JPS6129712A - Method and device for detecting defect of fine pattern - Google Patents

Method and device for detecting defect of fine pattern

Info

Publication number
JPS6129712A
JPS6129712A JP15121184A JP15121184A JPS6129712A JP S6129712 A JPS6129712 A JP S6129712A JP 15121184 A JP15121184 A JP 15121184A JP 15121184 A JP15121184 A JP 15121184A JP S6129712 A JPS6129712 A JP S6129712A
Authority
JP
Japan
Prior art keywords
field illumination
pattern
dark
image
bright
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15121184A
Other languages
Japanese (ja)
Other versions
JPH0437922B2 (en
Inventor
Yasuo Nakagawa
中川 泰夫
Mitsuyoshi Koizumi
小泉 光義
Hitoshi Kubota
仁志 窪田
Shunji Maeda
俊二 前田
Satoshi Fushimi
智 伏見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15121184A priority Critical patent/JPS6129712A/en
Publication of JPS6129712A publication Critical patent/JPS6129712A/en
Publication of JPH0437922B2 publication Critical patent/JPH0437922B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features

Abstract

PURPOSE:To inspect a complicate and fine pattern automatically by separating optical images of light visual field lighting and dark visual field lighting in the middle of an optical path of detection, and detecting and processing pattern shape information, density, and hue variation simultaneously. CONSTITUTION:The device consists of a dark visual field lighting system whose wavelength (alpha) by a narrow-band filter 3, light visual field system which is limited to light containing no alpha by a filter 9, image formation system, binary- coding circuit 16, memories 17 and 20, image comparing circuits 18 and 21, decision part 22, control mechanism for the whole, etc. Light visual field lighting and dark visual field lighting are performed at the same position and their respective images are formed on image sensors 14 and 15. In this case, a thin- film mirror 13 performs wavelength and optical path separation. Thus, the images are detected, and then a defect of a pattern shape is detected as abnormality of the plane shape of a pattern edge and abnormality of the thickness of a transparent thin film causes variation in brightness and hue, so they are inspected separately at the same time. Further, when a linear image sensor is used, the circuits 18 and 21 compare signals with signals which are one chip before and annunciate the results.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、パターン欠陥の自動検査方法に係り、%KL
sIウェハ上に形成された回路パターンなど、複雑で微
細なパターンから欠陥を検出する方法及びその装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an automatic pattern defect inspection method.
The present invention relates to a method and apparatus for detecting defects from complex and fine patterns such as circuit patterns formed on SI wafers.

〔発明の背景〕[Background of the invention]

LSIウェハ上に形成される微細パターンは複数の材質
の異なる薄膜層で形成されている。このためその欠陥に
は層の平面的形状不良に起因するパターン形状欠陥と、
層の厚さの異常に起因する色相欠陥ないし、譲淡むら欠
陥がある。
A fine pattern formed on an LSI wafer is formed of a plurality of thin film layers made of different materials. Therefore, the defects include pattern shape defects caused by poor planar shape of the layer,
There are hue defects or uneven tone defects due to abnormal layer thickness.

人間は顕微鏡で目視することにより、これらの欠陥を検
出1判別しているが、これを自動的に行なうためには、
パターン形状情報と色相ないし濃淡情報を分離検出する
ことが必要となる。
Humans detect and identify these defects by visually observing them with a microscope, but in order to do this automatically,
It is necessary to separately detect pattern shape information and hue or shade information.

パターン形状情報は本来段差を有するパターンエッヂに
よるものであ、す、これを能率良く検出するため暗視野
照明が有効である。しかし、暗視野照明ではエッヂ部分
だけが検出され平滑な、パターン内の色相や濃淡は検出
することができない。−万、明視野照明では色相や濃淡
むらが検出できるが、同時にパターンエッヂも検出され
てしまい、これらの情報を分離しようとすると膨大な画
像処理を必要とし、実用性がない。
Pattern shape information is originally based on pattern edges having steps, and dark field illumination is effective for efficiently detecting this. However, with dark field illumination, only the edge portions are detected, and the smooth hues and shades within the pattern cannot be detected. - Although bright-field illumination can detect hue and density unevenness, pattern edges are also detected at the same time, and attempting to separate this information requires extensive image processing, making it impractical.

〔発明の目的〕[Purpose of the invention]

本発明は、上記問題点を解決するため、パターン形状情
報と色相・濃淡情報を分離検出し、複雑微細なパターン
を自動検査する方法及びその装置を提供することにある
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method and apparatus for automatically inspecting complex and fine patterns by separately detecting pattern shape information and hue/shade information.

〔発明の概要〕[Summary of the invention]

即ち本発明は上記目的を達成するために、波長、偏光方
向など光学的性質の異なる光を明視野照明、暗視野照明
の光源に用い、これらを同時に被検査面の同一箇所に照
明し、この部分を同じ対物レンズで検出し、検出光路の
途中で波長の差を利用して、明視野照明で得られる光学
像と暗視野照明で得られる光学像を分離し、各各を像検
出器で検出し、画像処理することにより欠陥を検出する
ことを特徴とするものである。
That is, in order to achieve the above object, the present invention uses light having different optical properties such as wavelength and polarization direction as a light source for bright field illumination and dark field illumination, and simultaneously illuminates the same spot on the surface to be inspected. The area is detected with the same objective lens, and the optical image obtained with bright-field illumination and the optical image obtained with dark-field illumination are separated using the difference in wavelength in the middle of the detection optical path, and each image is detected using an image detector. It is characterized by detecting defects by detecting them and performing image processing.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。第1
図は暗視野照明系として光源1、コンデンサレンズ2、
暗視野照明用波長選定のための狭帯域フィルタ(波長λ
1とする)3、リング状開口スリット4、リング状ミ2
−5、放物凹面鏡6、また明視野照明系として光源7、
コンデンサレンズ8、波長選定フィルタ9、円形開口ス
リット10、ハーフミラ−11、結像系として対物レン
ズ12、波長分離ミラー(例えばダイクロツクミラー)
13、および暗視野像検出イメージセンサ14、明視野
像検出イメージセンサ15.2値化回路16、メモリ1
7、画像比較回路18.2値化回路19、メモリ20、
画像比較回路21、判定部22、窟テーブル23、送り
モータ24、テーブル制御回路25、全体制御回路26
で構成される。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows a dark field illumination system with light source 1, condenser lens 2,
Narrow band filter for wavelength selection for dark field illumination (wavelength λ
1) 3, ring-shaped opening slit 4, ring-shaped opening slit 2
−5, a parabolic concave mirror 6, and a light source 7 as a bright field illumination system;
Condenser lens 8, wavelength selection filter 9, circular aperture slit 10, half mirror 11, objective lens 12 as an imaging system, wavelength separation mirror (e.g. dichroic mirror)
13, and a dark-field image detection image sensor 14, a bright-field image detection image sensor 15, a binarization circuit 16, and a memory 1.
7, image comparison circuit 18. binarization circuit 19, memory 20,
Image comparison circuit 21, determination unit 22, cave table 23, feed motor 24, table control circuit 25, overall control circuit 26
Consists of.

被検査物、例えばLSIウェハ27は℃テーブル23の
上にあらかじめ正確に位置決めされ、固定されている。
An object to be inspected, for example, an LSI wafer 27, is accurately positioned and fixed on the °C table 23 in advance.

位置決め、固定機構は図示していない。27上のパター
ンは暗視野、及び明視野の照明がなされている。暗視野
照明はフィルタ5により波長λに限定され、放物凹面鏡
6Vcより、パターン上に周囲斜め方向から照らされる
。明視野照明はフィルタ9により波長λを含まない光に
限定され、ハーフミラ−11を介し、対物レンズ12に
より上方から照らされる。パターンは対物レンズ12に
より拡大され、波長λの暗視野像はイメージセンサ14
上に、波長λ以外の明視野像はイメージセ/す15上に
結像される。結像系における波長及び光路分離は薄膜ミ
ラー13によりなされる。
Positioning and fixing mechanisms are not shown. The pattern on 27 is illuminated in dark field and bright field. The dark-field illumination is limited to a wavelength λ by a filter 5, and is illuminated onto the pattern from an oblique direction around the pattern by a parabolic concave mirror 6Vc. Bright field illumination is limited to light that does not include the wavelength λ by a filter 9, and is illuminated from above by an objective lens 12 via a half mirror 11. The pattern is magnified by the objective lens 12, and the dark field image at wavelength λ is captured by the image sensor 14.
Above, bright-field images at wavelengths other than λ are formed on the image sensor 15. Wavelength and optical path separation in the imaging system is performed by a thin film mirror 13.

今、LSIウェハ27上に第9図に示すパターンがある
とする。第9図(a)はパターンの平面図、同図(b)
は(a)の一点鎖線部分の断面図である。すなわち、周
囲に厚い8i0.の表面層があり、パターン部分だけ8
i0.の層が極端に5すくなっている。ここでAで示す
部分はパターン形状が一部欠けた、すなわち輪郭形状に
異常をきたしている欠陥、Bで示す部分は8i0.の層
の厚さが局部的に厚い欠陥である。Aのようなパターン
形状欠陥はパターンエッヂの平面形状の異常として検出
される。これに対しBのような透明薄膜の厚さ異常の欠
陥はパターンエッヂの平面形状は伺ら異常ではないが、
平面画像の明るさや色相が変化する。これは薄膜の厚さ
変化による透過光量の変化または、薄膜表面と下面とか
らの反射光の干渉による干渉色が厚さの変化に伴ない変
化するために生じるものである。第9図は−層のパター
ン例を示したが多層パターンにおいても同様の欠陥を生
じる。さて、このウエノAパターンを検出すると14の
結像面上には第2図(a)のような暗視野照明像が結像
する。すなわち、パターンエッヂが明る(検出され、そ
の他のほぼ平滑な面は暗(検出される。第2図(b)は
、(a)の中央に示した一点鎖線上の映像信号を例示し
ており、エッヂが明る(、明瞭に検出される。
Assume that there is a pattern shown in FIG. 9 on the LSI wafer 27. Figure 9(a) is a plan view of the pattern, Figure 9(b)
FIG. 3 is a sectional view taken along a dashed-dotted line in FIG. That is, a thick 8i0. There is a surface layer of 8
i0. The number of layers is extremely small. Here, the part indicated by A is a defect in which a part of the pattern shape is missing, that is, the outline shape is abnormal, and the part indicated by B is a defect of 8i0. This is a defect where the layer thickness is locally thick. A pattern shape defect like A is detected as an abnormality in the planar shape of the pattern edge. On the other hand, the defect of abnormal thickness of transparent thin film like B shows that the planar shape of the pattern edge is not abnormal, but
The brightness and hue of the flat image change. This occurs because the amount of transmitted light changes due to a change in the thickness of the thin film, or because the interference color due to the interference of reflected light from the surface and bottom surface of the thin film changes with the change in thickness. Although FIG. 9 shows an example of a negative layer pattern, similar defects occur in multilayer patterns as well. Now, when this Ueno A pattern is detected, a dark field illumination image as shown in FIG. 2(a) is formed on the imaging plane 14. In other words, the pattern edges are bright (detected), and the other almost smooth surfaces are dark (detected). Figure 2 (b) exemplifies the video signal on the dashed line shown in the center of (a). , the edges are bright (, clearly detected.

従って2値化回路16で第2図(b)に鎖線で示す2値
化閾値Vrn1で2値化すると、第2図(c)のように
エッヂ部が値1、その他が0の安定した2値パターンが
得られる。−万15の結像面上には例えば第6図(a)
のような明視野照明像が結像する。
Therefore, when the binarization circuit 16 binarizes with the binarization threshold Vrn1 shown by the chain line in FIG. 2(b), the edge part becomes a stable value of 1 and the rest has a value of 0, as shown in FIG. 2(c). A value pattern is obtained. -For example, on the imaging plane of 15,000
A bright field illumination image like this is formed.

すなわち、各パターンの平滑面がそのパターンの性状に
より決まる濃淡を有している。第3図の例では骨状パタ
ーンの右にパターン膜厚の異常があり、濃淡が変化して
いる。この部分は欠陥である。第6図(blは第6図(
alの一点鎖線上の映像信号を示しており、上記欠陥部
で若干出力が低下している。この部分が暗らく(値0)
で検出されるように閾値VTH2を設定しておき、パタ
ーンを2値化するとほぼ均一な明るさを持つパターン部
を値1、変色や濃淡変化を生じている部分とエッヂ及び
その周辺を値0とする2値パターンが得られる。
That is, the smooth surface of each pattern has shading determined by the properties of the pattern. In the example shown in FIG. 3, there is an abnormality in the pattern film thickness to the right of the bone-like pattern, and the shading changes. This part is defective. Figure 6 (bl is Figure 6 (
The video signal shown on the dashed line of al is shown, and the output is slightly reduced at the defective portion. This part is dark (value 0)
The threshold value VTH2 is set so that when the pattern is binarized, the pattern part with almost uniform brightness is set to a value of 1, and the part where discoloration or shading changes, edges, and their surroundings are set to a value of 0. A binary pattern is obtained.

第4図は検査対象の例としてLSIウェハを示している
。ウェハ27上には、LSIチップ28が繰返し、整列
して配置されている。イメージセンサ1.4.15にり
・ニア・イメージセンサな用いる場合、イメージセンサ
は第4図実線29の視野を有しており、■テーブル23
の走査によりリニア・イメージセンナの視野はジグザグ
の矢印30のように移動する。従ってメモリ17.20
には、検出パターンが順次記憶されてゆき、かつ検出中
のパターンの頂度1チップ前の同一位置のパターン信号
が読出されてゆく。従って比較回路18゜21では検出
中のパターンと1チツプ前のパターンの同一位置のパタ
ーンが比較され、不一致が存在する時、欠陥判定部22
に不一致が存在したこと、その大きさ、位置を通知する
。欠陥判定部は18または21からあらかじめ設定した
値以上の大きさを持つ不一致の存在が通知された時、そ
の位置を欠陥位置として記憶する。欠陥位置と欠陥の大
きさ等出力回路については特に図示していない。全体制
御回路26は上記した一連の動作のシーケンスを制御す
る。以上のように本実施例ではパターンの輪郭形状と濃
淡情報を暗視野照明、明視野照明で同時に分離検出、自
動検査することができる。
FIG. 4 shows an LSI wafer as an example of the object to be inspected. On the wafer 27, LSI chips 28 are repeatedly arranged in alignment. Image sensor 1.4.15 When using a near image sensor, the image sensor has a field of view as shown by the solid line 29 in Figure 4, and ■Table 23
By scanning, the field of view of the linear image sensor moves like a zigzag arrow 30. Therefore memory 17.20
, the detection patterns are sequentially stored, and the pattern signal at the same position one chip before the top of the pattern being detected is read out. Therefore, the comparison circuit 18.21 compares the pattern being detected and the pattern at the same position of the pattern one chip before, and when there is a mismatch, the defect determination section 22
Notify that there is a discrepancy, its size, and location. When the defect determination unit is notified from 18 or 21 of the existence of a mismatch having a size greater than a preset value, the defect determination unit stores the position as a defect position. A circuit for outputting the defect position, defect size, etc. is not particularly shown. The overall control circuit 26 controls the sequence of the above-described operations. As described above, in this embodiment, the contour shape and shading information of a pattern can be simultaneously detected separately and automatically inspected using dark field illumination and bright field illumination.

本実施例ではリニアイメージセンサを使用したが、2次
元のイメージセンナを使用し、M′テーブルをステップ
送り、あるいは連続送りでパルス状発光を照明光源にさ
せても良い。また本実施例では、検出画像を2値化し、
2値画像で比較したが、A/D変換器で多値化し、多値
画像で比較しても良い。また、本実施例では1つ前のチ
ップとの比較検査を例示したが、これは1チツプ内の繰
返しパターン間の比較検査、2つのウェハの比較検査、
設計パターンなどあらかじめ用意できる良品パターン情
報との比較検査であっても良い。
Although a linear image sensor is used in this embodiment, a two-dimensional image sensor may be used and the M' table may be fed stepwise or continuously to emit pulsed light as the illumination light source. In addition, in this embodiment, the detected image is binarized,
Although the comparison was made using binary images, it is also possible to convert the images into multi-valued images using an A/D converter and compare them using multi-valued images. In addition, in this embodiment, a comparative inspection with the previous chip was illustrated, but this is also a comparative inspection between repeated patterns within one chip, a comparative inspection of two wafers,
It may also be a comparative inspection with non-defective pattern information that can be prepared in advance, such as a design pattern.

第5図は本発明の他の一実施例を示している。FIG. 5 shows another embodiment of the invention.

暗視野照明系は光源1、コンデンサレンズ2、波長λの
フィルタ3、偏光板兼リング状スリット31、リング状
ミラー5、放物凹面鋺6で構成されており、対象面に周
囲より一様な暗視野偏光照明を行なう。偏向はS偏光(
振動が被検査面に並行)である。明視野照明系は波長λ
とは異なる波長成分λ′、λ″を持つ2つの光源52 
、35、コンデンサレンズ34、波長λ′の狭帯域フィ
ルタ35、波長λ“の狭帯域フィルタ36、λ′とλ″
を合成するハーフミラ−37、円形開口スリット10、
ハーフミラ−11で構成される。検出系は対物レンズ1
人明視野、暗視野照明光分離用ミラー38、これは波長
λのみ透過、λ′、λ″は反射、明視野照明光をλ′、
λ“K分離する分離用ミラー39、λ′の狭帯域フィル
タ40、λ″の狭帯域フィルタ41、明視野λ′用のイ
メージセンサ42、明視野λ″用のイメージセンサ43
から構成される。判定回路部はA/D変換器44、メモ
リ45、色相抽出回路46、画像比較回路47.4B、
判定部22で構成され、これらと沿′テーブル23、送
りモータ24、テーブル制御回路25、全体制御回路2
6で構成される。
The dark field illumination system is composed of a light source 1, a condenser lens 2, a filter 3 with a wavelength λ, a polarizing plate/ring slit 31, a ring mirror 5, and a parabolic concave pin 6. Perform dark field polarized illumination. Polarization is S polarized light (
vibration is parallel to the surface to be inspected). Bright field illumination system has wavelength λ
Two light sources 52 with different wavelength components λ′, λ″
, 35, condenser lens 34, narrow band filter 35 with wavelength λ', narrow band filter 36 with wavelength λ'', λ' and λ''
half mirror 37, circular opening slit 10,
It is composed of a half mirror 11. The detection system is objective lens 1
Human bright field and dark field illumination light separation mirror 38, which transmits only the wavelength λ, reflects λ' and λ'', and transmits the bright field illumination light to λ',
Separation mirror 39 for separating λ"K, narrow band filter 40 for λ', narrow band filter 41 for λ", image sensor 42 for bright field λ', image sensor 43 for bright field λ"
It consists of The determination circuit section includes an A/D converter 44, a memory 45, a hue extraction circuit 46, an image comparison circuit 47.4B,
It consists of a determination section 22, along with a parallel table 23, a feed motor 24, a table control circuit 25, and an overall control circuit 2.
Consists of 6.

ここで偏光板兼リング状スリット31は第6図のようK
、偏光板を分割、組合せることにより周囲はぼ一様なS
偏光暗視野照明が可能となる。
Here, the polarizing plate and ring-shaped slit 31 is K as shown in FIG.
, by dividing and combining polarizing plates, the surrounding area becomes uniform S
Polarized darkfield illumination becomes possible.

S偏光を用いる理由は、多層の複雑なパターンの内置上
層パターンをコントラスト良く検出するのに有効だから
である。第10図はウェハ多層パターンの例としてダイ
ナミックRAMの構造を示している。すなわちデータ@
49がAノ、ワード線50が多結晶シリコンで形成され
、同じく多結・ 晶シリコンの電極51とP基板52の
反転層領域からなる記憶領域とが、データa49の真下
でデータ線方向にレイアウトされているものである。
The reason why S-polarized light is used is that it is effective for detecting an internal upper layer pattern of a multilayer complex pattern with good contrast. FIG. 10 shows the structure of a dynamic RAM as an example of a wafer multilayer pattern. i.e. data@
49 is A, word line 50 is formed of polycrystalline silicon, and a storage area consisting of an electrode 51 also made of polycrystalline silicon and an inversion layer region of P substrate 52 is laid out directly below data a 49 in the data line direction. This is what is being done.

なおワード線50とデータ線49との間には絶縁膜が形
成されている。このような多種類の層からなるLSIウ
ェハの各層のパターンを検査するためには、最上層が形
成される毎に、最上層が正しく形成されたかを検査する
必要があり、最上層の顕在化検出はこの目的に合致する
。その原理は第7図に示すよ5に、S偏光がP偏光に対
し反射率が高い、すなわち、多層パターンに照明した光
の多くが表面で反射するため最上層のパターンエッヂが
顕在化されるものである。暗視野照明像はイメージセン
サ14で検出され、45゜47により1チツプ前のパタ
ーンの同一位置の暗視野照明像と比較検査される。この
点は第1の実施例と同一である。
Note that an insulating film is formed between the word line 50 and the data line 49. In order to inspect the pattern of each layer of an LSI wafer consisting of many types of layers, it is necessary to inspect whether the top layer has been formed correctly each time the top layer is formed. Detection meets this purpose. The principle is shown in Figure 7. 5. S-polarized light has a higher reflectance than P-polarized light. In other words, most of the light illuminated on a multilayer pattern is reflected from the surface, making the pattern edges of the top layer obvious. It is something. The dark-field illumination image is detected by the image sensor 14 and compared with the dark-field illumination image at the same position of the pattern one chip before by 45° 47. This point is the same as the first embodiment.

一方、明視野照明は、対象パターンの色調変化を検出し
やすい2つの波長λ′、λ″をあらかじめ設定しておき
、これで照明、検出光学像を波長λ′、λ″で分離し、
その像をそれぞれイメージセンサ42 、45で検出す
る。色相抽出回路46は正確に色相を抽出する必要はな
く、多層薄膜の微妙な色調変化が検出できれば良い。一
般に薄膜は明視野照明で第8図に例示されるような干渉
色を生じ、その分光反射率は膜厚tVCより異なる。従
って特徴の顕著に出る2波長λ′、λ″が選定されてい
れば、各波長での出力なV(λ)、■(λ“)とすると
、■(λ’)/ V(λ“)を求めることにより、色調
変化を顕在化することができる。ここでV(λ“)<V
TI[5の時、割算を行なわず、出力をゼロとすること
により、パターンエッヂなと暗い部分での誤検出を防ぐ
ととができると共に、濃淡変化における第一の実施例と
同じ効果をもたらすことができる。46では以上の処理
を行なう。45.46は第1の実施例におけると同様の
機能をし、色相および濃淡変化を有する不一致を検出、
22において欠陥と認識できる。
On the other hand, in bright-field illumination, two wavelengths λ' and λ'' are set in advance that make it easy to detect color changes in the target pattern, and the illumination and detection optical images are separated by the wavelengths λ' and λ''.
The images are detected by image sensors 42 and 45, respectively. The hue extraction circuit 46 does not need to accurately extract the hue, but only needs to be able to detect subtle changes in tone of the multilayer thin film. Generally, a thin film produces an interference color as illustrated in FIG. 8 under bright field illumination, and its spectral reflectance differs from the film thickness tVC. Therefore, if the two wavelengths λ' and λ'' where the characteristics are noticeable are selected, the output at each wavelength is V(λ) and ■(λ"), then ■(λ')/V(λ") By determining the color tone change, it is possible to make the color tone change obvious.Here, V(λ")<V
By not performing division and setting the output to zero when TI[5], it is possible to prevent false detection in dark areas such as pattern edges, and to achieve the same effect as the first embodiment in terms of density changes. can bring. At step 46, the above processing is performed. 45 and 46 have the same function as in the first embodiment, detecting discrepancies with hue and shade changes,
22 can be recognized as a defect.

以上第二の実施例においても第一の実施例における付記
事項(2次元イメージセンサや比較対象のバリエーショ
ン)は成立する。また第二の実施例ではλ′、λ″の2
波長を使用する場合を例示したが、青、赤、緑の3原色
で検出、色の位相角度を求める方式であっても良い。ま
たその他の複数波長を利用する方式であっても良い。
The additional items in the first embodiment (variations of the two-dimensional image sensor and comparison target) also hold true in the second embodiment. In addition, in the second embodiment, 2 of λ′ and λ″
Although the case in which wavelengths are used has been exemplified, a method of detecting the three primary colors of blue, red, and green and determining the phase angle of the colors may also be used. Alternatively, other methods using multiple wavelengths may be used.

また波長光源を用い、波長λだけをカットし、複数のイ
メージセンサで複数波長の画像を検出する方式であって
も良い。
Alternatively, a method may be used in which a wavelength light source is used, only the wavelength λ is cut, and images of multiple wavelengths are detected using multiple image sensors.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、同一パターンの同
一位置のパターン輪郭情報とパターンの濃淡や色相変化
を同時に検出することができるため、Siウェハ上に形
成されたLSIハターンなど複雑多層な薄膜パターンを
能率良(、すなわちシンプルな構造で高速に検査するこ
とが可能である。また輪郭情報と濃淡や色相変化を分離
して処理するため、パターン欠陥が、輪郭形状異常か、
薄膜厚さ変化に起因する欠陥かを容易に識別することが
できる。
As explained above, according to the present invention, it is possible to simultaneously detect pattern outline information at the same position of the same pattern and pattern shading and hue changes, so that it is possible to simultaneously detect pattern contour information at the same position of the same pattern, and to detect complex multilayer thin films such as LSI patterns formed on Si wafers. Patterns can be inspected efficiently (i.e., with a simple structure and at high speed. In addition, since contour information and shading and hue changes are processed separately, it is possible to identify whether a pattern defect is an abnormal contour shape or not.
Defects caused by changes in thin film thickness can be easily identified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための全体構成図
、第2図は暗視野照明におけるパターン検出状態と2値
化を説明する図、第3図は明視野照明におけるパターン
検出状態と2値化を説明する図、第4図は実施例忙おけ
る検出視野と検出シーケンスを説明する図、第5図は本
発明の他の一実施例を説明するための全体構成図、第6
図は第5図の実施例におけるリング状偏光板の具体例を
説明する図、第7図はS偏光とP偏光の反射特性の差を
説明する図、第8図は薄膜の干渉色を説明するための分
光反射率特性を示す図、第9図(a)はLSIウェハ上
のパターンを示す平面図、第9図(b)は第9図(al
の断面を示す図、第10図はウェハ多層パターンの例と
してダイナミック調の構造を示した図である。 1・・・・・・光1i        2・・・・・・
コンデンサレンズ3・・・・・・狭帯域フィルタ   
4・・・・・・リング状開口スリット5・・・・・・リ
ング状ミラー  6・・・・・・放物凹面鏡7・・・・
・・光源8・・曲コンデンサレンズ9・・・・・・波長
選定フィルタ 10・・・・・・円形開口スリット11
・・・・・・ハーフミラ−12・・・・・・対物レンズ
13・・・・・・波長分離ミラー  14・・・・・・
暗視野像検出イメージセンサ 15・・・・・明視野像検出イメ 16・・・・・・2
値化回路−ジセンサ 17 、20・・・・・・メモ!J   18,21・
・・・・・画像比較回路22・・・・・・判定部   
   27・・・・・・LSIウェハ箭1 目 第2図     第3図 (α)               (d)(b) 
  ’          (b)第十図 第 タ 図 第7図 第7図 箋8図 ×   N   ′/幻良 篤9図 (とλ−ン (b) 第1O図
Figure 1 is an overall configuration diagram for explaining one embodiment of the present invention, Figure 2 is a diagram for explaining pattern detection status and binarization in dark-field illumination, and Figure 3 is a diagram for explaining pattern detection status in bright-field illumination. 4 is a diagram illustrating the detection field of view and the detection sequence in this embodiment. FIG. 5 is an overall configuration diagram illustrating another embodiment of the present invention.
The figure is a diagram explaining a specific example of the ring-shaped polarizing plate in the embodiment of Figure 5, Figure 7 is a diagram explaining the difference in the reflection characteristics of S-polarized light and P-polarized light, and Figure 8 is a diagram explaining the interference color of the thin film. Figure 9(a) is a plan view showing the pattern on an LSI wafer, and Figure 9(b) is a diagram showing the spectral reflectance characteristics for
FIG. 10 is a diagram showing a dynamic structure as an example of a wafer multilayer pattern. 1... Light 1i 2...
Condenser lens 3...Narrowband filter
4... Ring-shaped opening slit 5... Ring-shaped mirror 6... Parabolic concave mirror 7...
... Light source 8 ... Curved condenser lens 9 ... Wavelength selection filter 10 ... Circular aperture slit 11
...Half mirror 12...Objective lens 13...Wavelength separation mirror 14...
Dark field image detection image sensor 15...Bright field image detection image 16...2
Value conversion circuit - sensor 17, 20... Memo! J 18,21・
... Image comparison circuit 22 ... Judgment section
27... LSI wafer rack 1 Figure 2 Figure 3 (α) (d) (b)
' (b) Figure 10 Figure 7 Figure 7 Notebook 8 x N '/Genryo Atsushi Figure 9 (and λ-n (b) Figure 1O

Claims (1)

【特許請求の範囲】 1、波長の異なる暗視野照明と明視野照明を同時に被検
査面の同一箇所に照明し、これを対物レンズで検出し、
検出光路途中で波長の相違を利用して明視野照明で得ら
れる光学像と暗視野照明で得られる光学像を分離し、各
々を像検出器で検出し、明視野照明画像からパターンの
濃淡変化や色相変化による欠陥、暗視野照明画像からパ
ターン輪郭の欠陥を検出することを特徴とする微細パタ
ーンの欠陥検出方法。 2、上記暗視野照明として周囲からS偏光を照射し、最
上層パターンを顕在化させることを特徴とする特許請求
の範囲第1項記載の微細パターンの欠陥検出方法。 3、波長の異なる暗視野照明装置と明視野照明装置と、
顕微鏡検出光学系内に波長により暗視野照明画像と明視
野照明画像の光路を分離する手段と、暗視野照明画像と
明視野照明画像を検出する2つ以上の像検出器とこれら
より得た映像信号を処理する画像処理・判定回路を有し
、明視野照明画像からパターンの濃淡変化や色相変化に
よる欠陥を、暗視野照明画像からパターン輪郭の欠陥を
検出することを特徴とする微細パターンの欠陥検出装置
。 4、上記暗視野照明装置は周囲からS偏光を照射する手
段を有することを特徴とする特許請求の範囲第3項記載
の微細パターンの欠陥検出装置。
[Claims] 1. Dark-field illumination and bright-field illumination with different wavelengths are simultaneously illuminated on the same spot on the surface to be inspected, and this is detected with an objective lens;
In the middle of the detection optical path, the optical image obtained with bright field illumination and the optical image obtained with dark field illumination are separated using the difference in wavelength, and each is detected by an image detector, and changes in pattern density are detected from the bright field illumination image. A method for detecting defects in fine patterns, characterized by detecting defects due to color changes, hue changes, and pattern contour defects from dark-field illumination images. 2. The method for detecting defects in fine patterns according to claim 1, characterized in that S-polarized light is irradiated from the surroundings as the dark-field illumination to make the uppermost layer pattern visible. 3. A dark field illumination device and a bright field illumination device with different wavelengths,
A means for separating the optical path of a dark-field illumination image and a bright-field illumination image according to wavelength in the microscope detection optical system, two or more image detectors for detecting the dark-field illumination image and the bright-field illumination image, and images obtained from these. A fine pattern defect characterized by having an image processing/judgment circuit that processes signals, and detecting defects due to changes in pattern shading or hue from bright-field illumination images, and defects in pattern contours from dark-field illumination images. Detection device. 4. The micro pattern defect detection device according to claim 3, wherein the dark field illumination device has means for irradiating S-polarized light from the surroundings.
JP15121184A 1984-07-23 1984-07-23 Method and device for detecting defect of fine pattern Granted JPS6129712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15121184A JPS6129712A (en) 1984-07-23 1984-07-23 Method and device for detecting defect of fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15121184A JPS6129712A (en) 1984-07-23 1984-07-23 Method and device for detecting defect of fine pattern

Publications (2)

Publication Number Publication Date
JPS6129712A true JPS6129712A (en) 1986-02-10
JPH0437922B2 JPH0437922B2 (en) 1992-06-22

Family

ID=15513662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15121184A Granted JPS6129712A (en) 1984-07-23 1984-07-23 Method and device for detecting defect of fine pattern

Country Status (1)

Country Link
JP (1) JPS6129712A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605115A1 (en) * 1986-10-01 1988-04-15 Primat Didier Multi channel optical acquisition device with integral illumination
JPS63190261A (en) * 1987-01-31 1988-08-05 Pentel Kk Battery
JPS63128730U (en) * 1987-02-16 1988-08-23
EP0374694A2 (en) * 1988-12-23 1990-06-27 Hitachi, Ltd. Defect detection system and method for pattern to be inspected
JPH07113752A (en) * 1993-10-18 1995-05-02 Murata Mach Ltd Stain inspection method for package
JPH0868618A (en) * 1995-07-17 1996-03-12 Hitachi Ltd System and method for manufacture of semiconductor device
JPH1090192A (en) * 1996-08-29 1998-04-10 Kla Instr Corp Optical inspection of specimen using multi-channel response from the specimen
JPH11237344A (en) * 1998-02-19 1999-08-31 Hitachi Ltd Method and apparatus for inspection of defect
WO1999066314A1 (en) * 1998-06-16 1999-12-23 Orbotech Ltd. Illuminator for inspecting substantially flat surfaces
WO2000033025A1 (en) * 1998-11-30 2000-06-08 Olympus Optical Co., Ltd. Measuring instrument
JP2004301847A (en) * 1998-07-28 2004-10-28 Hitachi Ltd Defects inspection apparatus and method
JP2005300553A (en) * 1998-07-28 2005-10-27 Hitachi Ltd Defect inspection device and method
JP2005308725A (en) * 2004-03-26 2005-11-04 Sumitomo Osaka Cement Co Ltd Device for inspecting defect in transparent plate
JP2006313146A (en) * 2005-04-08 2006-11-16 Omron Corp Defect inspection method, and defect inspection device using same
JP2006330007A (en) * 1998-07-28 2006-12-07 Hitachi Ltd Defect inspection device and its method
JP2007078466A (en) * 2005-09-13 2007-03-29 Tokyo Seimitsu Co Ltd Visual inspection device and method therefor
JP2007147475A (en) * 2005-11-29 2007-06-14 Hitachi High-Technologies Corp Optical inspection device and method therefor
US7443496B2 (en) 1991-04-02 2008-10-28 Hitachi, Ltd. Apparatus and method for testing defects
JP2009222689A (en) * 2008-03-19 2009-10-01 Nuflare Technology Inc Inspection apparatus
JP2010538272A (en) * 2007-08-31 2010-12-09 ケーエルエー−テンカー・コーポレーション System and method for examining a sample in two separate channels simultaneously
JP2018197695A (en) * 2017-05-24 2018-12-13 株式会社カネカ Electronic component exterior appearance inspection method and exterior appearance inspection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317468B2 (en) * 2007-12-19 2013-10-16 株式会社日立ハイテクノロジーズ Defect inspection equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767844A (en) * 1980-10-15 1982-04-24 Nippon Kogaku Kk <Nikon> Surface inspecting device
JPS58120106A (en) * 1982-01-12 1983-07-16 Hitachi Ltd Detecting device for focal point
JPS5977345A (en) * 1982-10-27 1984-05-02 Toshiba Corp Surface defect detecting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767844A (en) * 1980-10-15 1982-04-24 Nippon Kogaku Kk <Nikon> Surface inspecting device
JPS58120106A (en) * 1982-01-12 1983-07-16 Hitachi Ltd Detecting device for focal point
JPS5977345A (en) * 1982-10-27 1984-05-02 Toshiba Corp Surface defect detecting method

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605115A1 (en) * 1986-10-01 1988-04-15 Primat Didier Multi channel optical acquisition device with integral illumination
JPS63190261A (en) * 1987-01-31 1988-08-05 Pentel Kk Battery
JPS63128730U (en) * 1987-02-16 1988-08-23
JPH0541551Y2 (en) * 1987-02-16 1993-10-20
EP0374694A2 (en) * 1988-12-23 1990-06-27 Hitachi, Ltd. Defect detection system and method for pattern to be inspected
JPH02170279A (en) * 1988-12-23 1990-07-02 Hitachi Ltd Method and device for detecting defect of pattern to be checked
US7443496B2 (en) 1991-04-02 2008-10-28 Hitachi, Ltd. Apparatus and method for testing defects
US7940383B2 (en) 1991-04-02 2011-05-10 Hitachi, Ltd. Method of detecting defects on an object
US7692779B2 (en) 1991-04-02 2010-04-06 Hitachi, Ltd. Apparatus and method for testing defects
US7639350B2 (en) 1991-04-02 2009-12-29 Hitachi, Ltd Apparatus and method for testing defects
JPH07113752A (en) * 1993-10-18 1995-05-02 Murata Mach Ltd Stain inspection method for package
JPH0868618A (en) * 1995-07-17 1996-03-12 Hitachi Ltd System and method for manufacture of semiconductor device
JPH1090192A (en) * 1996-08-29 1998-04-10 Kla Instr Corp Optical inspection of specimen using multi-channel response from the specimen
JPH11237344A (en) * 1998-02-19 1999-08-31 Hitachi Ltd Method and apparatus for inspection of defect
GB2357577B (en) * 1998-06-16 2003-08-20 Orbotech Ltd Illuminator for inspecting substantially flat surfaces
GB2357577A (en) * 1998-06-16 2001-06-27 Orbotech Ltd Illuminator for inspecting substantially flat surfaces
WO1999066314A1 (en) * 1998-06-16 1999-12-23 Orbotech Ltd. Illuminator for inspecting substantially flat surfaces
JP2004301847A (en) * 1998-07-28 2004-10-28 Hitachi Ltd Defects inspection apparatus and method
JP2005300553A (en) * 1998-07-28 2005-10-27 Hitachi Ltd Defect inspection device and method
JP2006330007A (en) * 1998-07-28 2006-12-07 Hitachi Ltd Defect inspection device and its method
WO2000033025A1 (en) * 1998-11-30 2000-06-08 Olympus Optical Co., Ltd. Measuring instrument
US6486964B2 (en) 1998-11-30 2002-11-26 Olympus Optical Co., Ltd. Measuring apparatus
JP2005308725A (en) * 2004-03-26 2005-11-04 Sumitomo Osaka Cement Co Ltd Device for inspecting defect in transparent plate
JP2006313146A (en) * 2005-04-08 2006-11-16 Omron Corp Defect inspection method, and defect inspection device using same
JP4716827B2 (en) * 2005-09-13 2011-07-06 株式会社東京精密 Appearance inspection apparatus and appearance inspection method
JP2007078466A (en) * 2005-09-13 2007-03-29 Tokyo Seimitsu Co Ltd Visual inspection device and method therefor
JP2007147475A (en) * 2005-11-29 2007-06-14 Hitachi High-Technologies Corp Optical inspection device and method therefor
JP2010538272A (en) * 2007-08-31 2010-12-09 ケーエルエー−テンカー・コーポレーション System and method for examining a sample in two separate channels simultaneously
JP2015215349A (en) * 2007-08-31 2015-12-03 ケーエルエー−テンカー・コーポレーションKla−Tencor Corporation Systems and method for simultaneously inspecting specimen with two distinct channels
JP2017167152A (en) * 2007-08-31 2017-09-21 ケーエルエー−テンカー・コーポレーションKla−Tencor Corporation Systems and method for simultaneously inspecting specimen with two distinct channels
JP2019015742A (en) * 2007-08-31 2019-01-31 ケーエルエー−テンカー・コーポレーションKla−Tencor Corporation Systems for simultaneously inspecting specimen with two distinct channels
JP2009222689A (en) * 2008-03-19 2009-10-01 Nuflare Technology Inc Inspection apparatus
JP2018197695A (en) * 2017-05-24 2018-12-13 株式会社カネカ Electronic component exterior appearance inspection method and exterior appearance inspection device

Also Published As

Publication number Publication date
JPH0437922B2 (en) 1992-06-22

Similar Documents

Publication Publication Date Title
JPS6129712A (en) Method and device for detecting defect of fine pattern
US7379173B2 (en) High throughput brightfield/darkfield wafer inspection system using advanced optical techniques
US5822055A (en) Optical inspection of a specimen using multi-channel responses from the specimen using bright and darkfield detection
US7440092B2 (en) Method and apparatus for detecting defects
KR930008773B1 (en) Method and apparatus for detecting circuit pattern detect
US8885037B2 (en) Defect inspection method and apparatus therefor
US5640237A (en) Method and apparatus for detecting non-uniformities in reflective surafaces
US20030063274A1 (en) Optical inspection of a specimen using multi-channel responses from the specimen
KR920007196B1 (en) Method and apparatus for detecting foreign matter
JP5281741B2 (en) Defect inspection equipment
JP4001653B2 (en) Optical inspection of samples using multichannel response from the sample
JP2007101401A (en) Visual examination device and method
JP2947513B1 (en) Pattern inspection equipment
JP2822937B2 (en) Semiconductor device manufacturing system and defect inspection method
JP3047881B2 (en) Semiconductor device manufacturing system and semiconductor device manufacturing method
JP3657076B2 (en) Wafer macro inspection method and automatic wafer macro inspection apparatus
JP2000028535A (en) Defect inspecting device
JPH0329177B2 (en)
JP3201396B2 (en) Method for manufacturing semiconductor device
JP2000028536A (en) Defect inspecting apparatus
JPH01140047A (en) Detection of massive particle in transparent thin film
JP2000258348A (en) Defect inspection apparatus
JP3271622B2 (en) Method for manufacturing semiconductor device
JPS6186637A (en) Pattern-defect detecting method
JPH0410968B2 (en)