JP2822937B2 - Semiconductor device manufacturing system and defect inspection method - Google Patents

Semiconductor device manufacturing system and defect inspection method

Info

Publication number
JP2822937B2
JP2822937B2 JP7179793A JP17979395A JP2822937B2 JP 2822937 B2 JP2822937 B2 JP 2822937B2 JP 7179793 A JP7179793 A JP 7179793A JP 17979395 A JP17979395 A JP 17979395A JP 2822937 B2 JP2822937 B2 JP 2822937B2
Authority
JP
Japan
Prior art keywords
defect
image
semiconductor device
detected
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7179793A
Other languages
Japanese (ja)
Other versions
JPH0868618A (en
Inventor
俊二 前田
仁志 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7179793A priority Critical patent/JP2822937B2/en
Publication of JPH0868618A publication Critical patent/JPH0868618A/en
Application granted granted Critical
Publication of JP2822937B2 publication Critical patent/JP2822937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、LSIウェハを複数の
工程で処理することにより半導体装置を製造する半導体
装置の製造システム及び欠陥検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing system and a defect inspection method for manufacturing a semiconductor device by processing an LSI wafer in a plurality of steps.

【0002】[0002]

【従来の技術】従来の半導体装置の製造システムにおい
ては、LSIウエハの回路パターンの異物、変色欠陥、
形状欠陥等の欠陥を外観から検出する外観欠陥検査装置
は、半導体の製造ラインから切り離されたいわゆるオフ
ラインで用いられていた。このようにして用いられてい
た外観検査装置としては、例えば、信学技報VOL.8
7,No.132(1987)第31頁から第38頁に記載されたも
のが知られている。即ち図23において、ランプ2で照
明したウェハ1上の回路パターンを対物レンズ3を介し
てイメージセンサ4で拡大検出し、回路パターンの濃淡
画像を得る。欠陥判定回路6において、検出した濃淡画
像を画像メモリ5に記憶してある一つ前のチップ7a
(隣接チップ)の画像と比較し、欠陥判定を行う。検出
した画像は、同時に画像メモリ5に格納し(記憶画
像)、次のチップ7bの比較検査に用いる。
2. Description of the Related Art In a conventional semiconductor device manufacturing system, foreign matters, discoloration defects,
2. Description of the Related Art An appearance defect inspection apparatus that detects a defect such as a shape defect from the appearance has been used off-line separated from a semiconductor manufacturing line. Examples of the visual inspection apparatus used in this manner include, for example, IEICE Technical Report VOL. 8
7, No. 132 (1987), pages 31 to 38 are known. That is, in FIG. 23, the circuit pattern on the wafer 1 illuminated by the lamp 2 is enlarged and detected by the image sensor 4 via the objective lens 3, and a grayscale image of the circuit pattern is obtained. In the defect determining circuit 6, the detected grayscale image is stored in the image memory 5, the immediately preceding chip 7 a
The defect is determined by comparing the image with the image of the (adjacent chip). The detected image is simultaneously stored in the image memory 5 (stored image) and used for the comparative inspection of the next chip 7b.

【0003】図24に欠陥判定の1例を示す。位置合せ
回路6aにおいて、検出画像と記憶画像を位置合せを
し、差画像検出回路6bにより位置合せされた検出画像
と記憶画像の差画像を検出する。これを2値化回路6c
により2値化することにより、欠陥を検出する。上記構
成により検出画像に存在する欠け8dが検出される。
FIG. 24 shows an example of defect determination. The alignment circuit 6a aligns the detected image with the stored image, and detects a difference image between the detected image and the stored image aligned by the difference image detection circuit 6b. This is converted to a binarization circuit 6c.
The defect is detected by binarizing the data. With the above configuration, the missing portion 8d existing in the detected image is detected.

【0004】また、この種の装置として関連するものに
例えばエス・ピー・アイ・イー,オプティカル マイク
ロリソグラフィVI(1987年)第248頁から第255頁(S
PIE Vol.772 Optical Microlithography
VI(1987)pp248−255)等が挙げられる。
Also, related to this type of apparatus are, for example, SPI, Optical Microlithography VI (1987), pp. 248 to 255 (S
PIE Vol. 772 Optical Microlithography
VI (1987) pp. 248-255).

【0005】[0005]

【発明が解決しようとする課題】上記従来技術は、対応
するパターンの不一致を欠陥として検出するものであ
り、従って検出した欠陥を他の観察手段、例えば光学顕
微鏡やSEMにより観察しなければ、形状欠陥、変色、
異物といった欠陥の種類を識別することができず、欠陥
の発生源となるウエハ処理装置を細かく管理することが
できないという課題があった。
The above-mentioned prior art detects a mismatch of a corresponding pattern as a defect. Therefore, if the detected defect is not observed by other observation means, for example, an optical microscope or an SEM, the shape of the defect is detected. Defects, discoloration,
There has been a problem that the type of a defect such as a foreign substance cannot be identified, and a wafer processing apparatus that is a source of the defect cannot be finely managed.

【0006】本発明の目的は、LSIウェハの製造工程
において、ウエハ上に発生する欠陥を致命的な欠陥と致
命的でない欠陥とに識別することにより、各処理装置の
状態を的確に把握することができる半導体装置の製造シ
ステム及び欠陥検査方法を提供することにある。
An object of the present invention is to accurately grasp the state of each processing apparatus by discriminating defects occurring on a wafer in a process of manufacturing an LSI wafer into fatal defects and non-fatal defects. And a defect inspection method.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、被処理基板を複数の工程で処理するこ
とにより半導体装置を製造する半導体装置の製造システ
ムにおいて、被処理基板を処理する複数の工程のうちの
所定の工程の前後で被処理基板上の欠陥を検出する検出
手段と、この検出手段からの出力信号に基づいて欠陥の
発生状態を比較して欠陥の発生工程を特定する判定手段
とを備えるようにした。
According to the present invention, there is provided a semiconductor device manufacturing system for manufacturing a semiconductor device by processing a substrate to be processed in a plurality of steps. Detecting means for detecting a defect on a substrate to be processed before and after a predetermined step of a plurality of steps to be performed, and identifying a defect generating step by comparing a defect occurrence state based on an output signal from the detecting means. And a determination unit for performing the determination.

【0008】[0008]

【作用】LSIウェハの被検査パターンについて、異
物、変色欠陥、形状欠陥等の欠陥を検出し、このウエハ
を追跡して各処理装置毎に検査及び欠陥分類を行ない、
欠陥の座標(ウエハ上での欠陥の発生位置)をチェック
することにより欠陥が各処理装置を経てどのように発生
するかを調べ、また、欠陥を致命的なものと致命的でな
いものとに識別して欠陥の致命性を判定することにより
各処理装置の状態を的確に把握できる。
In the inspection pattern of the LSI wafer, defects such as foreign matter, discoloration defect, and shape defect are detected, and the wafer is traced to perform inspection and defect classification for each processing apparatus.
Check how defects are generated through each processing unit by checking the coordinates of the defects (positions where the defects occur on the wafer), and identify defects as fatal and non-fatal By determining the criticality of the defect, the state of each processing apparatus can be accurately grasped.

【0009】[0009]

【実施例】以下、本発明による半導体製造システムに用
いる外観検査装置の一実施例を、図1を用いて説明す
る。Xeランプ12で照明したウェハ1上の回路パター
ンを対物レンズ3を介してTVカメラ13で拡大検出す
る。TVカメラの出力はA/D変換器14によりディジ
タル信号に変換される。光電変換器としては、TVカメ
ラ、リニアイメージセンサ等いかなるものでも使用可能
であるが、リニアイメージセンサの場合は、センサの自
己走査及びそれと直角方向に移動するxyテーブルによ
りウェハの2次元パターンを検出する。検出した濃淡画
像は、画像メモリ15aに記憶されている一つ前のチッ
プの画像と比較され、欠陥判定が行われる。即ち、図2
に示すように、ウェハ上のチップ7内部の位置7dの回
路パターンを検出し、これを画像メモリ15aに記憶し
た隣のチップの対応する位置7cの回路パターンと比較
することにより、欠陥を検出する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an appearance inspection apparatus used in a semiconductor manufacturing system according to the present invention will be described below with reference to FIG. The circuit pattern on the wafer 1 illuminated by the Xe lamp 12 is enlarged and detected by the TV camera 13 via the objective lens 3. The output of the TV camera is converted into a digital signal by the A / D converter 14. Any type of photoelectric converter can be used, such as a TV camera and a linear image sensor. In the case of a linear image sensor, the two-dimensional pattern of the wafer is detected by the self-scanning of the sensor and the xy table moving in a direction perpendicular to the self-scanning. I do. The detected grayscale image is compared with the image of the immediately preceding chip stored in the image memory 15a, and the defect is determined. That is, FIG.
As shown in (1), a defect is detected by detecting the circuit pattern at the position 7d inside the chip 7 on the wafer and comparing it with the circuit pattern at the corresponding position 7c of the adjacent chip stored in the image memory 15a. .

【0010】まず、図1の位置合せ回路16で、図3に
図示するような検出画像(a)、記憶画像(b)を位置
合せし(図3(c))、図1の差画像検出回路17によ
り位置合せされた検出画像と記憶画像の差画像を検出す
る(図3の差画像(d))。この差画像(d)を図1の
2値化回路18により2値化することにより、図3の2
値画像(e)を得る。これにより、検出画像(a)に存
在するパターンの断線8bを欠陥として検出する。位置
7dの回路パターンを検出して得た画像は、新たに画像
メモリ15aに記憶され、次のチップの位置7eの検査
に用いられる。
First, the detected image (a) and the stored image (b) as shown in FIG. 3 are aligned (FIG. 3 (c)) by the alignment circuit 16 of FIG. The difference image between the detected image and the stored image aligned by the circuit 17 is detected (difference image (d) in FIG. 3). This difference image (d) is binarized by the binarization circuit 18 in FIG.
The value image (e) is obtained. Thus, the disconnection 8b of the pattern existing in the detected image (a) is detected as a defect. The image obtained by detecting the circuit pattern at the position 7d is newly stored in the image memory 15a, and is used for the inspection of the position 7e of the next chip.

【0011】図2において、欠陥が7dの位置にある場
合、7cと7dの比較においても、7dと7eの比較に
おいても、欠陥が検出されるので、それぞれの2チップ
比較結果を照合すれば、どのチップに欠陥があったかを
特定することができる。図1のCPU31により、この
照合が行われる。
In FIG. 2, when the defect is located at the position 7d, the defect is detected both in the comparison between 7c and 7d and in the comparison between 7d and 7e. Which chip has a defect can be specified. This collation is performed by the CPU 31 of FIG.

【0012】2値化回路18からの信号により、位置7
dに欠陥があると判定された場合、ウェハを上下に移動
するZ制御回路19によりウェハを移動し、各Z位置で
欠陥部7dの画像を検出して、画像を画像メモリ15a
に記憶する。ウェハのxy方向の移動はxy制御回路2
0により行い、欠陥部に対応する良品部例えば位置7c
にウェハを移動し、欠陥部7dと同様に各Z位置で良品
部の画像を検出して、画像を画像メモリ15bに記憶す
る。位置合せ回路21aでは画像メモリ15aに記憶さ
れたZ=Z1での欠陥部の画像と画像メモリ15bに記
憶されたZ=Z1での良品部の画像を位置合せする。差
画像検出回路22aでは、位置合せされた画像の差画像
を検出し、最大値検出回路23aにより差画像の欠陥部
の濃淡値が検出される。
According to the signal from the binarization circuit 18, the position 7
When it is determined that there is a defect in d, the wafer is moved by the Z control circuit 19 for moving the wafer up and down, an image of the defective portion 7d is detected at each Z position, and the image is stored in the image memory 15a.
To memorize. The xy control circuit 2 moves the wafer in the xy directions.
0, a non-defective part corresponding to the defective part, for example, position 7c
The image of the non-defective part is detected at each Z position similarly to the defective part 7d, and the image is stored in the image memory 15b. Aligning images of non-defective portion in the alignment circuit 21a Z = Z 1 stored in the image and the image memory 15b of the defect in the Z = Z 1 stored in the image memory 15a in. The difference image detection circuit 22a detects a difference image of the aligned image, and the maximum value detection circuit 23a detects a gray value of a defective portion of the difference image.

【0013】図4に、この様子を示す。欠陥部の画像
(a)と良品部の画像(b)は、位置合せされ、差画像
(c)が得られる。最大値検出回路23aにより、差画
像(c)における濃淡の最大値が検出される。欠陥8b
は、良品部との濃淡差が大きいので、上記最大値検出回
路23aにより、欠陥8bの、良品部との濃淡差を検出
することができる。
FIG. 4 shows this state. The image (a) of the defective part and the image (b) of the non-defective part are aligned, and a difference image (c) is obtained. The maximum value detection circuit 23a detects the maximum value of shading in the difference image (c). Defect 8b
Has a large difference in shading from the non-defective part, so that the maximum value detection circuit 23a can detect the shading difference of the defect 8b from the non-defective part.

【0014】同様に、画像メモリ15a,15bに記憶
された各Z2〜Zn位置での欠陥部と良品部の画像を位
置合せ回路21b…21nで位置合せし、差画像検出回
路22b…22nで差画像を検出し、最大値検出回路2
3b…23nで差画像の欠陥部の濃淡値が検出される。
画像メモリ15a,15bには、例えば1024×10
24画素の濃淡画像を、それぞれn枚分記憶する。
Similarly, the images of the defective part and the non-defective part at each of the Z 2 -Zn positions stored in the image memories 15a and 15b are aligned by the alignment circuits 21b... 21n, and the difference image detection circuits 22b. A difference image is detected and a maximum value detection circuit 2
At 3b... 23n, the gray value of the defective portion of the difference image is detected.
The image memories 15a and 15b have, for example, 1024 × 10
A gray image of 24 pixels is stored for each of n images.

【0015】なお、画像メモリ15aは、上記多重焦点
画像記憶用以外に、通常の欠陥判定用に、濃淡画像1枚
分を記憶できる容量をもつ。これにより、後述する、欠
陥判定と欠陥分類を交互に行うシーケンスを実現するこ
とが可能になる。
The image memory 15a has a capacity capable of storing one gray-scale image for normal defect determination in addition to the above-mentioned multi-focus image storage. This makes it possible to realize a sequence of alternately performing defect determination and defect classification, which will be described later.

【0016】また、Z=Z0での欠陥部の画像と良品部
の画像を位置合せ回路24で位置合せし、1次微分回路
25aでそれぞれの画像の1次微分をとり、これらの差
画像を差画像検出回路26aでとった後最大値検出回路
27aで差画像の欠陥部の濃淡値を検出する。同様に、
2次微分回路25bで欠陥部の画像と良品部の画像の2
次微分をとり、差画像検出回路26bでこれらの差画像
を検出、最大値検出回路27bで差画像の濃淡値を検出
する。
Further, the image of the defective part and the image of the non-defective part at Z = Z 0 are registered by an alignment circuit 24, and the primary differentiation of each image is obtained by a primary differentiation circuit 25a. Is obtained by the difference image detection circuit 26a, and then the maximum value detection circuit 27a detects the density value of the defective portion of the difference image. Similarly,
The image of the defective part and the image of the non-defective part are calculated by the second differentiating circuit 25b
The next differentiation is performed, these difference images are detected by the difference image detection circuit 26b, and the gray value of the difference image is detected by the maximum value detection circuit 27b.

【0017】これらの検出値を全て欠陥分類回路30に
入力する。欠陥分類回路30では、図15及び図17に
基づいて図5に示すように欠陥の種類の判別を行う。こ
れらはソフトウェアにより実現される。
All of these detected values are input to the defect classification circuit 30. The defect classification circuit 30 determines the type of the defect as shown in FIG. 5 based on FIGS. These are realized by software.

【0018】次に、上記外観検査装置の動作を説明す
る。
Next, the operation of the visual inspection apparatus will be described.

【0019】対物レンズ3は、そのNAが例えば0.8
〜0.95といった大きな値をもつものとし、解像度は
高く、焦点深度は浅いものを選ぶ。欠陥が検出される
と、この焦点深度の浅い対物レンズを利用して、ウェハ
を上下に例えば0.2μmきざみで移動させ、ある平面
内にだけ焦点の合った画像を検出する。±0.6μmの
範囲で画像を検出すると、7組の画像が検出される。
The objective lens 3 has an NA of, for example, 0.8
A large value such as と い っ た 0.95, high resolution and shallow depth of focus are selected. When a defect is detected, the wafer is moved up and down at intervals of, for example, 0.2 μm using the objective lens having a small depth of focus, and an image focused on only a certain plane is detected. When an image is detected in a range of ± 0.6 μm, seven sets of images are detected.

【0020】欠陥部と良品部の画像の位置合せは、位置
合せ回路16,21a〜21n,24で行われるが、こ
れは例えば信学技報VoL、87,No.132(1987)第
31頁から第38頁に記載されている方法で実現でき
る。位置合せされた7組の画像の差画像を検出した後、
その濃淡値を検出すると、欠陥が異物の場合は図16に
示すように合焦面Z0より上側のZ1,Z2でも比較的大
きな濃淡値をもち、従って欠陥分類回路30において例
えば図5に示すフローに従って、容易に異物かどうかの
判定ができる。
Alignment of the image of the defective part with the image of the non-defective part is performed by the alignment circuits 16, 21a to 21n, 24. This is performed, for example, in IEICE Technical Report Vol. 132 (1987), pp. 31-38. After detecting the difference image of the 7 sets of aligned images,
When the density value is detected, if the defect is a foreign matter, as shown in FIG. 16, Z 1 and Z 2 above the focal plane Z 0 also have relatively large density values. According to the flow shown in (1), it can be easily determined whether or not the foreign matter exists.

【0021】画像の微分は、微分回路25で行われる
が、例えば2次微分は図6に示すように、4種のエッジ
オペレータ〔1 −2 1〕を画像に施し、それらの最
大値を検出することにより実現できる。
The differentiation of the image is performed by a differentiating circuit 25. For example, as shown in FIG. 6, the secondary differentiation is performed by applying four types of edge operators [1-21] to the image and detecting their maximum values. This can be achieved by performing

【0022】図7に、2次微分回路25bの具体構成を
示す。図7(a)において、位置合せ回路24からの、
例えば8bitのディジタル画像信号を3段のシフトレ
ジスタ250で受け、初段及び第3段の出力は加算器2
51に、第2段の出力はゲイン2の増幅器252にそれ
ぞれ供給される。加算器251の出力及び増幅器252
の出力は、減算器253に加えられる。シフトレジスタ
250、加算器251、増幅器252及び減算器253
で、“1,−2,1”なるオペレータが構成されてい
る。
FIG. 7 shows a specific configuration of the secondary differentiating circuit 25b. In FIG. 7A, the position adjustment circuit 24
For example, an 8-bit digital image signal is received by a three-stage shift register 250, and the outputs of the first and third stages are added to an adder 2.
At 51, the output of the second stage is provided to a gain of two amplifier 252, respectively. Output of adder 251 and amplifier 252
Is applied to a subtractor 253. Shift register 250, adder 251, amplifier 252, and subtractor 253
Thus, an operator "1, -2, 1" is configured.

【0023】図7(b)は、縦、横、斜めの8方向で微
分するための回路で、位置合せ回路24の出力を3×3
切出し回路254に加え、縦、横、斜めの3画素を選択
して4つのオペレータOP1〜OP4に加え、画像信号
を微分する。各オペレータは、図7(a)に図示したも
のと同一でよい。4つのオペレータ出力は、最大値検出
回路255に加えられ、これらのうちから最大値が検出
される。
FIG. 7B is a circuit for differentiating in eight vertical, horizontal and oblique directions. The output of the positioning circuit 24 is 3 × 3.
In addition to the extracting circuit 254, three pixels of vertical, horizontal and oblique are selected and added to the four operators OP1 to OP4 to differentiate the image signal. Each operator may be the same as that shown in FIG. The four operator outputs are applied to a maximum value detection circuit 255, from which the maximum value is detected.

【0024】微分した後、差画像を検出すると、その濃
淡値は図17に示すような波形となり、欠陥が変色の場
合は濃淡値が小さくなるので、欠陥分類回路30により
図5に示すフローに従って容易に変色かどうかの判定が
できる。
When the difference image is detected after the differentiation, the gradation value becomes a waveform as shown in FIG. 17, and if the defect is discolored, the gradation value becomes smaller. Therefore, the defect classification circuit 30 follows the flow shown in FIG. It is easy to determine whether the color has changed.

【0025】図18に、処理のフローを示す。横軸は時
間を示している。同図において画像検出、欠陥判定を繰
返し行い、検査が行われる。画像検出は、図1に示すT
Vカメラ13,A/D変換器14、画像メモリ15aに
より行い、欠陥判定は、位置合せ回路16、差画像検出
回路17、2値化回路18、及び欠陥位置の特定を行う
CPU31により行われる。欠陥が検出された場合、上
記検査を中断し、欠陥部及び対応する良品部の多重焦点
画像を検出する。この画像検出はTVカメラ、A/D変
換器14、画像メモリ15a,15bを用いて行われ
る。次に、これらの画像の差画像、最大値検出を行う。
これらは、位置合せ回路21a,…,21n,24、差
画像検出回路22a,…,22n,26a,26b、微
分回路25a,25b、最大値検出回路23a,…,2
3n,27a,27bにより実現される。各Z位置での
最大値及び微分画像の差画像の最大値がすべて検出され
ると、欠陥分類が行われ、欠陥分類回路30により異
物、変色、形状欠陥に分類される。そして、再び画像検
出、欠陥判定か、欠陥が検出されるまで繰返し行われ
る。
FIG. 18 shows a processing flow. The horizontal axis indicates time. In the figure, image detection and defect determination are repeatedly performed, and inspection is performed. Image detection is performed using the T shown in FIG.
The defect determination is performed by the V camera 13, the A / D converter 14, and the image memory 15a, and the defect determination is performed by the alignment circuit 16, the difference image detection circuit 17, the binarization circuit 18, and the CPU 31 that specifies the defect position. When a defect is detected, the inspection is interrupted, and a multi-focus image of the defective part and the corresponding non-defective part is detected. This image detection is performed using the TV camera, the A / D converter 14, and the image memories 15a and 15b. Next, a difference image and a maximum value between these images are detected.
, 21n, 24, difference image detecting circuits 22a,..., 22n, 26a, 26b, differentiating circuits 25a, 25b, and maximum value detecting circuits 23a,.
3n, 27a and 27b. When all of the maximum value at each Z position and the maximum value of the differential image of the differential image are detected, defect classification is performed, and the defect classification circuit 30 classifies the defect as a foreign substance, discoloration, or shape defect. Then, image detection and defect determination are performed again until the defect is detected.

【0026】このようにウェハ上の被検査対象パターン
上に存在する欠陥を図22に示す。即ち、検出対象欠陥
は、回路パターンのふくれ8a、断線8b、ショート8
c、欠け8dなどの形状欠陥8、変色欠陥9及び異物1
0である。
FIG. 22 shows the defects existing on the pattern to be inspected on the wafer. That is, the defects to be detected include the blister 8a of the circuit pattern, the disconnection 8b, and the short 8
c, shape defect 8 such as chip 8d, discoloration defect 9 and foreign matter 1
0.

【0027】本実施例において用いる外観検査装置で
は、欠陥を検出しては分類するという検査シーケンスを
説明したが、図19に示すように例えば1枚のウェハに
ついて欠陥を全て検出して、欠陥の位置座標をCPU3
1にすべて記憶しておき、これに基づいて検査後順次欠
陥を呼び出して欠陥分類を行っても良い。
In the appearance inspection apparatus used in this embodiment, the inspection sequence of detecting and classifying defects has been described. However, as shown in FIG. 19, for example, all defects are detected for one wafer, and Position coordinates in CPU3
1, the defect may be sequentially called after the inspection and the defect may be classified based on the stored information.

【0028】また、欠陥検出と欠陥分類を図21に示す
ように別の光学系で行い、欠陥検出は低倍で高速に、欠
陥分類は高倍で正確に行うことも可能である。また、照
明はいかなる構成のものであっても適用可能である。
As shown in FIG. 21, defect detection and defect classification can be performed by another optical system, and defect detection can be performed accurately at low magnification at high speed and defect classification at high magnification. The lighting can be applied to any structure.

【0029】図8に、本発明による半導体製造システム
に用いる外観検査装置における多重焦点画像検出の別の
実施例を示す。Z制御回路19によりウェハ1を上下移
動する代わりに、複数のTVカメラ13a,13b…を
用意し、これを少しずつ光路上離して設置することによ
り、合焦面がZ3,…,Z-3…の複数の画像を同時に得
ることも可能である。
FIG. 8 shows another embodiment of the multifocal image detection in the appearance inspection apparatus used in the semiconductor manufacturing system according to the present invention. The wafer 1 by the Z control circuit 19 instead of up and down movement, a plurality of TV cameras 13a, 13b ... was prepared, by placing this apart optical path gradually focusing plane Z 3, ..., Z - 3 It is also possible to obtain a plurality of images simultaneously.

【0030】図9に、上記した図8の多重焦点画像検出
の別の実施例を用いた外観検査装置の全体構成を示す。
同図において、合焦点の画像は、カメラ13aによって
得られ、A/D変換器14aを経た後、欠陥判定に用い
るべく、画像メモリ15a、及び位置合せ回路16に入
力される。欠陥分類時は、カメラ13a〜13nによっ
て得られる全ての画像が、画像メモリ15a,15bに
同時に入力される。従って、画像メモリは、n枚の画像
を同時にwrite可能であるものとする。ただし、r
eadは画像を1枚ずつ読み出せれば良い。
FIG. 9 shows the overall configuration of a visual inspection apparatus using another embodiment of the multi-focus image detection of FIG. 8 described above.
In the figure, an image at the focal point is obtained by a camera 13a, passes through an A / D converter 14a, and is input to an image memory 15a and a positioning circuit 16 for use in defect determination. At the time of defect classification, all images obtained by the cameras 13a to 13n are simultaneously input to the image memories 15a and 15b. Therefore, it is assumed that the image memory can simultaneously write n images. Where r
Ead only has to read images one by one.

【0031】変色については別の構成により判別するこ
ともでき、図1では変色を判別するため画像を微分した
が、画像認識論(コロナ社)17頁、18頁に記載され
ているように、画像をフーリエ変換し、これにフィルタ
をかけた後逆フーリエ変換することにより、回路パター
ンのエッジを強調することもできる。これを用いて、欠
陥部と良品部の差画像を検出し、濃淡値の大小により変
色欠陥を判別することが可能である。
The discoloration can be determined by another configuration. In FIG. 1, the image is differentiated to determine the discoloration. However, as described on page 17 and 18 of the image recognition theory (Corona), Can be emphasized by performing a Fourier transform, applying a filter thereto, and then performing an inverse Fourier transform. Using this, it is possible to detect a difference image between the defective part and the non-defective part and discriminate a discoloration defect based on the magnitude of the shading value.

【0032】また、光学的手段により変色欠陥を判別す
ることも可能である。図10において、暗視野照明系と
してランプ32、コンデンサレンズ33、暗視野照明用
波長選定のための狭帯域フィルタ34(波長λ1)、リ
ング状開口スリット35、リング状ミラー36、放物凹
面鏡37、また明視野照明系としてランプ38、コンデ
ンサレンズ39、波長選定フィルタ40(波長λ2)、
円形開口スリット41、ハーフミラー42、対物レンズ
43、波長分離ミラー44、及び暗視野検出用TVカメ
ラ45、明視野像検出用TVカメラ46により構成され
た画像検出系において、暗視野照明はフィルタ34によ
り波長λ1に限定され、放物凹面鏡37によりパターン
上に周囲斜め方向から照明される。明視野照明はフィル
タ40により波長λ2に限定され、上方から照明され
る。欠陥部の暗視野画像と良品部の暗視野画像を検出
し、これを図11に図示する位置合せ回路24aで位置
合せし、差画像検出回路26aで差画像を検出する。
Further, it is also possible to determine a discoloration defect by optical means. 10, a lamp 32, a condenser lens 33, a narrow-band filter 34 (wavelength λ 1 ) for selecting a wavelength for dark-field illumination, a ring-shaped aperture slit 35, a ring-shaped mirror 36, a parabolic concave mirror 37 as a dark-field illumination system. A lamp 38, a condenser lens 39, a wavelength selection filter 40 (wavelength λ 2 ) as a bright field illumination system,
In an image detection system including a circular aperture slit 41, a half mirror 42, an objective lens 43, a wavelength separation mirror 44, a dark field detection TV camera 45, and a bright field image detection TV camera 46, the dark field illumination is a filter 34. the limited wavelength lambda 1, is illuminated from the surrounding oblique direction on the pattern by the parabolic concave mirror 37. Bright field illumination is limited to a wavelength λ 2 by the filter 40 and is illuminated from above. The dark-field image of the defective part and the dark-field image of the non-defective part are detected, and they are aligned by the alignment circuit 24a shown in FIG. 11, and the difference image is detected by the difference image detection circuit 26a.

【0033】同様に、欠陥部の明視野画像と良品部の明
視野画像を検出し、これを位置合せ回路24bで位置合
せし、差画像検出回路26bで差画像を検出する。最大
値検出回路27a,27bでこれらの差画像の濃淡値を
検出すると、図12に示すように、欠陥が変色の場合は
形状欠陥、異物に比べ、暗視野照明時の濃淡値が小さく
なり、欠陥分類回路30において容易に変色が判別でき
る。なお、同図において、位置合せ回路16、差画像検
出回路17、2値化回路18は通常の欠陥判定用のもの
である。
Similarly, the bright-field image of the defective part and the bright-field image of the non-defective part are detected, these are aligned by the alignment circuit 24b, and the difference image is detected by the difference image detection circuit 26b. When the maximum value detection circuits 27a and 27b detect the gray values of these difference images, as shown in FIG. 12, when the defect is discolored, the gray value during dark-field illumination is smaller than that of a shape defect or foreign matter. Discoloration can be easily determined in the defect classification circuit 30. In the figure, a positioning circuit 16, a difference image detecting circuit 17, and a binarizing circuit 18 are for normal defect determination.

【0034】また、別の実施例として、上記暗視野画像
の検出の代りに図13に示す構成要素を用いてもよい。
As another embodiment, the components shown in FIG. 13 may be used in place of the dark field image detection.

【0035】図13において、S偏光レーザ47a,4
7bにより、S偏光レーザ光をウェハ1上に角度ψで照
射する。ψは約1度である。ここで照射レーザ光とウェ
ハ法線のなす面に、垂直に振動する偏光をS偏光、平行
に振動する偏光をP偏光と呼ぶ。このとき、ウェハ上の
回路パターンのうち低段差のものは、その散乱光は偏光
方向が変化せず、実線で示すS偏光のまま対物レンズ4
8のほうに進むが、異物或いは高段差の回路パターンに
当ったレーザ光は偏光方向が変化するため、点線で示す
P偏光成分を多く含んでいる。そこで、対物レンズ48
の後方にS偏光を遮断する偏光板49を設け、これを通
過した光を光電素子50で検出することにより、異物及
び高段差の回路パターンエッジからの散乱光を検出す
る。この散乱光信号をA/D変換回路14によりディジ
タル信号に変換する。検出した信号を、画像メモリ15
aに記憶されている一つ前のチップの信号と比較する。
即ち、位置合せ回路24aでこれらの信号を位置合せ
し、差信号検出回路26aで差信号を検出する。高段差
の回路パターンエッジからの散乱光信号は2つの信号に
共通に含まれるので、差信号には異物からの散乱光信号
だけが含まれる。この差信号を2値化回路27aにより
2値化することにより異物が検出でき、欠陥分類を行う
ことができる。
In FIG. 13, S-polarized lasers 47a and 47a, 4
7b, the wafer 1 is irradiated with the S-polarized laser light at an angle ψ. ψ is about 1 degree. Here, the polarized light that oscillates perpendicularly to the plane formed by the irradiation laser light and the wafer normal is called S-polarized light, and the polarized light that oscillates parallelly is called P-polarized light. At this time, among the circuit patterns on the wafer having a low step, the scattered light does not change its polarization direction, and the objective lens 4 remains in the S-polarized state shown by the solid line.
Although proceeding to 8, the laser light hitting a foreign substance or a circuit pattern having a high step changes the polarization direction, and thus contains a large amount of P-polarized light components indicated by dotted lines. Therefore, the objective lens 48
A polarizing plate 49 for blocking S-polarized light is provided at the back of the device, and the light passing through the polarizing plate 49 is detected by the photoelectric element 50, thereby detecting foreign matter and scattered light from a circuit pattern edge having a high step. The scattered light signal is converted into a digital signal by the A / D conversion circuit 14. The detected signal is stored in the image memory 15
Compare with the signal of the previous chip stored in a.
That is, these signals are aligned by the alignment circuit 24a, and the difference signal is detected by the difference signal detection circuit 26a. Since the scattered light signal from the edge of the circuit pattern having a high step is commonly included in the two signals, the difference signal includes only the scattered light signal from the foreign matter. By binarizing the difference signal by the binarization circuit 27a, foreign matter can be detected, and defect classification can be performed.

【0036】次に、上記した本発明による外観検査装置
を用いた半導体装置の製造システムについて、図14を
用いて説明する。
Next, a semiconductor device manufacturing system using the above-described appearance inspection apparatus according to the present invention will be described with reference to FIG.

【0037】ウェハ上の回路パターンは複数の装置A,
B,…Eにより順次形成される。本構成をもつ外観検査
装置により、ウェハを追跡し、各装置毎に検査及び欠陥
分類を行う。欠陥の座標をチェックすることにより、欠
陥が各装置を経てどのように発生するかが調べられる。
例えば、装置Bによる処理を経たウェハを検査し、検出
した欠陥は、前装置Aからの持込み欠陥と装置B内で発
生した欠陥からなり、装置Aによる処理を経た時に検査
して得た欠陥データと照合すれば、装置B内で発生した
欠陥か前装置からの持込み欠陥かどうかがわかる。ここ
で、前装置Aからの持込み欠陥のうち、異物については
装置Bで形状欠陥或いは変色を引き起こさないものもあ
り、致命的な異物の付着したパターンは必ず次以降の装
置で形状欠陥或いは変色となるが、致命的でない異物の
付着したパターンは以降の装置を経ても形状欠陥等にな
らず、良品である。従って、本構成をもつ外観検査装置
により異物と分類された欠陥について、その座標を記憶
しておき、そのウェハが次の装置を経た後に、再度欠陥
検出、分類を行うことにより、異物の致命性を判定する
ことが可能になる。これにより、製造装置の状態をより
的確に把握することが可能になる。
The circuit pattern on the wafer is divided into a plurality of devices A,
B,... E are sequentially formed. Wafers are tracked by the appearance inspection apparatus having this configuration, and inspection and defect classification are performed for each apparatus. By checking the coordinates of the defect, it is possible to find out how the defect occurs through each device.
For example, a wafer processed by the apparatus B is inspected, and the detected defect is composed of a defect brought in from the previous apparatus A and a defect generated in the apparatus B. The defect data obtained by the inspection after the processing by the apparatus A is obtained. By comparing with, it can be determined whether the defect occurs in the device B or is a defect brought in from the preceding device. Here, among the defects brought in from the previous apparatus A, some foreign substances do not cause a shape defect or discoloration in the apparatus B, and a pattern to which a fatal foreign substance adheres must be a shape defect or discoloration in the subsequent apparatus. However, the pattern to which non-fatal foreign matter adheres does not become a shape defect or the like even after passing through the subsequent apparatus, and is a good product. Therefore, the coordinates of a defect classified as a foreign substance by the visual inspection apparatus having this configuration are stored, and after the wafer has passed through the next apparatus, the defect is detected and classified again, so that the fatality of the foreign substance is obtained. Can be determined. This makes it possible to more accurately grasp the state of the manufacturing apparatus.

【0038】図20に、上記した本発明による半導体製
造システムにおいて、外観検査装置により異物の致命性
判定を行う構成を示す。同図において、欠陥判定部40
により欠陥を検出し、その座標を欠陥属性記憶部42に
より記憶する。検出した欠陥部について、欠陥分類部4
1により欠陥を異物とそれ以外の種類に分類し、欠陥属
性記憶部42にその座標と対で記憶する。次に、次工程
を経た上記と同一ウェハを検査し、同様に欠陥判定、欠
陥分類を行い、欠陥座標、種類を欠陥属性記憶部42に
記憶する。前工程で異物と判定された欠陥について、致
命性判定部43において、その座標を調べ、次工程で形
状欠陥、変色と分類された欠陥を致命性と判定する。
FIG. 20 shows a configuration in which the appearance inspection apparatus determines the fatality of a foreign substance in the above-described semiconductor manufacturing system according to the present invention. Referring to FIG.
, And the coordinates are stored in the defect attribute storage unit 42. For the detected defect, the defect classification unit 4
The defect is classified into a foreign substance and other types by 1 and stored in the defect attribute storage unit 42 in pairs with the coordinates. Next, the same wafer as described above after the next process is inspected, defect determination and defect classification are similarly performed, and defect coordinates and types are stored in the defect attribute storage unit 42. For a defect determined as a foreign substance in the previous process, the coordinates of the defect determined by the fatality determination unit 43 are examined, and a defect classified as a shape defect or discoloration in the next process is determined to be fatal.

【0039】以上、本発明の半導体製造システムに用い
る外観検査装置のいくつかの実施例を説明したが、対象
とするウェハの画像を検出し、位置合せすることによ
り、欠陥判定、欠陥分類を行っている。従って、ウェハ
上の回路パターン密度が小さい場所では、位置合せする
2枚の画像の隅に一方でパターンが入り、他方に入らな
いケースが生じ、画像の位置合せが正確にできない場合
がある。そこで、パターンのないエリアについて、ダミ
ーパターンを作り込み、検出した画像に必ずパターンが
入るようにして位置合せできるようにする。ダミーパタ
ーンはいかなる形状であってもよい。このようにして、
ウェハを検査、欠陥分類することにより、プロセス・設
備の歩留り管理に大きく寄与することができる。
While several embodiments of the visual inspection apparatus used in the semiconductor manufacturing system of the present invention have been described above, defect judgment and defect classification are performed by detecting and aligning an image of a target wafer. ing. Therefore, in a place where the circuit pattern density is low on the wafer, a pattern may enter one corner of the two images to be aligned and may not enter the other, and the image may not be accurately aligned. Therefore, a dummy pattern is created for an area without a pattern so that the pattern can be aligned so that the pattern is always included in the detected image. The dummy pattern may have any shape. In this way,
Inspection and defect classification of wafers can greatly contribute to yield management of processes and equipment.

【0040】上記実施例ではウェハについて説明した
が、TFTや薄膜磁気ヘッド等の半導体製品等について
も適用可能である。
Although the above embodiment has been described with reference to a wafer, the present invention is also applicable to semiconductor products such as TFTs and thin-film magnetic heads.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば外
観検査装置において検出した欠陥を自動で分類し、検出
した異物の致命性を判定できるので、プロセス・設備の
歩留り管理に大きく寄与することができ、LSIの生産
を高い歩留りで安定に維持することが可能になる。
As described above, according to the present invention, the defects detected by the visual inspection device can be automatically classified and the fatality of the detected foreign matter can be determined, which greatly contributes to the yield management of the process and the equipment. It is possible to stably maintain LSI production at a high yield.

【0042】[0042]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による半導体製造システムに用いる被検
査対象パターンの欠陥検出装置の一実施例を示す全体構
成図。
FIG. 1 is an overall configuration diagram showing an embodiment of a defect detection device for a pattern to-be-inspected used in a semiconductor manufacturing system according to the present invention.

【図2】図1に示す装置において隣接するウェハ上のチ
ップ内部の位置の回路パターンを比較する状態を示す
図。
FIG. 2 is a diagram showing a state in which a circuit pattern at a position inside a chip on an adjacent wafer is compared in the apparatus shown in FIG. 1;

【図3】図1に示す装置において得られる検出画像、記
憶画像、位置合せ画像、差画像及び2値画像を示す図。
FIG. 3 is a diagram showing a detected image, a stored image, an alignment image, a difference image, and a binary image obtained by the apparatus shown in FIG.

【図4】図1に示す装置においてZ=Z1での欠陥部の
画像、良品部の画像、これら位置合せされた差画像及び
該差画像の濃淡波形を示す図。
FIG. 4 is a diagram showing an image of a defective portion and an image of a non-defective part at Z = Z 1 in the apparatus shown in FIG. 1, a difference image aligned with these images, and a grayscale waveform of the difference image.

【図5】図1に示す欠陥分類回路により欠陥の種類の判
別を行うフローを示す図。
FIG. 5 is a diagram showing a flow of determining the type of a defect by the defect classification circuit shown in FIG. 1;

【図6】図1に示す微分回路によって行なわれる画像微
分を示す図。
FIG. 6 is a diagram showing image differentiation performed by the differentiating circuit shown in FIG. 1;

【図7】図1に示す2次微分回路の具体的構成を示す
図。
FIG. 7 is a diagram showing a specific configuration of the secondary differentiating circuit shown in FIG. 1;

【図8】図1とは異なる多重焦点画像検出の一実施例を
示す図。
FIG. 8 is a diagram showing an embodiment of multi-focus image detection different from FIG.

【図9】図8に示す多重焦点画像検出を適用した本発明
による半導体製造システムに用いる被検査対象パターン
の欠陥検出装置の全体構成を示す図。
9 is a diagram showing an overall configuration of a defect detection apparatus for a pattern to-be-inspected used in a semiconductor manufacturing system according to the present invention to which the multi-focus image detection shown in FIG. 8 is applied.

【図10】図1と異なり、光学的手段により変色欠陥を
判別する一実施例を示す図。
FIG. 10 is a diagram showing an embodiment different from FIG. 1, in which a color change defect is determined by optical means.

【図11】図10に示す一実施例を適用した全体構成を
示す図。
FIG. 11 is a diagram showing an entire configuration to which the embodiment shown in FIG. 10 is applied.

【図12】各種欠陥における明視野照明及び暗視野照明
と差画像の濃淡値との関係を示した図。
FIG. 12 is a diagram showing the relationship between bright-field illumination and dark-field illumination and the gray level of a difference image for various defects.

【図13】図10に示す暗視野画像検出とは異なる他の
一実施例を示した概略構成図。
FIG. 13 is a schematic configuration diagram showing another embodiment different from the dark-field image detection shown in FIG. 10;

【図14】本発明による半導体製造システムを示す図。FIG. 14 is a diagram showing a semiconductor manufacturing system according to the present invention.

【図15】被検査対象パターンに対する合焦点位置関係
を示した図。
FIG. 15 is a diagram showing a focus position relationship with respect to a pattern to be inspected.

【図16】各種欠陥における合焦点面のZ位置と差画像
の濃淡値との関係を示す図。
FIG. 16 is a diagram showing the relationship between the Z position of the focal plane and the gray value of the difference image for various defects.

【図17】各種欠陥における微分の次数と差画像の濃淡
値との関係を示す図。
FIG. 17 is a view showing the relationship between the order of differentiation and the gray value of a difference image in various defects.

【図18】図1に示す装置における処理の一実施例を示
すフロー図。
FIG. 18 is a flowchart showing one embodiment of the processing in the apparatus shown in FIG. 1;

【図19】図18と異なる処理の一実施例を示すフロー
図。
FIG. 19 is a flowchart showing an example of processing different from that in FIG. 18;

【図20】外観検査装置を用いて異物の致命性判定を行
う装置の具体的構成を示す図。
FIG. 20 is a diagram showing a specific configuration of an apparatus that performs a foreign matter fatality determination using an appearance inspection apparatus.

【図21】欠陥検出と欠陥分類とを別の光学系で行う一
実施例を示した概略構成図。
FIG. 21 is a schematic configuration diagram showing an embodiment in which defect detection and defect classification are performed by different optical systems.

【図22】被検査対象パターンに存在する各種の欠陥を
示した図。
FIG. 22 is a view showing various types of defects existing in a pattern to be inspected.

【図23】従来技術の被検査対象パターンの欠陥検出装
置の一例を示した図。
FIG. 23 is a diagram showing an example of a conventional defect detection apparatus for a pattern to-be-inspected.

【図24】従来技術の被検査対象パターンの欠陥検出装
置の他の一例を示した図。
FIG. 24 is a diagram showing another example of a conventional defect detection device for a pattern to-be-inspected.

【符号の説明】[Explanation of symbols]

1…ウェハ、 13…TVカメラ、 15…画像メモリ、 16,21,24…位置合せ回路、 17,22,26…差画像検出回路、 23,27…最大値検出回路、 25…微分回路、 30…欠陥分類回路。 DESCRIPTION OF SYMBOLS 1 ... Wafer, 13 ... TV camera, 15 ... Image memory, 16, 21, 24 ... Positioning circuit, 17, 22, 26 ... Difference image detection circuit, 23, 27 ... Maximum value detection circuit, 25 ... Differentiating circuit, 30 ... Defect classification circuit.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 G01N 21/88 H01L 21/66 G06F 15/62 405 G06F 15/64──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01B 11/00-11/30 G01N 21/88 H01L 21/66 G06F 15/62 405 G06F 15/64

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被処理基板を複数の工程で処理することに
より半導体装置を製造する半導体装置の製造システムに
おいて、前記被処理基板を処理する前記複数の工程のう
ちの所定の工程の前後で前記被処理基板上の欠陥を検出
する検出手段と、該検出手段からの出力信号に基づいて
前記欠陥の発生状態を比較して前記欠陥の発生工程を特
定する判定手段とを備えたことを特徴とする半導体装置
の製造システム。
In a semiconductor device manufacturing system for manufacturing a semiconductor device by processing a substrate to be processed in a plurality of steps, before and after a predetermined step of the plurality of steps of processing the substrate to be processed. Detecting means for detecting a defect on the substrate to be processed, and determining means for comparing the state of occurrence of the defect based on an output signal from the detecting means to specify the step of generating the defect, Semiconductor device manufacturing system.
【請求項2】前記検出手段は、前記欠陥を、前記被検査
基板表面の多重焦点画像信号に基づいて検出することを
特徴とする請求項記載の半導体装置の製造システム。
Wherein said detecting means is a manufacturing system for a semiconductor device according to claim 1, wherein the said defect is detected based on the multi-focus image signal of the inspected substrate surface.
【請求項3】前記検出手段は、前記欠陥を、前記被検査
基板表面の明視野画像信号と暗視野画像信号とに基づい
て検出することを特徴とする請求項記載の半導体装置
の製造システム。
Wherein said detecting means, manufacturing system of claim 1 a semiconductor device according to the defect, and detects on the basis the bright field image signal of the inspection surface of the substrate and the dark-field image signal .
【請求項4】前記欠陥が、異物欠陥、変色欠陥又は形状
欠陥のうち何れか少なくとも一つであることを特徴とす
る請求項1乃至3の何れかに記載の半導体装置の製造シ
ステム。
Wherein said defect is foreign matter defects, manufacturing system for a semiconductor device according to any one of claims 1 to 3, characterized in that at least one of discoloration defects or shape defect.
【請求項5】被処理基板を複数の工程で処理することに
より半導体装置を製造する半導体装置の製造において、
前記被処理基板を処理する前記複数の工程のうちの所定
の工程の前後で前記被処理基板上の異物欠陥、変色欠陥
又は形状欠陥のうち何れか少なくとも一つを検査して、
前記異物欠陥、変色欠陥又は形状欠陥の発生状態を比較
することにより、前記異物欠陥、変色欠陥又は形状欠陥
の発生工程を特定することを特徴とする半導体装置の欠
陥検査方法。
5. Oite the manufacture of a semiconductor device for manufacturing a semiconductor device by processing a substrate to be processed in multiple steps,
Before and after a predetermined step of the plurality of steps of processing the substrate to be processed, inspect at least one of foreign matter defects, discoloration defects or shape defects on the substrate to be processed,
A defect inspection method for a semiconductor device, wherein a process of generating the foreign matter defect, discoloration defect or shape defect is specified by comparing the state of occurrence of the foreign matter defect, discoloration defect or shape defect.
【請求項6】前記異物欠陥、変色欠陥又は形状欠陥を、
前記被検査基板表面の多重焦点画像信号に基づいて検出
することを特徴とする請求項記載の半導体装置の欠陥
検査方法。
6. The method according to claim 1, wherein the foreign matter defect, discoloration defect or shape defect is
6. The defect inspection method for a semiconductor device according to claim 5 , wherein the detection is performed based on a multifocal image signal of the surface of the substrate to be inspected.
【請求項7】前記異物欠陥、変色欠陥又は形状欠陥を、
前記被検査基板表面の明視野画像信号と暗視野画像信号
とに基づいて検出することを特徴とする請求項記載の
半導体装置の欠陥検査方法。
7. The method according to claim 1, wherein said foreign matter defect, discoloration defect or shape defect is
6. The method according to claim 5 , wherein the detection is performed based on a bright-field image signal and a dark-field image signal of the surface of the substrate to be inspected.
JP7179793A 1995-07-17 1995-07-17 Semiconductor device manufacturing system and defect inspection method Expired - Lifetime JP2822937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7179793A JP2822937B2 (en) 1995-07-17 1995-07-17 Semiconductor device manufacturing system and defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7179793A JP2822937B2 (en) 1995-07-17 1995-07-17 Semiconductor device manufacturing system and defect inspection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63323276A Division JPH02170279A (en) 1988-12-23 1988-12-23 Method and device for detecting defect of pattern to be checked

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10007222A Division JP3047881B2 (en) 1998-01-19 1998-01-19 Semiconductor device manufacturing system and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JPH0868618A JPH0868618A (en) 1996-03-12
JP2822937B2 true JP2822937B2 (en) 1998-11-11

Family

ID=16071999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7179793A Expired - Lifetime JP2822937B2 (en) 1995-07-17 1995-07-17 Semiconductor device manufacturing system and defect inspection method

Country Status (1)

Country Link
JP (1) JP2822937B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437862B1 (en) 1999-06-22 2002-08-20 Mitsubishi Denki Kabushiki Kaisha Defect inspection apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10247245A (en) * 1997-03-05 1998-09-14 Toshiba Corp Pattern defect inspection device
JP4017148B2 (en) * 2002-09-05 2007-12-05 大日本スクリーン製造株式会社 Pattern inspection apparatus, yield management system, pattern inspection method, substrate manufacturing method, and program
JP4523310B2 (en) * 2003-08-25 2010-08-11 株式会社日立国際電気 Foreign matter identification method and foreign matter identification device
JP2004260193A (en) * 2004-03-10 2004-09-16 Hitachi Ltd Method and apparatus for testing circuit pattern
JP4716827B2 (en) * 2005-09-13 2011-07-06 株式会社東京精密 Appearance inspection apparatus and appearance inspection method
JP4408902B2 (en) * 2007-01-24 2010-02-03 株式会社ルネサステクノロジ Foreign object inspection method and apparatus
US7782452B2 (en) * 2007-08-31 2010-08-24 Kla-Tencor Technologies Corp. Systems and method for simultaneously inspecting a specimen with two distinct channels
US10964013B2 (en) * 2017-01-10 2021-03-30 Kla-Tencor Corporation System, method for training and applying defect classifiers in wafers having deeply stacked layers
CN114092476B (en) * 2022-01-19 2022-05-27 阿里云计算有限公司 Impurity detection method, system, device, equipment, storage medium and software product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735315A (en) * 1980-08-11 1982-02-25 Fujitsu Ltd Manufacturing of integrated circuit device
JPS6129712A (en) * 1984-07-23 1986-02-10 Hitachi Ltd Method and device for detecting defect of fine pattern
JPS61207953A (en) * 1985-03-12 1986-09-16 Nec Corp Automatic appearance inspecting device
US4748335A (en) * 1985-04-19 1988-05-31 Siscan Systems, Inc. Method and aparatus for determining surface profiles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437862B1 (en) 1999-06-22 2002-08-20 Mitsubishi Denki Kabushiki Kaisha Defect inspection apparatus

Also Published As

Publication number Publication date
JPH0868618A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
US5038048A (en) Defect detection system and method for pattern to be inspected utilizing multiple-focus image signals
JP4996856B2 (en) Defect inspection apparatus and method
JP2742240B2 (en) Defect detection method in inspection of structure surface
US7848563B2 (en) Method and apparatus for inspecting a defect of a pattern
US10677742B2 (en) Detecting die repeating programmed defects located in backgrounds with non-repeating features
US7869643B2 (en) Advanced cell-to-cell inspection
JP3660763B2 (en) Inspection pattern inspection method, manufacturing process diagnosis method, and semiconductor substrate manufacturing method
JP4387089B2 (en) Defect inspection apparatus and defect inspection method
JP3936959B2 (en) Pattern defect inspection method and apparatus
JP2822937B2 (en) Semiconductor device manufacturing system and defect inspection method
US6566671B1 (en) Microscopic defect inspection apparatus and method thereof, as well as positional shift calculation circuit therefor
JP3409670B2 (en) Appearance inspection method and apparatus
JP3047881B2 (en) Semiconductor device manufacturing system and semiconductor device manufacturing method
JP3201396B2 (en) Method for manufacturing semiconductor device
JP3271622B2 (en) Method for manufacturing semiconductor device
JP2976550B2 (en) Pattern defect detection method
JPH03102846A (en) Pattern defect detection method
JPH07159333A (en) Apparatus and method for inspection of appearance
KR970007974B1 (en) Defect test method of semiconductor process
US11940391B2 (en) Defect inspection apparatus, method for inspecting defect, and method for manufacturing photomask blank
JPS63284455A (en) Surface defect inspection device
JP3198105B2 (en) Automatic visual inspection device
JP3070748B2 (en) Method and apparatus for detecting defects on reticle
JPH0798281A (en) Method and apparatus for detecting defect in pattern
JP2000340625A (en) Pattern inspection device, method for controlling the same and image pickup device therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070904

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11