sufficient conductive matrix is formed. Therefore, there was a phenomenon that the charge and discharge characteristics were inferior to those of a cadmium negative electrode having a chemical conversion step. In general, a paste-type cadmium negative electrode has a low strength of an electrode plate and a reinforcing material and a binder are added in order to increase the strength, but these are one of the causes of lowering the capacity density. An object of the present invention is to solve the above problems and to provide a high-performance paste-type cadmium negative electrode that does not require a chemical conversion step.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
に本発明のペースト式カドミウム負極は金属カドミウム
粉末と酸化カドミウム粉末を主体とする活物質を導電性
芯体上に塗着乾燥させてなるペースト式カドミウム負極
において、前記金属カドミウム粉末どうしが部分融着し
金属カドミウム粉末の導電性ネットワーク骨格が形成さ
れていることを特徴とするものである。また本発明のペ
ースト式カドミウム負極の製造法は、前記ペースト式カ
ドミウム負極を製造するために、金属カドミウム粉末と
酸化カドミウム粉末を主体とする活物質を導電性芯体上
に塗着乾燥させた後、不活性ガス雰囲気中にて加熱する
ことにより金属カドミウム粉末を部分融着させ、金属カ
ドミウム粉末の導電性ネットワーク骨格を形成させるも
のである。
In order to achieve this object, the paste-type cadmium negative electrode of the present invention is obtained by applying an active material mainly composed of metal cadmium powder and cadmium oxide powder on a conductive core and drying it. The paste-type cadmium negative electrode is characterized in that the metal cadmium powders are partially fused together to form a conductive network skeleton of the metal cadmium powder. In addition, the method for producing a paste-type cadmium negative electrode of the present invention is characterized in that, in order to produce the paste-type cadmium negative electrode, an active material mainly composed of metal cadmium powder and cadmium oxide powder is coated on a conductive core and dried. By heating in an inert gas atmosphere, the metal cadmium powder is partially fused to form a conductive network skeleton of the metal cadmium powder.

【0005】[0005]

【作用】金属カドミウム粉末と酸化カドミウム粉末を主
体とする活物質を導電性芯体上に塗着乾燥させた後、不
活性ガス雰囲気中にて金属カドミウムの融点である32
0℃以下の温度で加熱することにより、容易に金属カド
ミウム粉末どうしが部分融着し、また昇華温度が700
℃である酸化カドミウム粉末は、変化しない。従って、
物理的接触のみであった金属カドミウム粉末が網目状に
結合し、均一な導電性ネットワークが形成されることに
よりカドミウム活物質の利用率が向上する。また、この
ネットワークにより活物質の保持力が増し極板強度を高
めることができる。
After coating and drying an active material mainly composed of metal cadmium powder and cadmium oxide powder on a conductive core, the melting point of the metal cadmium is 32 in an inert gas atmosphere.
By heating at a temperature of 0 ° C. or less, the metal cadmium powder is easily partially fused with each other, and the sublimation temperature is 700 ° C.
Cadmium oxide powder at 0 ° C. does not change. Therefore,
The metal cadmium powder that has only been in physical contact is bonded in a network to form a uniform conductive network, thereby improving the utilization rate of the cadmium active material. In addition, this network can increase the holding power of the active material and increase the electrode plate strength.

【0006】[0006]

【実施例】以下、本発明の一実施例について図面を参照
しながら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0007】平均粒径1μmの酸化カドミウム粉末と平
均粒径10μmの金属カドミウム粉末を重量比で60:4
0の割合で混合し、ポリビニルアルコールのエチレング
リコール溶液で練合しペーストとした後、これをニッケ
ルメッキした開孔鋼板に塗着乾燥した後、不活性ガス雰
囲気中300℃で10分間加熱し、約0.5mm厚の極板
とした。
Cadmium oxide powder having an average particle diameter of 1 μm and metal cadmium powder having an average particle diameter of 10 μm are in a weight ratio of 60: 4.
After mixing at a ratio of 0 and kneading with an ethylene glycol solution of polyvinyl alcohol to form a paste, this was applied to a nickel-plated apertured steel sheet, dried and then heated at 300 ° C. for 10 minutes in an inert gas atmosphere. The electrode plate was about 0.5 mm thick.

【0008】次に、前記塗着板を比重1.20、温度2
0℃のKOH水溶液に15分間浸漬し、極板中の酸化カ
ドミウムの一部を水酸化カドミウムに変換した後、水洗
乾燥を行った。この極板をaとする。
Next, the coated plate is put at a specific gravity of 1.20 and a temperature of 2
It was immersed in a KOH aqueous solution at 0 ° C. for 15 minutes to convert a part of cadmium oxide in the electrode plate into cadmium hydroxide, and then washed and dried. This electrode plate is referred to as a.

【0009】次に、比較例として前記塗着乾燥した後、
加熱処理せずにアルカリ処理して極板とした。この極板
をbとする。
Next, as a comparative example, after the coating and drying,
An electrode plate was obtained by alkali treatment without heat treatment. This electrode plate is referred to as b.

【0010】これらのカドミウム負極a、bを焼結式ニ
ッケル正極と組み合わせて、600mAh相当の密閉型
蓄電池A、Bを試作し、負極の放電特性を評価する放電
率特性試験と、過充電時の酸素ガス吸収性能を評価する
電池内圧試験と、捲回後の負極活物質の脱落率測定を行
った。放電特性は、電池を充電した後、各種のレートで
放電したときの放電容量と、0.2C相当の電流で放電
したときの放電容量との比率で評価した。過充電時の電
池内圧は、20℃で1〜3C相当の電流で過充電したと
きのピーク値で評価した。また、負極活物質の脱落率
は、捲回前の負極重量と捲回後の負極重量とから評価し
た。
These cadmium negative electrodes a and b are combined with a sintered nickel positive electrode to produce prototypes of sealed storage batteries A and B equivalent to 600 mAh, and a discharge rate characteristic test for evaluating the discharge characteristics of the negative electrodes, A battery internal pressure test for evaluating the oxygen gas absorption performance and a measurement of the falling rate of the negative electrode active material after winding were performed. The discharge characteristics were evaluated by the ratio of the discharge capacity when discharged at various rates after the battery was charged to the discharge capacity when discharged at a current equivalent to 0.2 C. The internal pressure of the battery at the time of overcharging was evaluated by a peak value at the time of overcharging at 20 ° C with a current equivalent to 1 to 3C. The falling rate of the negative electrode active material was evaluated from the weight of the negative electrode before winding and the weight of the negative electrode after winding.

【0011】図1は放電レートと放電容量比率との関係
を示す。図中の曲線A、Bはそれぞれ前記負極a、bを
用いた電池の特性を示すもので、極板中に均一な導電性
ネットワークが形成されている負極aは放電特性が良好
であるが、負極bは導電性ネットワークが不十分であ
り、放電特性が劣化している。
FIG. 1 shows the relationship between the discharge rate and the discharge capacity ratio. Curves A and B in the figure show the characteristics of the battery using the negative electrodes a and b, respectively. The negative electrode a in which a uniform conductive network is formed in the electrode plate has good discharge characteristics, The negative electrode b has an insufficient conductive network, and has a deteriorated discharge characteristic.

【0012】図2は充電レートと電池内圧のピーク値と
の関係を示す。図中の曲線A、Bはそれぞれ前記負極
a、bを用いた電池の特性を示すもので、負極aを用い
た電池に比べて負極bを用いた電池は内圧が高い。これ
は、極板表面と芯材との間の導電性ネットワークが十分
に形成されていないため、極板表面でのガス吸収反応が
充分に行われないためと思われる。
FIG. 2 shows the relationship between the charging rate and the peak value of the battery internal pressure. Curves A and B in the figure show the characteristics of the battery using the negative electrodes a and b, respectively, and the battery using the negative electrode b has a higher internal pressure than the battery using the negative electrode a. This is presumably because the conductive network between the electrode plate surface and the core material is not sufficiently formed, and the gas absorption reaction on the electrode plate surface is not sufficiently performed.

【0013】次に、極板の加熱処理における温度と時間
の適正条件を求めるために、前記極板aの作成と同様な
方法で加熱処理条件を変えて試作を行った。極板の特性
は、負極活物質の脱落率と電池の放電特性で評価した。
Next, in order to obtain appropriate conditions for the temperature and time in the heat treatment of the electrode plate, a trial production was conducted by changing the heat treatment conditions in the same manner as in the preparation of the electrode plate a. The characteristics of the electrode plate were evaluated based on the falling rate of the negative electrode active material and the discharge characteristics of the battery.

【0014】図3は加熱時間を10分間に固定したとき
の加熱温度と負極活物質の脱落率、同様に図4は加熱温
度と電池の放電特性の関係を示す。加熱温度が280℃
未満においては金属カドミウムが十分に部分融着してい
ないため、導電性マトリックス形成が不十分である。従
って、極板強度が低く、また放電特性も劣化している。
また、320℃を越えると金属カドミウム粉末が部分融
着した後、金属カドミウム粉末全体の融解がおこり凝集
粗大化する。従って、極板強度、放電特性ともに劣化し
ている。
FIG. 3 shows the relationship between the heating temperature and the falling rate of the negative electrode active material when the heating time is fixed at 10 minutes. Similarly, FIG. 4 shows the relationship between the heating temperature and the discharge characteristics of the battery. Heating temperature is 280 ℃
If it is less than 5, the metal cadmium is not sufficiently partially fused, so that the formation of the conductive matrix is insufficient. Therefore, the electrode plate strength is low and the discharge characteristics are deteriorated.
On the other hand, when the temperature exceeds 320 ° C., the metal cadmium powder is partially fused, and then the entire metal cadmium powder is melted and agglomerated. Therefore, both the electrode strength and the discharge characteristics are deteriorated.

【0015】図5は加熱温度を300℃に固定したとき
の加熱時間と負極活物質の脱落率、同様に図6は加熱時
間と電池の放電特性の関係を示す。加熱時間が10分未
満であれば、金属カドミウム粉末どうしの部分融着によ
る導電性マトリックス形成が不十分であり、15分を越
えると金属カドミウム粉末の凝集粗大化がおこり極板強
度、放電特性ともに劣化する。
FIG. 5 shows the relationship between the heating time and the falling rate of the negative electrode active material when the heating temperature is fixed at 300 ° C. Similarly, FIG. 6 shows the relationship between the heating time and the discharge characteristics of the battery. If the heating time is less than 10 minutes, the formation of the conductive matrix by partial fusion of the metal cadmium powders is insufficient. to degrade.

【0016】次に、金属カドミウム粉末の適正混合割合
を求めるために、酸化カドミウム粉末と金属カドミウム
粉末の混合割合を変えて試作を行った。極板の特性は、
負極活物質の脱落率で評価を行った。
Next, in order to determine an appropriate mixing ratio of the metal cadmium powder, a trial production was performed by changing the mixing ratio of the cadmium oxide powder and the metal cadmium powder. The characteristics of the electrode plate are
The evaluation was performed based on the falling rate of the negative electrode active material.

【0017】図7は、活物質中の金属カドミウム重量比
率と負極活物質の脱落率を示す。重量比率が30%未満
であれば、金属カドミウムの部分融着がおこりにくくな
り極板強度の向上はみられない。また、一般にカドミウ
ム負極は満充電になると水素ガスを発生する。この水素
ガスは電池内で消費することができないため、負極容量
を正極容量より大きく設定し負極が満充電にならない様
にしている。このことから、重量比率が50%を越える
と電池設計上不利になる。従って、活物質中の金属カド
ミウム重量比率は30〜50%が適当であると考えられ
る。
FIG. 7 shows the weight ratio of metal cadmium in the active material and the falling rate of the negative electrode active material. If the weight ratio is less than 30%, partial fusion of metal cadmium is less likely to occur, and no improvement in electrode strength is observed. In general, a cadmium negative electrode generates hydrogen gas when fully charged. Since this hydrogen gas cannot be consumed in the battery, the negative electrode capacity is set to be larger than the positive electrode capacity so that the negative electrode is not fully charged. For this reason, when the weight ratio exceeds 50%, it is disadvantageous in battery design. Therefore, it is considered that an appropriate weight ratio of metal cadmium in the active material is 30 to 50%.

【0018】[0018]

【発明の効果】以上のように本発明は、金属カドミウム
粉末と酸化カドミウム粉末を主体とする活物質を導電性
芯体上に塗着乾燥させた後、不活性ガス雰囲気中にて金
属カドミウムの融点である320℃以下の温度で加熱す
ることにより、容易に部分融着するため均一な導電性ネ
ットワークが形成され、優れたペースト式カドミウム負
極を得ることができる。
As described above, according to the present invention, an active material mainly composed of a cadmium metal powder and a cadmium oxide powder is coated on a conductive core and dried, and then the cadmium metal is removed in an inert gas atmosphere. By heating at a temperature of 320 ° C. or less, which is the melting point, a uniform conductive network is formed because of easy partial fusion, and an excellent paste-type cadmium negative electrode can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】放電レートと放電容量比率の関係を示す図FIG. 1 is a diagram showing a relationship between a discharge rate and a discharge capacity ratio.

【図2】充電レートと電池内圧の関係を示す図FIG. 2 is a diagram showing a relationship between a charging rate and a battery internal pressure.

【図3】加熱温度と活物質脱落率の関係を示す図FIG. 3 is a diagram showing a relationship between a heating temperature and an active material falling rate.

【図4】加熱温度と放電容量比率の関係を示す図FIG. 4 is a diagram showing a relationship between a heating temperature and a discharge capacity ratio.

【図5】加熱時間と活物質脱落率の関係を示す図FIG. 5 is a diagram showing a relationship between a heating time and an active material falling rate.

【図6】加熱時間と放電容量比率の関係を示す図FIG. 6 is a diagram showing a relationship between a heating time and a discharge capacity ratio.

【図7】活物質中の金属カドミウム重量比率と負極活物
質の脱落率の関係を示す図
FIG. 7 is a diagram showing the relationship between the weight ratio of metal cadmium in the active material and the falling rate of the negative electrode active material.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−47067(JP,A) 特開 昭58−16467(JP,A) 特開 昭54−50843(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/24 H01M 4/26──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-47067 (JP, A) JP-A-58-16467 (JP, A) JP-A-54-50843 (JP, A) (58) Field (Int.Cl. 6 , DB name) H01M 4/24 H01M 4/26

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属カドミウム粉末と酸化カドミウム粉
末を主体とする活物質を導電性芯体上に塗着乾燥させて
なるペースト式カドミウム負極において、前記金属カド
ミウム粉末どうしが部分融着し金属カドミウム粉末の導
電性ネットワーク骨格が形成されていることを特徴とす
るペースト式カドミウム負極。
1. A paste-type cadmium negative electrode obtained by applying and drying an active material mainly composed of cadmium metal powder and cadmium oxide powder on a conductive core, wherein the metal cadmium powder is partially fused to each other to form a metal cadmium powder. A paste-type cadmium negative electrode, wherein the conductive network skeleton is formed.
【請求項2】 金属カドミウム粉末と酸化カドミウム粉
末を主体とする活物質を導電性芯体上に塗着乾燥させた
後、不活性ガス雰囲気中にて加熱することにより金属カ
ドミウム粉末を部分融着させ、金属カドミウム粉末の導
電性ネットワーク骨格を形成することを特徴とするペー
スト式カドミウム負極の製造法。
2. An active material mainly composed of a metal cadmium powder and a cadmium oxide powder is coated on a conductive core and dried, and then heated in an inert gas atmosphere to partially fuse the metal cadmium powder. And forming a conductive network skeleton of the metal cadmium powder.
【請求項3】 前記活物質中の金属カドミウム粉末の割
合が重量比で30〜50%であることを特徴とする請求
項2記載の製造法。
3. The method according to claim 2, wherein the ratio of the metal cadmium powder in the active material is 30 to 50% by weight.
【請求項4】 前記金属カドミウム粉末の部分融着工程
における加熱温度が280〜320℃の範囲であり、加
熱時間が10〜15分の範囲であることを特徴とする請
求項2または3記載の製造法。
4. The heating method according to claim 2, wherein a heating temperature in the step of partially fusing the metal cadmium powder is in a range of 280 to 320 ° C., and a heating time is in a range of 10 to 15 minutes. Manufacturing method.
JP3279229A 1991-10-25 1991-10-25 Paste type cadmium negative electrode and method for producing the same Expired - Lifetime JP2853414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3279229A JP2853414B2 (en) 1991-10-25 1991-10-25 Paste type cadmium negative electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3279229A JP2853414B2 (en) 1991-10-25 1991-10-25 Paste type cadmium negative electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05121070A JPH05121070A (en) 1993-05-18
JP2853414B2 true JP2853414B2 (en) 1999-02-03

Family

ID=17608235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3279229A Expired - Lifetime JP2853414B2 (en) 1991-10-25 1991-10-25 Paste type cadmium negative electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP2853414B2 (en)

Also Published As

Publication number Publication date
JPH05121070A (en) 1993-05-18

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JPS62287568A (en) Manufacture of alkaline storage battery
JP2853414B2 (en) Paste type cadmium negative electrode and method for producing the same
JP4404447B2 (en) Method for producing alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3098940B2 (en) Method for producing hydrogen storage alloy powder for electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3547905B2 (en) Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery
JPH10255775A (en) Hydrogen storage alloy electrode and its manufacture
JP3118930B2 (en) Hydrogen storage electrode
JP2797554B2 (en) Nickel cadmium storage battery
JP3501378B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3374995B2 (en) Manufacturing method of nickel electrode
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JP2773308B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3317105B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JP2847791B2 (en) Manufacturing method of nickel cadmium storage battery
JPH03133059A (en) Manufacture of paste type cadmium negative electrode
JP3501382B2 (en) Hydrogen storage alloy negative electrode and method for producing the same
JP3018879B2 (en) Chemical formation method of paste-type cadmium anode
JPS6346957B2 (en)
JP2692795B2 (en) Paste type cadmium cathode for alkaline storage battery
JP3863703B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JPS61124054A (en) Manufacture of hydrogen occlusion electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071120

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13

EXPY Cancellation because of completion of term