JP2845871B2 - Ion beam irradiation method - Google Patents

Ion beam irradiation method

Info

Publication number
JP2845871B2
JP2845871B2 JP62040230A JP4023087A JP2845871B2 JP 2845871 B2 JP2845871 B2 JP 2845871B2 JP 62040230 A JP62040230 A JP 62040230A JP 4023087 A JP4023087 A JP 4023087A JP 2845871 B2 JP2845871 B2 JP 2845871B2
Authority
JP
Japan
Prior art keywords
irradiation
ion beam
beam irradiation
sample
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62040230A
Other languages
Japanese (ja)
Other versions
JPS63208220A (en
Inventor
亨 石谷
義実 川浪
隆則 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62040230A priority Critical patent/JP2845871B2/en
Publication of JPS63208220A publication Critical patent/JPS63208220A/en
Application granted granted Critical
Publication of JP2845871B2 publication Critical patent/JP2845871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、イオンビームを用いた試料の局所的なエッ
チング、デポジションにおいて好適なイオンビーム照射
方法に関する。 [従来の技術] 集束イオンビーム装置においては、イオン打ち込み、
リソグラフィ、加工など種々の使用条件に応じて、所望
のイオン種で所望のイオン量を試料の所望の局所部にイ
オン照射する。従来のイオンビーム照射方法では、試料
表面が絶縁性(または抵抗)が高い膜で覆われている場
合は、特開昭58−33837号に記載のように試料に照射さ
れた電荷が逃げにくく、イオンビームを連続的に照射し
続けると、その部分に電荷が蓄積され帯電する。そのた
めイオンビームは試料照射直前で曲げられ、誤った位置
に照射されたり、また試料が半導体素子である場合に
は、試料表面と素子内部とで局所的な放電現象が発生
し、素子機能が劣化、損傷するとい問題があった。 なお、特開昭61−203553号にはイオン注入中の半導体
ウェハの絶縁膜のチャージアップ防止のために、イオン
注入量が予め定められた値を越えたときにイオンビーム
の照射を停止することについて開示されている。 [発明が解決しようとする課題] 本発明の目的は、照射効率、つまりスループットをあ
まり落とすことなく、かつイオン照射による電荷蓄積効
果に基づく誤照射を緩和する方法を提供することにあ
る。 [課題を解決するための手段] 上記目的は、被処理物に対するイオンビームの照射方
法において、前記被処理物上の照射部に前記イオンビー
ムを照射するに際し、前記照射部内の外側から内側に向
かって渦巻き状にイオンビームの照射位置を移動するこ
とを特徴とするイオンビーム照射方法の提供により達成
される。 [作用] ビーム照射部の外側から内側に向かって渦巻き状にビ
ームの照射位置を移動することにより、照射部の外側の
部分では電荷蓄積の影響を受けずに正確な位置にビーム
の照射ができ、その内側の部分では外側部に電荷の蓄積
が生じても、イオンビームは照射部の中心方向に曲げら
れるので、電荷蓄積の影響によるビーム照射部の外側へ
の移動は生じない。 [実施例] 以下、本発明の一実施例を第1図により説明する。本
発明においては、集束イオンビーム1で絶縁膜に覆われ
た試料3の表面の3箇所、4〜6のビーム照射部を照射
する。また本実施例では電子ビーム2で電子を供給して
いる。集束イオンビームは30KeVのGa+ビームで、ビー
ム径は約0.5μm、ビーム電流は1nAである。電子ビーム
は、10〜200eV,ビーム電流は約0.5mAである。本実施例
においては、3箇所の照射部4〜6の個々を60msずつ照
射し、各部については、60ms照射、120ms休止の180msサ
イクルで1000回のイオン照射を行った。全照射時間は約
3分である。ビーム照射位置と、照射時間の制御はコン
ピュータを用いて行った。本発明により、ビーム照射位
置ずれは、従来の連続照射方法のものと比べて、±1μ
mから±4μm程度に改善することが出来た。 また、試料が高抵抗の酸化膜(SiO2)を表面膜として
もシリコン素子の場合、その深穴加工において、従来方
法では約10%の素子機能の劣化や損傷が生じていたが、
本発明により2%以下に低減できた。 本実施例ではイオン照射部に電子も供給した場合であ
り、電荷蓄積の緩和効果については電子を供給しな場合
も同様な効果が得られたが、その効果の大きさは特に絶
縁性の高い試料に対しては電子も供給した方が大きかっ
た。 次に他の実施例を第2図に示す。本発明において、集
束イオンビーム1を絶縁膜で覆われた試料3の表面のビ
ーム照射部4に照射する。そのビーム照射の方向7が、
ビーム照射部の外側、(輪郭部分)から内側(中心方
向)に向かってスパイラル形状になるようにビームを照
射する。ビーム照射の制御はコンピュータで行った。 集束イオンビームは、Ga+ビームで加速電圧30kV、ビ
ーム径約0.5μm、ビーム電流1nAである。本実施例にお
いてビーム照射部を60sec照射した。従来、ビームの照
射はラスタ走査で行っていたが、本発明によりビーム照
射の位置ずれは±1μmから±0.4μm程度に改善する
ことが出来た。 次に更に本発明の実施例について示す。本発明におい
て、集束イオンビームを絶縁膜で覆われた試料の表面の
ビーム照射部に照射する。ビームは30kVのGa+で、ビー
ム径約0.5μm、ビーム電流2nAである。本実施例におい
て、ビーム照射および休止時間はいずれも200msecであ
り、ビーム電流を実効的に50%に下げてビーム照射を行
った。本発明により、ビーム照射の位置ずれは、±1.5
μmから±0.4μm程度に改善することが出来た。 [発明の効果] 本発明によればイオンビームを照射するにあたり、電
荷蓄積効果による照射ビームの位置ずれの防止や、試料
が半導体素子の場合はその素子機能の劣化や損傷の緩和
を、高スループットを維持しながら実現することが可能
になる。これにより集束イオンビームによる局所的なエ
ッチングやデポジションの実施が、高い信頼性をもって
実現できる。
The present invention relates to an ion beam irradiation method suitable for local etching and deposition of a sample using an ion beam. [Prior art] In a focused ion beam apparatus, ion implantation,
According to various use conditions such as lithography and processing, a desired amount of ions is irradiated to a desired local portion of the sample with a desired ion species. In the conventional ion beam irradiation method, when the sample surface is covered with a film having high insulation (or resistance), the charge applied to the sample hardly escapes as described in JP-A-58-33837. When the ion beam is continuously irradiated, electric charges are accumulated and charged in that portion. For this reason, the ion beam is bent immediately before the sample irradiation, irradiating the wrong position, or when the sample is a semiconductor device, a local discharge phenomenon occurs between the sample surface and the inside of the device, deteriorating the device function There was a problem with damage. Japanese Patent Application Laid-Open No. 61-203553 discloses that in order to prevent charge-up of an insulating film of a semiconductor wafer during ion implantation, the irradiation of the ion beam should be stopped when the ion implantation amount exceeds a predetermined value. Is disclosed. [Problems to be Solved by the Invention] An object of the present invention is to provide a method for reducing erroneous irradiation based on a charge accumulation effect by ion irradiation without significantly lowering irradiation efficiency, that is, throughput. [Means for Solving the Problems] The object of the present invention is to provide a method of irradiating an object with an ion beam, wherein when irradiating the irradiation part on the object with the ion beam, the inside of the irradiation part is directed inward from outside. The ion beam irradiation method is characterized in that the irradiation position of the ion beam is moved in a spiral manner. [Operation] By moving the beam irradiation position spirally from the outside to the inside of the beam irradiation unit, the beam can be irradiated to an accurate position without being affected by the charge accumulation in the portion outside the irradiation unit. Even if charges accumulate in the outer portion of the inner portion, the ion beam is bent toward the center of the irradiated portion, so that the beam irradiation portion does not move to the outside due to the charge accumulation. Embodiment An embodiment of the present invention will be described below with reference to FIG. In the present invention, the focused ion beam 1 irradiates three or four to six beam irradiation parts on the surface of the sample 3 covered with the insulating film. In this embodiment, electrons are supplied by the electron beam 2. The focused ion beam is a Ga + beam of 30 KeV, the beam diameter is about 0.5 μm, and the beam current is 1 nA. The electron beam is 10 to 200 eV and the beam current is about 0.5 mA. In this example, each of the three irradiation units 4 to 6 was irradiated with 60 ms at a time, and each portion was irradiated 1000 times with a 180 ms cycle of 60 ms irradiation and 120 ms pause. The total irradiation time is about 3 minutes. The beam irradiation position and the irradiation time were controlled using a computer. According to the present invention, the deviation of the beam irradiation position is ± 1 μm as compared with that of the conventional continuous irradiation method.
m to about ± 4 μm. In the case where the sample is a silicon device even when a high-resistance oxide film (SiO2) is used as the surface film, in the deep hole processing, the device function has been deteriorated or damaged by about 10% in the conventional method.
According to the present invention, it can be reduced to 2% or less. In the present embodiment, the case where electrons are also supplied to the ion irradiation part, and the same effect is obtained when the electrons are not supplied with respect to the effect of reducing the charge accumulation, but the magnitude of the effect is particularly high in the insulating property. It was larger that electrons were also supplied to the sample. Next, another embodiment is shown in FIG. In the present invention, the focused ion beam 1 is applied to a beam irradiation unit 4 on the surface of a sample 3 covered with an insulating film. The direction 7 of the beam irradiation is
The beam is irradiated so as to form a spiral shape from the outer side (outline part) to the inner side (center direction) of the beam irradiation part. The beam irradiation was controlled by a computer. The focused ion beam is a Ga + beam having an acceleration voltage of 30 kV, a beam diameter of about 0.5 μm, and a beam current of 1 nA. In the present embodiment, the beam irradiation unit was irradiated for 60 seconds. Conventionally, beam irradiation has been performed by raster scanning, but the present invention has been able to improve the beam irradiation positional deviation from ± 1 μm to about ± 0.4 μm. Next, examples of the present invention will be described. In the present invention, a focused ion beam is applied to a beam irradiation unit on the surface of a sample covered with an insulating film. The beam was Ga + of 30 kV, the beam diameter was about 0.5 μm, and the beam current was 2 nA. In this example, the beam irradiation and the rest time were both 200 msec, and the beam irradiation was performed with the beam current effectively reduced to 50%. According to the present invention, the positional deviation of the beam irradiation is ± 1.5.
μm could be improved to about ± 0.4 μm. [Effects of the Invention] According to the present invention, when irradiating an ion beam, it is possible to prevent displacement of the irradiation beam due to a charge accumulation effect, and to reduce deterioration and damage of the function of a semiconductor device when the sample is a semiconductor device, with high throughput. Can be realized while maintaining. As a result, local etching and deposition using a focused ion beam can be realized with high reliability.

【図面の簡単な説明】 第1図及び第2図は本発明の集束イオンビーム照射方法
を説明する斜視図である。 1……集束イオンビーム、2……電子ビーム、3……試
料、4、5、6……ビーム照射部
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are perspective views illustrating a focused ion beam irradiation method according to the present invention. 1. Focused ion beam, 2. Electron beam, 3. Sample, 4, 5, 6 ... Beam irradiation unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 志村 隆則 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所中央研究所内 (56)参考文献 特開 昭52−119179(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Takanori Shimura               1-280 Higashi Koigabo, Kokubunji-shi               Central Research Laboratory, Hitachi, Ltd.                (56) References JP-A-52-119179 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.被処理物に対するイオンビームの照射方法におい
て、前記被処理物上の照射部に前記イオンビームを照射
するに際し、前記照射部内の外側から内側に向かって渦
巻き状にイオンビームの照射位置を移動することを特徴
とするイオンビーム照射方法。
(57) [Claims] In the method of irradiating an ion beam on an object to be processed, when irradiating the ion beam on an irradiation unit on the object to be processed, the irradiation position of the ion beam may be moved in a spiral form from outside to inside the irradiation unit. An ion beam irradiation method characterized by the above-mentioned.
JP62040230A 1987-02-25 1987-02-25 Ion beam irradiation method Expired - Lifetime JP2845871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62040230A JP2845871B2 (en) 1987-02-25 1987-02-25 Ion beam irradiation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62040230A JP2845871B2 (en) 1987-02-25 1987-02-25 Ion beam irradiation method

Publications (2)

Publication Number Publication Date
JPS63208220A JPS63208220A (en) 1988-08-29
JP2845871B2 true JP2845871B2 (en) 1999-01-13

Family

ID=12574931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62040230A Expired - Lifetime JP2845871B2 (en) 1987-02-25 1987-02-25 Ion beam irradiation method

Country Status (1)

Country Link
JP (1) JP2845871B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316125A (en) * 1989-03-30 1991-01-24 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH02275462A (en) * 1989-04-17 1990-11-09 Toppan Printing Co Ltd Pattern forming method for electron beam resist
JP4748714B2 (en) * 2005-10-28 2011-08-17 エスアイアイ・ナノテクノロジー株式会社 Charged particle beam scanning irradiation method, charged particle beam apparatus, sample observation method, and sample processing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332518B2 (en) * 1972-01-31 1978-09-08
US4639301B2 (en) * 1985-04-24 1999-05-04 Micrion Corp Focused ion beam processing

Also Published As

Publication number Publication date
JPS63208220A (en) 1988-08-29

Similar Documents

Publication Publication Date Title
JP2716518B2 (en) Ion implantation apparatus and ion implantation method
EP0082640B1 (en) Ion implantation method
JP2845871B2 (en) Ion beam irradiation method
US5286978A (en) Method of removing electric charge accumulated on a semiconductor substrate in ion implantation
JPS6412061B2 (en)
JP2756704B2 (en) Charge neutralizer in ion beam irradiation equipment
EP0424925B1 (en) Method of removing electric charge accumulated on a semiconductor substrate in ion implantation
JP3410946B2 (en) Ion implantation apparatus and method of manufacturing semiconductor device
JP3001163B2 (en) Ion processing equipment
JPH0654649B2 (en) Ion implanter
JPH0378740B2 (en)
JPS59196600A (en) Neutral particle implanting method and its device
JP2564115B2 (en) Wafer charge suppression device
JPH0754918Y2 (en) Electron shower device
JPH0654763U (en) Ion implanter
JPH07169434A (en) Ion implanting device
JP3057808B2 (en) Ion implanter
JP2873985B2 (en) Charge suppression device for ion implanter
JPH06196122A (en) Negative ion implantation unit
JPS62154446A (en) Charge restraint device for wafer
JPH06111751A (en) Ion implantation device
JPS63230876A (en) Ion-beam irradiation device
JPS62154447A (en) Charge restraint device for wafer
JPH05175152A (en) Manufacture of semiconductor device
Ray et al. Reduction of beam dropout related defects in a hybrid scan implanter