JPS63208220A - Converged ion beam application - Google Patents

Converged ion beam application

Info

Publication number
JPS63208220A
JPS63208220A JP4023087A JP4023087A JPS63208220A JP S63208220 A JPS63208220 A JP S63208220A JP 4023087 A JP4023087 A JP 4023087A JP 4023087 A JP4023087 A JP 4023087A JP S63208220 A JPS63208220 A JP S63208220A
Authority
JP
Japan
Prior art keywords
ion beam
application
irradiation
ion
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4023087A
Other languages
Japanese (ja)
Other versions
JP2845871B2 (en
Inventor
Toru Ishitani
亨 石谷
Yoshimi Kawanami
義実 川浪
Takanori Shimura
隆則 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62040230A priority Critical patent/JP2845871B2/en
Publication of JPS63208220A publication Critical patent/JPS63208220A/en
Application granted granted Critical
Publication of JP2845871B2 publication Critical patent/JP2845871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To relieve a charge accumulation effect caused by an ion beam application without reducing the throughput so much by providing an application quiescent period after every beam application of a certain dosage. CONSTITUTION:An application quiescent period is provided after every ion beam 1 application of a certain dosage. If there are a plurality of ion beam applied parts, the respective ion dosages are distributed to a number of times and a plurality of the applied parts are treated in parallel so as to make the individual ion beam applied parts 4-6 have ion application periods and quiescent periods alternately. Further, the ion beam is applied to the applied parts 4-6 from their outline part to the center spirally to provide the application quiescent periods. With this constitution, the charge accumulated during the application period can be naturally made to leak during the quiescent period or the charge can be neutralized by supplying electrons from the outside during the quiescent period. Therefore, a charge accumulation effect caused by the ion beam application can be relieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、集束イオンビームを用いた絶縁膜。[Detailed description of the invention] [Industrial application field] The present invention relates to an insulating film using a focused ion beam.

半絶縁膜で覆われた試料の局所的なエツチング。Local etching of a sample covered with a semi-insulating film.

デボジョンにおいて好適な集束イオンビーム照射方法に
関する。
The present invention relates to a focused ion beam irradiation method suitable for deposition.

〔従来の技術〕[Conventional technology]

集束イオンビーム装置においては、イオン打込み、リソ
グラフィ、加工など種々の応用に応じて、所望のイオン
種で所望のイオン量を試料の所望の局所部にイオン照射
する。従来のイオンビーム照射方法では、試料表面が絶
縁性(又は抵抗)が高い膜で覆われている場合は、特開
昭58−33837号に記載のように試料に照射された
電荷が逃げにくく、イオンビーム°を連続的に照射し続
けると、その部分に電荷が蓄積され帯電する。そのため
イオンビームは試料照射直前で曲げられ、誤った位置に
照射されたり、又試料が半導体素子である場合は、試料
表面と素子内部とで局所的な放電現象が起き、素子機能
が劣下、損傷したりし易いという問題があった。
A focused ion beam device irradiates a desired local portion of a sample with a desired ion species and a desired amount of ions in accordance with various applications such as ion implantation, lithography, and processing. In the conventional ion beam irradiation method, if the sample surface is covered with a film with high insulation (or resistance), the charge irradiated to the sample is difficult to escape, as described in JP-A-58-33837. When the ion beam continues to be irradiated, electric charge accumulates in that area and it becomes electrically charged. As a result, the ion beam is bent just before irradiating the sample, causing the ion beam to be irradiated at the wrong position.Also, if the sample is a semiconductor device, a local discharge phenomenon occurs between the sample surface and the inside of the device, deteriorating the device function. There was a problem that it was easily damaged.

本発明の目的は、照射効率、つまりスループットをあま
り落すことなく、かつイオン照射による電荷蓄積効果を
緩和する方法を提供することにある。
An object of the present invention is to provide a method for alleviating the charge accumulation effect caused by ion irradiation without significantly reducing irradiation efficiency, that is, throughput.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的はイオンビームの照射を一定照射量毎に照射休
止期間を設けたこと、さらにイオン照射部が複数個ある
場合、それぞれのイオン照射量を多数回に分け、複数個
の照射部を並列処理することにより、個々のイオン照射
部に、イオンの照射と休止の時間を交互につくり出すこ
とにより達成される。さらにイオン照射部の輪郭部分か
ら中心に向かってスパイラル形状に照射することにより
達成される。
The above purpose is to set an irradiation pause period for each fixed dose of ion beam irradiation, and if there are multiple ion irradiation sections, the ion irradiation dose of each is divided into multiple times and multiple irradiation sections are processed in parallel. This is achieved by creating alternating periods of ion irradiation and rest in each ion irradiation section. Further, this is achieved by irradiating ions in a spiral shape from the outline of the ion irradiation area toward the center.

〔作用〕 休止時間に照射中に蓄積した電荷を自然漏洩させたり、
あるいは、電子を外部から供給して電荷を中和したりす
ることが可能となる。
[Effect] Allows the charge accumulated during irradiation to leak naturally during downtime,
Alternatively, it becomes possible to neutralize the charge by supplying electrons from the outside.

また、ビーム照射部の輪郭部分からビームを照射するこ
とにより、輪郭部分では電荷蓄積の影響を受けずに正確
な位置にビームの照射ができ、輪郭部分の内側では、輪
郭部分に電荷蓄積が生じても、イオンビームはビーム照
射部の中心方向に曲げられるので、電荷蓄積の影響によ
るビーム照射部の外側への移動は生じない。
In addition, by irradiating the beam from the contour of the beam irradiation part, the beam can be irradiated at a precise position without being affected by charge accumulation in the contour, and inside the contour, charge is accumulated in the contour. However, since the ion beam is bent toward the center of the beam irradiation section, the beam irradiation section does not move outward due to the influence of charge accumulation.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。本発
明においては、集束イオンビーム1で絶縁膜で覆われた
試料3の表面の3個所4〜6のビーム照射部を照射する
。又、本実施例では、電子ビーム2で電子を供給してい
る。集束イオンビームは、30KeVGa+ビームで、
ビーム径は約0.5 μm、ビーム電流は1nAである
。電子ビームは、10〜200 e V 、ビーム電流
は約0.5nAである。本実施例においては、3箇所の
照射部4〜6の個々を60m5ecずつ照射し、各部に
ついては、60m5ec照射、120m5ec休止の1
8011secサイクルで1000回のイオン照射を行
なった。全ての照射時間は約3分である。ビーム照射位
置と照射時間の制御はコンピュータを用いて行なった0
本発明により、ビーム照射位置ずれは。
An embodiment of the present invention will be described below with reference to FIG. In the present invention, three beam irradiation parts 4 to 6 on the surface of a sample 3 covered with an insulating film are irradiated with a focused ion beam 1. Further, in this embodiment, electrons are supplied by the electron beam 2. The focused ion beam is a 30KeVGa+ beam,
The beam diameter is approximately 0.5 μm, and the beam current is 1 nA. The electron beam is 10-200 eV and the beam current is about 0.5 nA. In this example, each of the three irradiation sections 4 to 6 is irradiated for 60 m5 ec, and each section is irradiated for 60 m5 ec and then stopped for 120 m5 ec.
Ion irradiation was performed 1000 times with a cycle of 8011 seconds. All irradiation times are approximately 3 minutes. The beam irradiation position and irradiation time were controlled using a computer.
According to the present invention, the beam irradiation position shift can be reduced.

従来の連続照射方法のものと比べて、±1μmから±0
.4 μm程度に改善することができた。
Compared to the conventional continuous irradiation method, from ±1μm to ±0
.. This could be improved to about 4 μm.

又、試料が高抵抗の酸化膜(S i Ox )を表面膜
としてもつシリコン素子の場合、その深穴加工において
、従来方法では約10%の素子機能の劣下や損傷が生じ
ていたが、本発明により、2%以下に低減できた。
In addition, when the sample is a silicon element with a high-resistance oxide film (S i Ox ) as a surface film, the conventional method causes about 10% deterioration in element function or damage during deep hole drilling. According to the present invention, it was possible to reduce it to 2% or less.

本実施例は、イオン照射部に電子も供給した場合である
が、電荷蓄積の緩和効果については、電子を供給しない
場合も同様な効果が得られたが。
Although this example deals with the case where electrons were also supplied to the ion irradiation section, the same effect in alleviating charge accumulation was obtained even when electrons were not supplied.

その効果の大きさは、特に絶縁性の高い試料に対しては
電子も供給した方が大きかった。
The effect was greater when electrons were also supplied, especially for highly insulating samples.

次に、他の実施例を第2図に示す。本発明において、集
束イオンビーム1を絶縁膜で覆われた試料3の表面のビ
ーム照射部4に照射する。そのビーム照射の方向7が、
ビーム照射部4の輪郭部分から中心に向かってスパイラ
ル形状になるようにビームを照射する。ビーム照射の制
御はコンピュータで行なった。
Next, another embodiment is shown in FIG. In the present invention, a focused ion beam 1 is irradiated onto a beam irradiation section 4 on the surface of a sample 3 covered with an insulating film. The direction 7 of the beam irradiation is
The beam is irradiated from the outline of the beam irradiation unit 4 in a spiral shape toward the center. Beam irradiation was controlled by a computer.

集束イオンビームは、Ga+ビームで加速電圧30 K
V、ビーム径約0.5  μm、ビーム電流1nAであ
る。本実施例において、ビーム照射部を60sec照射
した。従来、ビームの照射はラスク走査で行なっていた
が、本発明によりビーム照射の位置ずれは、±1μmか
ら±0.4 μm程度に改善することができた。
The focused ion beam is a Ga+ beam with an acceleration voltage of 30 K.
V, beam diameter approximately 0.5 μm, and beam current 1 nA. In this example, the beam irradiation section was irradiated for 60 seconds. Conventionally, beam irradiation was performed by rask scanning, but according to the present invention, the positional deviation of beam irradiation could be improved from about ±1 μm to about ±0.4 μm.

次に、さらに他の実施例について示す。本発明において
、集束イオンビームを絶縁膜で覆われた試料の表面のビ
ーム照射部に照射する。ビームは30kV Ga+で、
ビーム径、約0.5  μm、ビーム電流2nAである
。本実施例において、ビーム照射および休止時間はいず
れも200 m5ecであり、ビーム電流を実効的に5
0%に下げてビーム照射を行なった。本発明により、ビ
ーム照射の位置ずれは、±1.5μmから±0.4μm
に改善することができた。ただし、本実施例の場合、照
射のスループットは約50%低下する。
Next, still another example will be described. In the present invention, a focused ion beam is irradiated onto a beam irradiated portion of the surface of a sample covered with an insulating film. The beam is 30kV Ga+,
The beam diameter was approximately 0.5 μm, and the beam current was 2 nA. In this example, the beam irradiation and pause times were both 200 m5ec, effectively reducing the beam current to 5
Beam irradiation was performed with the concentration reduced to 0%. According to the present invention, the positional deviation of beam irradiation can be reduced from ±1.5 μm to ±0.4 μm.
was able to improve. However, in the case of this example, the irradiation throughput decreases by about 50%.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、集束イオンビームを絶縁膜。 According to the present invention, a focused ion beam is connected to an insulating film.

半絶縁膜で覆われた試料を照射する場合、スループット
をあまり落すことなく、電荷蓄積効果による照射ビーム
の位置ずれや、試料が半導体素子の場合は、その素子機
能の劣下や損傷を緩和することができるので、このよう
な試料の集束イオンビームによる局所的なエツチングや
デポジションなどの高信頼性において効果がある。
When irradiating a sample covered with a semi-insulating film, it reduces the positional shift of the irradiation beam due to the charge accumulation effect, and if the sample is a semiconductor device, it reduces the deterioration and damage to the device function without significantly reducing the throughput. Therefore, it is effective in highly reliable local etching and deposition of such a sample using a focused ion beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の集束イオンビーム照射方
法を説明する斜視図である。 1・・・集束イオンビーム、2・・・電子ビーム、3・
・・試料、4〜6・・・ビーム照射部。 第 1 図 ス 2 図
1 and 2 are perspective views illustrating the focused ion beam irradiation method of the present invention. 1... Focused ion beam, 2... Electron beam, 3.
... Sample, 4 to 6... Beam irradiation section. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、集束イオンビームを絶縁膜あるいは半絶縁膜で覆わ
れた試料に照射する方法において、ビーム照射を一定照
射量毎に照射休止時間を設けたことを特徴とする集束イ
オンビーム照射方法。 2、試料上のイオン照射すべき複数個の局所部のイオン
照射量を多数回に分けて、該複数個の局所部を並列にイ
オン照射することにより照射休止時間を設けたことを特
徴とした特許請求の範囲第1項記載の集束イオンビーム
照射方法。 3、試料のイオン照射部に電子も供給することを特徴と
した特許請求の範囲第1項記載の集束イオンビーム照射
方法。 4、集束イオンビームを絶縁膜あるいは半絶縁膜で覆わ
れた試料に照射する方法において、試料上の照射部を照
射部の輪郭部分から中心方向にスパイラル形状にイオン
を照射することを特徴とする集束イオンビーム照射方法
[Claims] 1. A method for irradiating a sample covered with an insulating film or a semi-insulating film with a focused ion beam, characterized in that an irradiation pause time is provided for every fixed dose of beam irradiation. Beam irradiation method. 2. The ion irradiation dose of a plurality of local areas on the sample to be ion-irradiated is divided into multiple times, and the ion irradiation is performed on the plurality of local areas in parallel, thereby providing an irradiation pause time. A focused ion beam irradiation method according to claim 1. 3. The focused ion beam irradiation method according to claim 1, characterized in that electrons are also supplied to the ion irradiation part of the sample. 4. A method of irradiating a sample covered with an insulating film or a semi-insulating film with a focused ion beam, characterized by irradiating the irradiated part on the sample with ions in a spiral shape from the outline of the irradiated part towards the center. Focused ion beam irradiation method.
JP62040230A 1987-02-25 1987-02-25 Ion beam irradiation method Expired - Lifetime JP2845871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62040230A JP2845871B2 (en) 1987-02-25 1987-02-25 Ion beam irradiation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62040230A JP2845871B2 (en) 1987-02-25 1987-02-25 Ion beam irradiation method

Publications (2)

Publication Number Publication Date
JPS63208220A true JPS63208220A (en) 1988-08-29
JP2845871B2 JP2845871B2 (en) 1999-01-13

Family

ID=12574931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62040230A Expired - Lifetime JP2845871B2 (en) 1987-02-25 1987-02-25 Ion beam irradiation method

Country Status (1)

Country Link
JP (1) JP2845871B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275462A (en) * 1989-04-17 1990-11-09 Toppan Printing Co Ltd Pattern forming method for electron beam resist
JPH0316125A (en) * 1989-03-30 1991-01-24 Mitsubishi Electric Corp Manufacture of semiconductor device
JP2007123071A (en) * 2005-10-28 2007-05-17 Sii Nanotechnology Inc Scanning irradiation method of charged particle beam, charged particle beam device, test piece observation method, and test piece processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881094A (en) * 1972-01-31 1973-10-30
JPS61248346A (en) * 1985-04-24 1986-11-05 マイクリオン・コーポレイション Converged ion beam processing apparatus and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881094A (en) * 1972-01-31 1973-10-30
JPS61248346A (en) * 1985-04-24 1986-11-05 マイクリオン・コーポレイション Converged ion beam processing apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316125A (en) * 1989-03-30 1991-01-24 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH02275462A (en) * 1989-04-17 1990-11-09 Toppan Printing Co Ltd Pattern forming method for electron beam resist
JP2007123071A (en) * 2005-10-28 2007-05-17 Sii Nanotechnology Inc Scanning irradiation method of charged particle beam, charged particle beam device, test piece observation method, and test piece processing method

Also Published As

Publication number Publication date
JP2845871B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
Rimini Ion implantation: basics to device fabrication
KR960009822A (en) Antistatic method and antistatic ion beam device
US4014772A (en) Method of radiation hardening semiconductor devices
JP2006210425A (en) Method of manufacturing semiconductor device and ion implantation apparatus using same
JPS63208220A (en) Converged ion beam application
JPH05106037A (en) Ion implantation device and controlling method therefor
US3688389A (en) Insulated gate type field effect semiconductor device having narrow channel and method of fabricating same
JPS6215743A (en) Ion processor
US6037599A (en) Ion implantation apparatus and fabrication method for semiconductor device
JPS6412061B2 (en)
JP2756704B2 (en) Charge neutralizer in ion beam irradiation equipment
JP2616423B2 (en) Ion implanter
JP2774352B2 (en) Ion beam irradiation equipment
JP3410946B2 (en) Ion implantation apparatus and method of manufacturing semiconductor device
JPH04124267A (en) Ion implanting device
JPH11307038A (en) Ion implanter with impurity blocking device
JPH0754678B2 (en) Ion beam irradiation device
JP3001163B2 (en) Ion processing equipment
JPS63200456A (en) Ion implantation device
JPH0787087B2 (en) Ion implanter
JPS6332850A (en) Ion-implanting device
JPH03230467A (en) Ion implanter
JPH05190134A (en) Ion implanting method and device
JPS62287559A (en) Ion implanter
JPH01117320A (en) Ion implanting method