JP2816947B2 - Connection method of multi-pole terminal battery - Google Patents

Connection method of multi-pole terminal battery

Info

Publication number
JP2816947B2
JP2816947B2 JP7076348A JP7634895A JP2816947B2 JP 2816947 B2 JP2816947 B2 JP 2816947B2 JP 7076348 A JP7076348 A JP 7076348A JP 7634895 A JP7634895 A JP 7634895A JP 2816947 B2 JP2816947 B2 JP 2816947B2
Authority
JP
Japan
Prior art keywords
electrode
battery
terminal battery
multipolar
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7076348A
Other languages
Japanese (ja)
Other versions
JPH07272711A (en
Inventor
恒夫 的場
冶久 古石
Original Assignee
株式会社ハクキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハクキン filed Critical 株式会社ハクキン
Priority to JP7076348A priority Critical patent/JP2816947B2/en
Publication of JPH07272711A publication Critical patent/JPH07272711A/en
Application granted granted Critical
Publication of JP2816947B2 publication Critical patent/JP2816947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は多極端子電池の接続法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for connecting a multipolar terminal battery.

【0002】[0002]

【従来の技術】従来より一次電池としてマンガン乾電池
その他の各種電池、二次電池として鉛蓄電池などが知ら
れており、色々な分野で活用されている。そして図3、
図5、図7、図9などに示すように、用途に応じて前記
電池を複数個直列又は並列に接続して使用することが行
われている。
2. Description of the Related Art Conventionally, manganese dry batteries and other various batteries have been known as primary batteries, and lead storage batteries and the like have been known as secondary batteries, and are used in various fields. And FIG.
As shown in FIG. 5, FIG. 7, FIG. 9, etc., a plurality of the batteries are connected in series or in parallel and used depending on the application.

【0003】負荷抵抗を一定とした場合、電池を直列に
接続すると電圧及び負荷電流が増加し、電池寿命(持続
時間)は短くなる。一方、負荷抵抗を一定とした場合、
電池を並列に接続すると電圧は同じで負荷電流は変わら
ず、電池寿命(持続時間)が延長する。
[0003] When the load resistance is fixed, when batteries are connected in series, the voltage and the load current increase, and the battery life (duration) is shortened. On the other hand, when the load resistance is constant,
If batteries are connected in parallel, the voltage is the same and the load current does not change, extending the battery life (duration).

【0004】しかし、従来の形式の電池の接続法による
と、直列又は並列に接続した際の負荷電流、閉路電圧、
電池寿命(持続時間)は必然的に定まってしまう。
However, according to the conventional battery connection method, load current, closed circuit voltage,
Battery life (duration) is inevitably determined.

【0005】[0005]

【発明が解決しようとする課題】そこで、この発明では
負荷電流、閉路電圧の増大が可能な電池の接続法を提起
することを課題とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to propose a battery connection method which can increase the load current and the closed circuit voltage.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
この発明では次のような技術的手段を講じている。 (請求項記載の発明の手段) この発明の多極端子電池の接続法では、電解質中の正極
活物質電極と負極活物質電極との間に、イオンの移動が
可能な形状とした少なくとも1つの導電性物質の電極G
を配設した多極端子電池を少なくとも2個並列に接続し
たものを、その電気的経路中に含む多極端子電池の接続
法であって、前記各多極端子電池の導電性物質の電極G
を各正極と電気的な導通状態としたことを特徴とする。 (請求項記載の発明の手段) 亦、この発明の多極端子電池の接続法では、電解質中の
正極活物質電極と負極活物質電極との間に、イオンの移
動が可能な形状とした少なくとも1つの導電性物質の電
極Gを配設した多極端子電池Aと、この多極端子電池A
と接続すべき電池Bとを、その電気的経路中に含む多極
端子電池の接続法であって、前記電池Bの負極と多極端
子電池Aの導電性物質の電極Gとを電気的な導通状態と
し、電池Bの正極からその負極を介して多極端子電池A
の導電性物質の電極Gを経由してその負極へと至る電気
的経路が形成されるようにしたことを特徴とする。 (請求項記載の発明の手段) 亦、この発明の多極端子電池の接続法では請求項記載
の手段に於いて、前記電池Bが、多極端子電池であるこ
とを特徴とする。 (請求項記載の発明の手段) 亦、この発明の多極端子電池の接続法では、電解質中の
正極活物質電極と負極活物質電極との間に、イオンの移
動が可能な形状とした少なくとも1つの導電性物質の電
極Gを配設した多極端子電池A、この多極端子電池Aと
接続すべき電池Bとを、その電気的経路中に含む多極端
子電池の接続法であって、前記多極端子電池Aの導電性
物質の電極Gと前記電池Bの正極とを電気的な導通状態
とするとともに、前記多極端子電池Aの負極と前記電池
Bの負極とを電気的な導通状態としたことを特徴とす
る。 (請求項記載の発明の手段) 亦、この発明の多極端子電池の接続法では請求項記載
の手段に於いて、前記電池Bを多極端子電池とし、前記
多極端子電池Bの導電性物質の電極Gと、前記多極端子
電池Aの正極とを電気的な導通状態としたことを特徴と
する。 (請求項記載の発明の手段) 亦、この発明の多極端子電池の接続法では請求項4又は
記載の手段に於いて、前記多極端子電池Aを、複数個
が並列に接続されたものとすることを特徴とする。 (請求項記載の発明の手段) 亦、この発明の多極端子電池の接続法では、電解質中の
正極活物質電極と負極活物質電極との間に、イオンの移
動が可能な形状とした少なくとも1つの導電性物質の電
極Gを配設した多極端子電池Aと、この多極端子電池A
と接続すべき多極端子電池Bとを、その電気的経路中に
含む多極端子電池の接続法であって、前記多極端子電池
Bの負極と多極端子電池Aの導電性物質の電極Gとを電
気的な導通状態とし、多極端子電池Bの導電性物質の電
極Gからその負極を介して多極端子電池Aの導電性物質
の電極Gを経由してその負極へと至る電気的経路が形成
されるようにしたことを特徴とする。 (請求項記載の発明の手段) 亦、この発明の多極端子電池の接続法では、請求項1乃
至7のいずれかに記載の多極端子電池の接続の仕方を1
つ又は2つ以上を組み合わせたものを、その電気的経路
中に含むことを特徴とする。
In order to solve the above-mentioned problems, the present invention employs the following technical means. (Means of the Invention According to Claim 1 ) In the method for connecting a multipolar terminal battery according to the present invention, at least one electrode having a shape capable of transferring ions is provided between the positive electrode active material electrode and the negative electrode active material electrode in the electrolyte. Electrodes G of two conductive substances
A method for connecting a multipolar terminal battery including, in an electric path, at least two multipolar terminal batteries connected in parallel, wherein the electrodes G of a conductive material of each of the multipolar terminal batteries are provided.
Is electrically connected to each positive electrode. (Means of the Invention According to Claim 2 ) In the method for connecting a multipolar terminal battery according to the present invention, the shape is such that ions can move between the positive electrode active material electrode and the negative electrode active material electrode in the electrolyte. A multi-electrode terminal battery A provided with at least one electrode G made of a conductive material;
And a battery B to be connected in the electrical path of the multi-pole terminal battery, wherein the negative electrode of the battery B and the electrode G of a conductive material of the multi-pole terminal battery A are electrically connected. A multi-terminal battery A is set in a conductive state from the positive electrode of the battery B via the negative electrode thereof.
An electric path to the negative electrode via the conductive material electrode G is formed. (Means of the Invention According to Claim 3 ) In the method of connecting a multi-pole terminal battery according to the present invention, the battery according to the second aspect is characterized in that the battery B is a multi-pole terminal battery. (Means of the Invention According to Claim 4 ) In the method for connecting a multipolar terminal battery according to the present invention, the shape is such that ions can move between the positive electrode active material electrode and the negative electrode active material electrode in the electrolyte. A method for connecting a multipolar terminal battery including at least one electrode G made of a conductive substance and a battery B to be connected to the multipolar terminal battery A in its electric path. Thus, the electrode G of the conductive substance of the multipolar terminal battery A and the positive electrode of the battery B are brought into an electrically conductive state, and the negative electrode of the multipolar terminal battery A and the negative electrode of the battery B are electrically connected. It is characterized in that it is in a conductive state. (Means of the Invention According to Claim 5 ) In the method for connecting a multipolar terminal battery according to the present invention, in the means according to claim 4 , the battery B is a multipolar terminal battery, and An electrode G made of a conductive material and the positive electrode of the multipolar terminal battery A are electrically connected. (Means of the Invention According to Claim 6 ) In the method for connecting a multipolar terminal battery according to the present invention, claim 4 or
5. The means according to claim 5 , wherein a plurality of the multipolar terminal batteries A are connected in parallel. (Means of the Invention According to Claim 7 ) In the method for connecting a multipolar terminal battery according to the present invention, the shape is such that ions can move between the positive electrode active material electrode and the negative electrode active material electrode in the electrolyte. A multi-electrode terminal battery A provided with at least one electrode G made of a conductive material;
And a multi-pole terminal battery B to be connected to the multi-pole terminal battery, wherein the negative electrode of the multi-pole terminal battery B and the electrode of a conductive material of the multi-pole terminal battery A are provided. G is electrically connected to the electrode G of the conductive material of the multi-polar terminal battery B via the negative electrode thereof through the conductive material electrode G of the multi-polar terminal battery A. A characteristic path is formed. (Means of the Invention According to Claim 8 ) In the method of connecting a multi-pole terminal battery according to the present invention, claim 1
How to connect the multi-terminal battery according to any one of Itaru 7 1
One or a combination of two or more is included in the electrical path.

【0007】上記多極端子電池の構成として、前記正極
活物質電極と負極活物質電極との間に電解隔膜を有する
こととしてもよい。また、前記導電性物質電極Gを、前
記電解隔膜の片側或いは両側の近傍に配設してもよい。
[0007] In the configuration of the multipolar terminal battery, an electrolytic diaphragm may be provided between the positive electrode active material electrode and the negative electrode active material electrode. Further, the conductive material electrode G may be disposed near one side or both sides of the electrolytic diaphragm.

【0008】前記導電性物質電極Gは炭素等の非金属、
又はマグネシウムよりイオン化傾向の小さな金属の単体
若しくは合金を基材とするとともに、前記基材の表面に
この基材よりもイオン化傾向の更に小さな導電性物質を
鍍金してもよい。
The conductive material electrode G is made of a nonmetal such as carbon,
Alternatively, the base material may be a simple substance or alloy of a metal having a lower ionization tendency than magnesium, and a surface of the base material may be plated with a conductive material having a lower ionization tendency than the base material.

【0009】前記導電性物質電極Gを、網状の如くイオ
ンの透過が容易な形状としてもよい。
The conductive material electrode G may have a shape such as a net-like shape through which ions can easily pass.

【0010】[0010]

【作用】上記の手段を採用した結果、この発明は以下の
ような作用を有する。 (請求項記載の発明の作用) 請求項記載の発明の多極端子電池の接続法では上記手
段を採用したので、その電気的経路を経由することによ
り負荷電流、閉路電圧を延長させうる。 (請求項記載の発明の作用) 請求項記載の発明の多極端子電池の接続法では上記手
段を採用したので、電池Bの正極からその負極を介して
多極端子電池Aの導電性物質の電極Gを経由してその負
極へと至る電気的経路が形成され、前記電気的経路を経
由することにより、負荷電流、閉路電圧を増加させう
る。 (請求項記載の発明の作用) 請求項記載の発明の多極端子電池の接続法では上記手
段を採用したので、請求項記載の接続法以上に、負荷
電流、閉路電圧を増加させうる。 (請求項記載の発明の作用) 請求項記載の発明の多極端子電池の接続法では上記手
段を採用したので、多極端子電池Aの正極と負極との間
で、従来の形式の電池のみを単に並列に接続した場合の
値以上に負荷電流、閉路電圧を増加させうる。 (請求項記載の発明の作用) 請求項記載の発明の多極端子電池の接続法では上記手
段を採用したので、請求項記載の接続法以上に、負荷
電流、閉路電圧を増加させうる。 (請求項記載の発明の作用) 請求項記載の発明の多極端子電池の接続法では上記手
段を採用したので、請求項記載の接続法以上に、負荷
電流、閉路電圧を増加させうる。 (請求項記載の発明の作用) 請求項記載の発明の多極端子電池の接続法では上記手
段を採用したので、多極端子電池Bの導電性物質の電極
Gからその負極を介して多極端子電池Aの導電性物質の
電極Gを経由してその負極へと至る電気的経路が形成さ
れるので、前記電気的経路を経由することにより、負荷
電流、閉路電圧を増加させうる。 (請求項記載の発明の作用) 請求項1乃至のいずれかに記載の多極端子電池の接続
の仕方を1つ又は2つ以上を組み合わせたものをその電
気的経路中に含むこととすると、前記電気的経路の負荷
電流、閉路電圧を増加させうる。
As a result of adopting the above means, the present invention has the following functions. Since the connection method of the multi-terminal cell (claims action of the invention in claim 1, wherein) the first aspect of the present invention employing the above means, may load current, to extend the closed circuit voltage by way of the electrical paths . Since the connection method of the multi-terminal cell (claims action of the invention in claim 2) The invention according to claim 2 wherein employing the above means, the conductivity of the multi-terminal cell A from the positive electrode through the negative electrode of the battery B An electric path to the negative electrode is formed through the electrode G of the substance, and the load current and the closed circuit voltage can be increased by passing through the electric path. Since the connection method of the multi-terminal battery according to claim 3, wherein (claim 3 effects of the invention described) invention employs the above means, in more than the connection method according to claim 2, increasing the load current, the closed circuit voltage sell. Since the connection method of the multi-terminal cell of the present invention of (Claim 4 effects of the invention described) according to claim 4, wherein employing the above means, between the positive electrode and the negative electrode of the multi-terminal battery A, the conventional format The load current and the closed circuit voltage can be increased to a value higher than the value obtained when only the batteries are simply connected in parallel. Since the connection method of the multi-terminal cell of the present invention of (claims action of the invention in claim 5) according to claim 5, wherein employing the above means, in more than the connection method according to claim 4, increasing the load current, the closed circuit voltage sell. Since the connection method of the multi-terminal cell of the present invention of (claims action of the invention in claim 6) according to claim 6 employing the above means, in more than the connection method according to claim 5, increasing the load current, the closed circuit voltage sell. Since the connection method of the multi-terminal cell of the present invention of (claim 7 action of the invention described) according to claim 7 employing the above means, the electrodes G of the conductive material of the multi-terminal battery B through the anode Since an electric path to the negative electrode of the multipolar terminal battery A via the electrode G of the conductive substance is formed, the load current and the closed circuit voltage can be increased by passing through the electric path. (Operation of the invention according to claim 8 ) The method of connecting the multipolar terminal battery according to any one of claims 1 to 7 includes, in its electrical path, one or a combination of two or more. Then, the load current and the closing voltage of the electric path can be increased.

【0011】上記多極端子電池の構成として、正極活物
質電極と負極活物質電極との間に電解隔膜を設置すると
共に、導電性物質電極Gを、前記電解隔膜の片側或いは
両側の近傍に配設すると、閉路電流又は閉路電圧を更に
増加させうる。
In the configuration of the multipolar terminal battery, an electrolytic diaphragm is provided between a positive electrode active material electrode and a negative electrode active material electrode, and a conductive material electrode G is disposed near one or both sides of the electrolytic diaphragm. When it is provided, the closing current or the closing voltage can be further increased.

【0012】前記導電性物質電極Gを炭素等の非金属、
又はマグネシウムよりイオン化傾向の小さな金属の単体
若しくは合金を基材とするとともに、前記基材の表面に
この基材よりもイオン化傾向の更に小さな導電性物質を
鍍金(メッキ)すると、経済面や加工面において利点が
生じる。
The conductive material electrode G is made of a non-metal such as carbon;
Alternatively, when a base material is a simple substance or an alloy of a metal having a smaller ionization tendency than magnesium, and a conductive material having a smaller ionization tendency than the base material is plated (plated) on the surface of the base material, economical and processed surfaces are obtained. An advantage arises.

【0013】導電性物質の電極Gとして、網(メッシ
ュ)状のものなどこの導電性物質電極Gの表面側と裏面
側との間でのイオンの透過が容易な形状の各種のものを
採用することにより、閉路電流又は閉路電圧を更に増加
させうる。
As the electrode G of the conductive material, various electrodes having a shape such that ions can easily pass between the front side and the back side of the conductive material electrode G, such as a mesh-shaped electrode, are employed. Thereby, the closing current or the closing voltage can be further increased.

【0014】[0014]

【実施例】次に、この発明の構成を図面を参照しつつ具
体的な実施例により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the configuration of the present invention will be described by way of specific embodiments with reference to the drawings.

【0015】図1に示すように、この実施例では多極端
子電池をダニエル型電池として次のようにして形成し
た。電解隔膜1としてのセロファン10を用いてガラス
製の電槽を正極側の領域と負極側の領域とに仕切る。前
記セロファン10は親水性でありイオンの移動が可能で
ある。前記正極側の領域と負極側の領域とをそれぞれ電
解液2で満たす。正極側の電解液2aとして30%の硫
酸銅水溶液を、負極側の電解液2bとして30%の硫酸
亜鉛水溶液を使用する。また、電池の正極3として銅板
を、負極4として亜鉛板を使用する。
As shown in FIG. 1, in this embodiment, a multi-pole terminal battery was formed as a Daniel type battery as follows. Using a cellophane 10 as the electrolytic diaphragm 1, a glass container is partitioned into a region on the positive electrode side and a region on the negative electrode side. The cellophane 10 is hydrophilic and can move ions. The region on the positive electrode side and the region on the negative electrode side are filled with the electrolyte 2 respectively. A 30% aqueous solution of copper sulfate is used as the electrolyte 2a on the positive electrode side, and a 30% aqueous solution of zinc sulfate is used as the electrolyte 2b on the negative electrode side. Further, a copper plate is used as the positive electrode 3 and a zinc plate is used as the negative electrode 4 of the battery.

【0016】前記両電解液2中に電池の正極3と負極4
とをそれぞれ浸漬する。そして、正極側の電解液2a中
のセロファン10の近傍に導電性物質の電極Gとして2
0メッシュのニッケル金網G1を、同様に負極側の電解
液2b中に同電極Gとして20メッシュのニッケル金網
G2を浸漬している。このニッケル金網G1,G2は溶
液の流移が可能で従ってイオンの透過が容易な形状であ
り、イオンの透過方向に対する断面の開孔率は約50%
のものである。
A battery positive electrode 3 and a negative electrode 4
And are respectively immersed. Then, an electrode G made of a conductive material is placed near the cellophane 10 in the electrolyte solution 2a on the positive electrode side.
Similarly, a 20-mesh nickel wire mesh G2 is immersed in the electrolytic solution 2b on the negative electrode side as a 0-mesh nickel wire mesh G1. The nickel wire meshes G1 and G2 have a shape that allows the solution to flow therethrough and thus allows easy transmission of ions, and the porosity of the cross section in the ion transmission direction is about 50%.
belongs to.

【0017】そして、図示したように、この多極端子電
池のそれぞれのニッケル金網G1,G2をリード線6に
より正極電極7と電気的な導通状態として、単体に於け
る電圧値を測定した。すると、開路電圧は1.10V、
閉路電圧は0.80V(負荷抵抗5.1Ω)であった。
因みに、導電性物質の電極Gとしてのニッケル金網G
1,G2を配設しないものを作成して、単体に於ける電
圧値を測定した。すると、開路電圧は1.10V、閉路
電圧は0.70V(負荷抵抗5.1Ω)であった。次
に、上記のような構成とした多極端子電池を少なくとも
1個用いて具体的に接続した実施例を説明する。
Then, as shown in the figure, the nickel metal meshes G1 and G2 of the multipolar terminal battery were electrically connected to the positive electrode 7 through the lead wire 6, and the voltage value of the single battery was measured. Then, the open circuit voltage is 1.10V,
The closing voltage was 0.80 V (load resistance 5.1Ω).
Incidentally, a nickel wire mesh G as an electrode G of a conductive material
A sample without G1 and G2 was prepared, and the voltage value of a single unit was measured. Then, the open circuit voltage was 1.10 V and the closed circuit voltage was 0.70 V (load resistance 5.1 Ω). Next, an embodiment in which at least one multipolar terminal battery having the above-described configuration is specifically connected will be described.

【0018】尚、各実施例の結果を表1に、各比較例の
結果を表2に纏める。 (実施例1) 図2に示すように、2個の多極端子電池それぞれの正極
と負極との両極を直列に接続するとともに、各多極端子
電池の導電性物質の電極Gとしてニッケル金網G1,G
2をそれぞれの正極電極とリード線により電気的な導通
状態として、多極端子電池Aの正極電極と同電池Bの負
極電極との間の電圧値を測定した。すると、開路電圧は
2.20V、閉路電圧は1.40V、負荷電流0.28
A(負荷抵抗5.1Ω)であった。 (比較例1) 図3に示すように、導電性物質の電極Gとしてのニッケ
ル金網G1,G2を配設しない記述の従来の形式の電池
のみを2個直列に接続して電圧値を測定した。すると、
開路電圧は2.20V、閉路電圧は1.17V、負荷電
流0.23A(負荷抵抗5.1Ω)であった。 (実施例2) 図4に示すように、3個の多極端子電池を直列に接続す
るとともに、各多極端子電池の導電性物質の電極Gとし
てのニッケル金網G1,G2をそれぞれの正極電極とリ
ード線により電気的な導通状態として、多極端子電池A
の正極電極と同電池Cの負極電極との間の電圧値を測定
した。すると、開路電圧は3.30V、閉路電圧は1.
67V、負荷電流0.33A(負荷抵抗5.1Ω)であ
った。 (比較例2) 図5に示すように、導電性物質の電極Gとしてのニッケ
ル金網G1,G2を配設しない記述の従来の形式の電池
のみを3個直列に接続して電圧値を測定した。すると、
開路電圧は3.30V、閉路電圧は1.36V、負荷電
流0.27A(負荷抵抗5.1Ω)であった。請求項1記載の手段に対応する実施例 (実施例3) 図6に示すように、2個の多極端子電池を並列に接続す
るとともに、各多極端子電池の導電性物質の電極Gとし
てのニッケル金網G1,G2をそれぞれの正極電極とリ
ード線により電気的な導通状態として、両極間の電圧値
を測定した。すると、開路電圧は1.10V、閉路電圧
は0.95V、負荷電流0.19A(負荷抵抗5.1
Ω)であった。負荷抵抗を0.5Ωとして持続時間を測
定すると、6時間の間1.2A以上を保っていた。 (比較例3) 図7に示すように、導電性物質の電極Gとしてのニッケ
ル金網G1,G2を配設しない記述の従来の形式の電池
のみを2個並列に接続して電圧値を測定した。すると、
開路電圧は1.10V、閉路電圧は0.88V、負荷電
流0.17A(負荷抵抗5.1Ω)であった。負荷抵抗
を0.5Ωとして持続時間を測定すると、4時間の間
1.0A以上を保っていた。 (実施例4) 図8に示すように、3個の多極端子電池それぞれの正極
と負極との両極を並列に接続するとともに、各多極端子
電池の導電性物質の電極Gとしてのニッケル金網G1,
G2をそれぞれの正極電極とリード線により電気的な導
通状態として、両極間の電圧値を測定した。すると、開
路電圧は1.10V、閉路電圧は0.99V、負荷電流
0.20A(負荷抵抗5.1Ω)であった。 (比較例4) 図9に示すように、導電性物質の電極Gとしてのニッケ
ル金網G1,G2を配設しない記述の従来の形式の電池
のみを3個並列に接続して電圧値を測定した。すると、
開路電圧は1.10V、閉路電圧は0.91V、負荷電
流0.18A(負荷抵抗5.1Ω)であった。請求項2記載の手段に対応する実施例 (実施例5) この実施例では、従来の形式の電池Bの負極と多極端子
電池Aの導電性物質の電極Gとを電気的な導通状態と
し、電池Bの正極からその負極を介して多極端子電池A
の導電性物質の電極Gを経由してその負極へと至る電気
的経路が形成されるようにした。
Table 1 summarizes the results of each example and Table 2 summarizes the results of each comparative example. Example 1 As shown in FIG. 2, both positive and negative electrodes of each of two multipolar terminal batteries are connected in series, and a nickel wire mesh G1 is used as an electrode G of a conductive material of each multipolar terminal battery. , G
2 was electrically connected to the respective positive electrodes and the lead wires, and a voltage value between the positive electrode of the multipolar terminal battery A and the negative electrode of the battery B was measured. Then, the open circuit voltage is 2.20 V, the closed circuit voltage is 1.40 V, and the load current is 0.28 V.
A (load resistance 5.1 Ω). (Comparative Example 1) As shown in FIG. 3, only two batteries of the conventional type described in which the nickel wire meshes G1 and G2 as the electrodes G of the conductive material were not connected were connected in series, and the voltage value was measured. . Then
The open circuit voltage was 2.20 V, the closed circuit voltage was 1.17 V, and the load current was 0.23 A (load resistance 5.1 Ω). Example 2 As shown in FIG. 4, three multi-electrode terminal batteries are connected in series, and nickel metal meshes G1 and G2 as electrodes G of a conductive material of each multi-pole terminal battery are connected to respective positive electrodes. And multi-terminal battery A
Of the battery C and the negative electrode of the battery C were measured. Then, the open circuit voltage is 3.30 V and the closed circuit voltage is 1.30 V.
67 V, load current 0.33 A (load resistance 5.1 Ω). (Comparative Example 2) As shown in FIG. 5, only three batteries of the conventional type described in which the nickel metal meshes G1 and G2 were not provided as the electrodes G of the conductive material were connected in series, and the voltage values were measured. . Then
The open circuit voltage was 3.30 V, the closed circuit voltage was 1.36 V, and the load current was 0.27 A (load resistance 5.1 Ω). Embodiment 3 Corresponding to the Means of Claim 1 (Embodiment 3) As shown in FIG. 6, two multi-pole terminal batteries are connected in parallel, and each multi-pole terminal battery has an electrode G made of a conductive material. The nickel wire meshes G1 and G2 were electrically connected to each other through the respective positive electrodes and lead wires, and the voltage value between both electrodes was measured. Then, the open circuit voltage is 1.10 V, the closed circuit voltage is 0.95 V, the load current is 0.19 A (the load resistance is 5.1).
Ω). When the duration was measured with a load resistance of 0.5Ω, the load resistance was maintained at 1.2 A or more for 6 hours. (Comparative Example 3) As shown in FIG. 7, only two batteries of the conventional type described in which the nickel wire meshes G1 and G2 were not provided as the electrodes G of the conductive material were connected in parallel to measure the voltage value. . Then
The open circuit voltage was 1.10 V, the closed circuit voltage was 0.88 V, and the load current was 0.17 A (load resistance 5.1 Ω). When the duration was measured with a load resistance of 0.5Ω, the load resistance was maintained at 1.0 A or more for 4 hours. Example 4 As shown in FIG. 8, both the positive electrode and the negative electrode of each of the three multipolar terminal batteries are connected in parallel, and a nickel metal mesh as an electrode G of a conductive material of each multipolar terminal battery G1,
G2 was placed in an electrically conductive state with each positive electrode and a lead wire, and a voltage value between both electrodes was measured. Then, the open circuit voltage was 1.10 V, the closed circuit voltage was 0.99 V, and the load current was 0.20 A (load resistance 5.1 Ω). (Comparative Example 4) As shown in FIG. 9, only three batteries of the conventional type described in which the nickel wire meshes G1 and G2 were not provided as the electrodes G of the conductive material were connected in parallel, and the voltage values were measured. . Then
The open circuit voltage was 1.10 V, the closed circuit voltage was 0.91 V, and the load current was 0.18 A (load resistance 5.1 Ω). Embodiment (Embodiment 5) Corresponding to Means of Claim 2 In this embodiment, the negative electrode of the conventional battery B and the electrode G of the conductive material of the multipolar terminal battery A are brought into an electrically conductive state. , A multipolar terminal battery A from the positive electrode of battery B via its negative electrode
An electrical path to the negative electrode via the conductive material electrode G is formed.

【0019】具体的には、図10に示すように、導電性
物質の電極Gとしてのニッケル金網G1を正極側の電解
液2a中にのみ配設して浸漬した多極端子電池Aと、既
述の導電性物質の電極Gを配設しない従来の形式の電池
Bとを用い、次のように接続した。双方の電池A,Bの
正極電極を接続するとともに、従来の形式の電池Bの負
極電極と多極端子電池Aの導電性物質の電極Gとしての
ニッケル金網G1とを接続した。こうして、多極端子電
池Aの正極電極と負極電極との間の電圧値を測定した。
すると、開路電圧は1.32V、閉路電圧は0.94
V、負荷電流0.18A(負荷抵抗5.1Ω)であっ
た。負荷抵抗を0.5Ωとして持続時間を測定すると、
3時間の間1.1A以上を保っていた。 (比較例) 上記比較例3のように、従来の形式の電池を2個並列に
接続して電圧値を測定すると、開路電圧は1.10V、
閉路電圧は0.88V、負荷電流0.17A(負荷抵抗
5.1Ω)であった。請求項3記載の手段に対応する実施例 (実施例6) この実施例では、実施例5に於ける電池Bを従来の形式
のものではなく多極端子電池Bとした。即ち、実施例5
では電池Bとして導電性物質の電極Gを配設しない従来
の形式のものを用いたが、この実施例では図11に示す
ように、導電性物質の電極Gとしてニッケル金網G1を
正極側の電解液2a中にのみ配設して浸漬した多極端子
電池を他の電池Bとして用い、次のように接続した。
More specifically, as shown in FIG. 10, a multi-electrode terminal battery A in which a nickel wire netting G1 as an electrode G of a conductive substance is disposed and immersed only in the electrolyte 2a on the positive electrode side, Using the battery B of the conventional type without the electrode G made of the above-mentioned conductive substance, the following connection was made. The positive electrodes of both batteries A and B were connected, and the negative electrode of battery B of the conventional type was connected to the nickel wire mesh G1 as the electrode G of the conductive material of the multipolar terminal battery A. Thus, the voltage value between the positive electrode and the negative electrode of the multipolar terminal battery A was measured.
Then, the open circuit voltage is 1.32 V and the closed circuit voltage is 0.94
V, and the load current was 0.18 A (load resistance 5.1 Ω). When the duration is measured with a load resistance of 0.5Ω,
It kept 1.1A or more for 3 hours. Comparative Example As in Comparative Example 3, when two conventional batteries were connected in parallel and the voltage value was measured, the open circuit voltage was 1.10 V,
The closing voltage was 0.88 V and the load current was 0.17 A (load resistance 5.1 Ω). Embodiment Corresponding to the Means of Claim 3 (Embodiment 6) In this embodiment, the battery B in Embodiment 5 is not a conventional type but a multi-pole terminal battery B. That is, Example 5
In this embodiment, a battery B was of a conventional type in which an electrode G of a conductive material was not provided, but in this embodiment, as shown in FIG. The multi-electrode terminal battery provided and immersed only in the liquid 2a was used as another battery B, and connected as follows.

【0020】多極端子電池A,Bの正極電極と同電池B
の導電性物質の電極Gとしてのニッケル金網G1とを接
続するとともに、同電池Bの負極電極と同電池Aの導電
性物質の電極Gとしてのニッケル金網G1とを接続し
た。即ち、この実施例では、他の多極端子電池Bの導電
性物質の電極G1と、多極端子電池A,Bの正極とを電
気的な導通状態とした点で実施例5と相違する。こうし
て、多極端子電池Aの正極電極と負極電極との間の電圧
値を測定した。すると、開路電圧は1.42V、閉路電
圧は1.00V、負荷電流0.20A(負荷抵抗5.1
Ω)であった。負荷抵抗を0.5Ωとして持続時間を測
定すると、3時間の間1.3A以上を保っていた。 (実施例7) 実施例6では多極端子電池Bとして導電性物質の電極G
としてのニッケル金網G1を正極側の電解液2a中にの
み配設して浸漬したものを用いたが、この実施例では図
12に示すように、図1の構造の多極端子電池、即ち、
負極側の電解液2b中にも導電性物質の電極Gとしての
ニッケル金網G2を浸漬したものを用い、次のように接
続した。
The positive electrodes of the multipolar terminal batteries A and B and the battery B
And the negative electrode of the battery B and the nickel metal mesh G1 as the conductive material electrode G of the battery A were connected. That is, this embodiment is different from the fifth embodiment in that the electrode G1 of the conductive material of the other multipolar terminal battery B and the positive electrodes of the multipolar terminal batteries A and B are electrically connected. Thus, the voltage value between the positive electrode and the negative electrode of the multipolar terminal battery A was measured. Then, the open circuit voltage is 1.42 V, the closed circuit voltage is 1.00 V, the load current is 0.20 A (the load resistance is 5.1.
Ω). When the duration was measured with a load resistance of 0.5Ω, the load resistance was kept at 1.3 A or more for 3 hours. (Example 7) In Example 6, an electrode G made of a conductive material was used as the multipolar terminal battery B.
In this embodiment, a nickel wire mesh G1 was disposed and immersed only in the electrolyte solution 2a on the positive electrode side, but in this embodiment, as shown in FIG. 12, a multi-electrode terminal battery having the structure of FIG.
A nickel wire mesh G2 as a conductive material electrode G was also immersed in the electrolyte solution 2b on the negative electrode side, and the connection was made as follows.

【0021】多極端子電池A,Bの正極電極と同電池B
の導電性物質の電極Gとしてのニッケル金網G1、G2
とを接続するとともに、同電池Bの負極電極と同電池A
の導電性物質の電極Gとしてのニッケル金網G1、G2
とを接続した。こうして、多極端子電池Aの正極電極と
負極電極との間の電圧値を測定した。すると、開路電圧
は1.43V、閉路電圧は1.06V、負荷電流0.2
1A(負荷抵抗5.1Ω)であった。負荷抵抗を0.5
Ωとして持続時間を測定すると、3時間の間1.5A以
上を保っていた。 (比較例) 上記比較例3のように、従来の形式の電池を2個並列に
接続して電圧値を測定すると、開路電圧は1.10V、
閉路電圧は0.88V、負荷電流0.17A(負荷抵抗
5.1Ω)であった。 (実施例8) 実施例7では他の多極端子電池Bの負極と電気的な導通
状態とすべき導電性物質の電極Gを有する多極端子電池
Aを1個だけ用いたが、この実施例では図13に示すよ
うに、前記多極端子電池Aの代わりに多極端子電池A,
B(図12の多極端子電池Aに対応)を並列に接続し、
この2個の電池A,Bに他の多極端子電池C(図12の
多極端子電池Bに対応)を接続している。ここで、この
実施例では2個を並列としているが3個以上を並列とし
てもよい。
The positive electrodes of the multipolar terminal batteries A and B and the battery B
Wire meshes G1, G2 as electrodes G of conductive material
And the negative electrode of the battery B and the battery A
Wire meshes G1, G2 as electrodes G of conductive material
And connected. Thus, the voltage value between the positive electrode and the negative electrode of the multipolar terminal battery A was measured. Then, the open circuit voltage is 1.43 V, the closed circuit voltage is 1.06 V, and the load current is 0.2
1A (load resistance 5.1Ω). 0.5 load resistance
When the duration was measured as Ω, it kept 1.5 A or more for 3 hours. Comparative Example As in Comparative Example 3, when two conventional batteries were connected in parallel and the voltage value was measured, the open circuit voltage was 1.10 V,
The closing voltage was 0.88 V and the load current was 0.17 A (load resistance 5.1 Ω). Example 8 In Example 7, only one multi-electrode terminal battery A having an electrode G of a conductive substance to be electrically connected to the negative electrode of another multi-electrode terminal battery B was used. In the example, as shown in FIG. 13, instead of the multipolar terminal battery A, a multipolar terminal battery A,
B (corresponding to the multipolar terminal battery A in FIG. 12) in parallel,
Another multi-pole terminal battery C (corresponding to the multi-pole terminal battery B in FIG. 12) is connected to these two batteries A and B. Here, in this embodiment, two are arranged in parallel, but three or more may be arranged in parallel.

【0022】具体的にいうと、多極端子電池A,B,C
の正極電極と同電池Cの導電性物質の電極Gとしてのニ
ッケル金網G1,G2とを接続するとともに、多極端子
電池Cの負極電極と同電池A,Bの導電性物質の電極G
としてのニッケル金網G1,G2とを接続した。更に、
同電池A,Bの負極電極を接続した。そして、正極電極
と多極端子電池A,Bの負極電極との間の電圧値を測定
した。すると、開路電圧は1.74V、閉路電圧は1.
56V、負荷電流0.31A(負荷抵抗5.1Ω)であ
った。負荷抵抗を0.5Ωとして持続時間を測定する
と、5時間の間1.6A以上を保っていた。 (比較例) 上記比較例4のように、従来の形式の電池を3個並列に
接続して電圧値を測定すると、開路電圧は1.10V、
閉路電圧は0.91V、負荷電流0.18A(負荷抵抗
5.1Ω)であった。請求項4乃至6記載の手段に対応する実施例 (実施例9) この実施例では多極端子電池Aの導電性物質の電極Gと
多極端子電池Bの正極とを電気的な導通状態とするとと
もに、前記多極端子電池Aの負極と前記多極端子電池B
の負極とを電気的な導通状態としている。
More specifically, multi-pole terminal batteries A, B, C
And the nickel wire meshes G1 and G2 as the electrodes G of the conductive material of the battery C, and the negative electrode of the multipolar terminal battery C and the electrodes G of the conductive materials of the batteries A and B.
And the nickel wire meshes G1 and G2. Furthermore,
The negative electrodes of the batteries A and B were connected. Then, a voltage value between the positive electrode and the negative electrodes of the multipolar terminal batteries A and B was measured. Then, the open circuit voltage is 1.74V, and the closed circuit voltage is 1.74V.
The load current was 56 V and the load current was 0.31 A (load resistance was 5.1 Ω). When the load resistance was set to 0.5Ω and the duration was measured, 1.6 A or more was maintained for 5 hours. Comparative Example As in Comparative Example 4, when three conventional batteries were connected in parallel and the voltage value was measured, the open circuit voltage was 1.10 V,
The closing voltage was 0.91 V, and the load current was 0.18 A (load resistance 5.1 Ω). Embodiment (Embodiment 9) Corresponding to the Means of Claims 4 to 6 (Embodiment 9) In this embodiment, the electrode G of the conductive substance of the multipolar terminal battery A and the positive electrode of the multipolar terminal battery B are electrically connected. And the negative electrode of the multipolar terminal battery A and the multipolar terminal battery B
Is electrically connected to the negative electrode.

【0023】具体的には、図14に示すように、図1の
構造の多極端子電池2個を用い次のように接続した。多
極端子電池Aの正極電極と多極端子電池Bの導電性物質
の電極Gとしてのニッケル金網G1、G2とを接続する
とともに、多極端子電池Bの正極電極と多極端子電池A
の導電性物質の電極Gとしてのニッケル金網G1、G2
とを接続し、多極端子電池A、Bの負極電極を接続し
た。ここでは、それぞれの多極端子電池A,Bの導電性
物質の電極Gとして、ニッケル金網G1、G2を配設し
たものを用いているが、実施例6のように正極側の電解
液2a中にのみニッケル金網G1を配設したものを用い
てもよい。こうして、多極端子電池Aの正極電極と負極
電極との間の電圧値を測定した。すると、開路電圧は
1.10V、閉路電圧は0.94V、負荷電流0.18
A(負荷抵抗5.1Ω)であった。負荷抵抗を0.5Ω
として持続時間を測定すると、5時間の間1.1A以上
を保っていた。
Specifically, as shown in FIG. 14, two multi-pole terminal batteries having the structure shown in FIG. 1 were used and connected as follows. The positive electrode of the multipolar terminal battery A is connected to the nickel wire meshes G1 and G2 as the electrodes G of the conductive material of the multipolar terminal battery B, and the positive electrode of the multipolar terminal battery B is connected to the multipolar terminal battery A.
Wire meshes G1, G2 as electrodes G of conductive material
And the negative electrodes of the multipolar terminal batteries A and B were connected. Here, as the electrode G of the conductive substance of each of the multipolar terminal batteries A and B, the one provided with the nickel wire meshes G1 and G2 is used. May be provided only with the nickel wire mesh G1. Thus, the voltage value between the positive electrode and the negative electrode of the multipolar terminal battery A was measured. Then, the open circuit voltage is 1.10 V, the closed circuit voltage is 0.94 V, and the load current is 0.18 V.
A (load resistance 5.1 Ω). 0.5Ω load resistance
As a result, the duration was maintained at 1.1 A or more for 5 hours.

【0024】この実施例では電池Bを多極端子電池と
し、この多極端子電池Bの導電性物質の電極Gと前記多
極端子電池Aの正極とを電気的な導通状態としている
が、実施例5のように電池Bを通常の形式のものとして
もよく、また、実施例8のように前記多極端子電池Aを
複数個が並列に接続されたものしてもよい。 (比較例) 上記比較例3のように、従来の形式の電池を2個並列に
接続して電圧値を測定すると、開路電圧は1.10V、
閉路電圧は0.88V、負荷電流0.17A(負荷抵抗
5.1Ω)であった。請求項7記載の手段に対応する実施例 (実施例10) この実施例では、多極端子電池Bの負極と多極端子電池
Aの導電性物質の電極Gとを電気的な導通状態とし、多
極端子電池Bの導電性物質の電極Gからその負極を介し
て多極端子電池Aの導電性物質の電極Gを経由してその
負極へと至る電気的経路が形成されるように形成した。
In this embodiment, the battery B is a multi-pole terminal battery, and the electrode G of the conductive substance of the multi-pole terminal battery B and the positive electrode of the multi-pole terminal battery A are in an electrically conductive state. The battery B may be of a normal type as in Example 5, or a plurality of the multi-pole terminal batteries A may be connected in parallel as in Example 8. Comparative Example As in Comparative Example 3, when two conventional batteries were connected in parallel and the voltage value was measured, the open circuit voltage was 1.10 V,
The closing voltage was 0.88 V and the load current was 0.17 A (load resistance 5.1 Ω). Embodiment (Embodiment 10) Corresponding to the Means of Claim 7 In this embodiment, the negative electrode of the multipolar terminal battery B and the electrode G of the conductive substance of the multipolar terminal battery A are brought into an electrically conductive state, It was formed such that an electric path was formed from the electrode G of the conductive material of the multipolar terminal battery B via the negative electrode thereof to the negative electrode thereof via the electrode G of the conductive material of the multipolar terminal battery A. .

【0025】具体的には、図15に示すように、3個の
多極端子電池A,B,Cを用い、多極端子電池Cの正極
電極とその導電性物質の電極Gとしての各ニッケル金網
G1,G2とを、多極端子電池Cの負極電極と多極端子
電池Bの導電性物質の電極Gとしての各ニッケル金網G
1,G2とを、多極端子電池Bの負極電極と多極端子電
池Aの導電性物質の電極Gとしての各ニッケル金網G
1,G2とを、それぞれ電気的な導通状態とした。そし
て、多極端子電池Cの正極電極と同電池Aの負極電極と
の間の電圧値を測定した。すると、開路電圧は3.30
V、閉路電圧は1.70V、負荷電流0.33A(負荷
抵抗5.1Ω)であった。 (比較例) 上記比較例2のように、従来の形式の電池を3個直列に
接続して電圧値を測定すると、開路電圧は3.30V、
閉路電圧は1.36V、負荷電流0.27A(負荷抵抗
5.1Ω)であった。請求項8記載の手段に対応する実施例 (実施例11) この実施例では、上記のいずれかの多極端子電池の接続
の仕方を1つ又は2つ以上を組み合わせたものをその電
気的経路中に含むこととしており、具体的には請求項
及び7記載の多極端子電池の接続の仕方をその電気的経
路中に含む複合的な実施例としている。
More specifically, as shown in FIG. 15, three multi-electrode terminal batteries A, B, and C were used, and the positive electrode of the multi-electrode terminal battery C and each nickel electrode as an electrode G of the conductive material were used. The wire meshes G1 and G2 are used as the nickel wire meshes G as the negative electrode of the multipolar terminal battery C and the electrode G of the conductive material of the multipolar terminal battery B.
1 and G2, each nickel wire mesh G as a negative electrode of the multipolar terminal battery B and an electrode G of a conductive substance of the multipolar terminal battery A
1 and G2 were electrically connected. Then, a voltage value between the positive electrode of the multipolar terminal battery C and the negative electrode of the battery A was measured. Then, the open circuit voltage is 3.30
V, the closed circuit voltage was 1.70 V, and the load current was 0.33 A (load resistance 5.1 Ω). (Comparative Example) As in Comparative Example 2 above, when three conventional batteries were connected in series and the voltage value was measured, the open circuit voltage was 3.30 V,
The closing voltage was 1.36 V and the load current was 0.27 A (load resistance was 5.1 Ω). Embodiment (Embodiment 11) Corresponding to the Means of Claim 8 (Embodiment 11) In this embodiment, one or a combination of two or more of the above-mentioned multipolar terminal batteries is connected to the electric path. In particular, claim 3
And 7 is a composite embodiment including the connection method of the multipolar terminal battery in the electric path.

【0026】即ち、請求項記載の手段と同様に、多極
端子電池Bの正極からその負極を介して多極端子電池A
の導電性物質の電極Gを経由してその負極へと至る電気
的経路も形成されている。また請求項記載の手段と同
様に、多極端子電池Bの負極と多極端子電池Aの導電性
物質の電極Gとを電気的な導通状態とし、多極端子電池
Bの導電性物質の電極Gからその負極を介して多極端子
電池Aの導電性物質の電極Gを経由してその負極へと至
る電気的経路が形成されるようにしている。
That is, in the same manner as the means of the third aspect , the multipolar terminal battery A is connected from the positive electrode of the multipolar terminal battery B via the negative electrode.
An electric path to the negative electrode via the electrode G of the conductive material is also formed. Further, similarly to the means of claim 7 , the negative electrode of the multipolar terminal battery B and the electrode G of the conductive material of the multipolar terminal battery A are brought into an electrically conductive state, and the conductive material of the multipolar terminal battery B is An electric path from the electrode G to the negative electrode via the electrode G of the conductive material of the multipolar terminal battery A via the negative electrode is formed.

【0027】具体的には、図16に示すように、多極端
子電池A,B,Cの正極電極と同電池Cの導電性物質の
電極Gとしてのニッケル金網G1,G2とを接続すると
ともに、同電池B,Cの負極電極と同電池A,Bの導電
性物質の電極Gとしてのニッケル金網G1,G2とを接
続した。こうして、正極電極と多極端子電池Aの負極電
極との間の電圧値を測定した。すると、開路電圧は1.
94V、閉路電圧は1.64V、負荷電流0.32A
(負荷抵抗5.1Ω)であった。 (比較例) 上記比較例4のように、従来の形式の電池を3個並列に
接続して電圧値を測定すると、開路電圧は1.10V、
閉路電圧は0.91V、負荷電流0.18A(負荷抵抗
5.1Ω)であった。
Specifically, as shown in FIG. 16, the positive electrodes of the multipolar terminal batteries A, B, and C are connected to the nickel wire meshes G1 and G2 as the electrodes G of the conductive material of the battery C. The negative electrodes of the batteries B and C were connected to the nickel metal meshes G1 and G2 as the electrodes G of the conductive material of the batteries A and B. Thus, the voltage value between the positive electrode and the negative electrode of the multipolar terminal battery A was measured. Then, the open circuit voltage becomes 1.
94V, closed circuit voltage 1.64V, load current 0.32A
(The load resistance was 5.1Ω). Comparative Example As in Comparative Example 4, when three conventional batteries were connected in parallel and the voltage value was measured, the open circuit voltage was 1.10 V,
The closing voltage was 0.91 V, and the load current was 0.18 A (load resistance 5.1 Ω).

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】上述のそれぞれの多極端子電池の接続法は
単独でも既述のような利点を有しているが、これらを適
宜組み合わせると、更に組み合わせた接続法に応じた利
点を有するようになる。
Each of the above-described methods for connecting the multi-pole terminal batteries has the above-mentioned advantages even when used alone. However, when these methods are appropriately combined, advantages can be obtained according to the further combined connection methods. .

【0031】例えば、図16に示す接続法に対してその
放電持続時間を増大させたい場合は、図17に示すよう
に多極端子電池Aと並列に多極端子電池Dを増設するこ
とができ、負荷電流を大きくしたい場合には、図18に
示すように多極端子電池Eを増設することが出来る。即
ち、既述の特徴を有する接続法を、或る電気的経路に対
して複合的に組み合わせることにより前記特徴に応じた
利点を前記電気的経路に与えることが出来る。
For example, when it is desired to increase the discharge duration of the connection method shown in FIG. 16, a multi-pole terminal battery D can be added in parallel with the multi-pole terminal battery A as shown in FIG. In order to increase the load current, the multi-electrode terminal battery E can be added as shown in FIG. That is, by combining the connection method having the above-described characteristics in a complex manner with respect to a certain electric path, an advantage corresponding to the characteristic can be given to the electric path.

【0032】つまり、既述の接続法を、その特徴に応じ
て前記特徴を損なわない範囲で組み合わせることにより
種々の発展的・複合的な接続の仕方をさせることが可能
である。
That is, by combining the above-described connection methods according to their characteristics within a range that does not impair the characteristics, it is possible to make various advanced and complex connection methods.

【0033】また、現行の電池にこの多極端子電池の構
成及び電気的接続法を応用すると、従来より負荷時の端
子電圧を高くし、より多くのラッシュ電流を取り出すこ
とが出来る。
Further, when the configuration and the electrical connection method of this multi-pole terminal battery are applied to a current battery, the terminal voltage at the time of load can be made higher than in the prior art, and more rush current can be taken out.

【0034】[0034]

【発明の効果】この発明は上述のような構成を有するも
のであり、負荷電流、閉路電圧の増大が可能な電池の接
続法を提供することが出来る。
According to the present invention, which has the above-described configuration, it is possible to provide a battery connection method capable of increasing the load current and the closed circuit voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】多極端子電池の構造の一実施例を説明する図。FIG. 1 is a view for explaining an embodiment of the structure of a multipolar terminal battery.

【図2】図1の多極端子電池を2個直列に接続した状態
を説明する図。
FIG. 2 is a diagram illustrating a state in which two multipolar terminal batteries of FIG. 1 are connected in series.

【図3】従来の形式の電池を2個直列に接続した状態を
説明する図。
FIG. 3 is a diagram illustrating a state in which two conventional batteries are connected in series.

【図4】図1の多極端子電池を3個直列に接続した状態
を説明する図。
FIG. 4 is a diagram illustrating a state in which three multipolar terminal batteries of FIG. 1 are connected in series.

【図5】従来の形式の電池を3個直列に接続した状態を
説明する図。
FIG. 5 is a diagram illustrating a state in which three conventional batteries are connected in series.

【図6】図1の多極端子電池を2個並列に接続した状態
を説明する図。
FIG. 6 is a diagram illustrating a state in which two multipolar terminal batteries of FIG. 1 are connected in parallel.

【図7】従来の形式の電池を2個並列に接続した状態を
説明する図。
FIG. 7 is a diagram illustrating a state in which two conventional batteries are connected in parallel.

【図8】図1の多極端子電池を3個並列に接続した状態
を説明する図。
FIG. 8 is a diagram illustrating a state in which three multi-pole terminal batteries of FIG. 1 are connected in parallel.

【図9】従来の形式の電池を3個並列に接続した状態を
説明する図。
FIG. 9 is a diagram illustrating a state in which three conventional batteries are connected in parallel.

【図10】多極端子電池と従来の形式の電池とを接続し
た状態を説明する図。
FIG. 10 is a diagram illustrating a state in which a multipolar terminal battery and a conventional type battery are connected.

【図11】多極端子電池を2個ハイブリッド接続した状
態を説明する図。
FIG. 11 is a diagram illustrating a state in which two multipolar terminal batteries are hybrid-connected.

【図12】図1の多極端子電池を2個ハイブリッド接続
した状態を説明する図。
FIG. 12 is a diagram illustrating a state in which two multipolar terminal batteries of FIG. 1 are hybrid-connected.

【図13】図1の多極端子電池を3個ハイブリッド接続
した状態を説明する図。
FIG. 13 is a diagram illustrating a state in which three multi-pole terminal batteries of FIG. 1 are hybrid-connected.

【図14】図1の多極端子電池を2個ハイブリッド接続
した状態を説明する図。
FIG. 14 is a diagram illustrating a state in which two multipolar terminal batteries of FIG. 1 are hybrid-connected.

【図15】図1の多極端子電池を3個ハイブリッド接続
した状態を説明する図。
FIG. 15 is a diagram illustrating a state in which three multi-pole terminal batteries of FIG. 1 are hybrid-connected.

【図16】図1の多極端子電池を3個ハイブリッド接続
した状態を説明する図。
FIG. 16 is a diagram illustrating a state in which three multipolar terminal batteries of FIG. 1 are hybrid-connected.

【図17】図1の多極端子電池を4個ハイブリッド接続
した状態を説明する図。
FIG. 17 is a diagram illustrating a state in which four multipolar terminal batteries of FIG. 1 are hybrid-connected.

【図18】図1の多極端子電池を4個ハイブリッド接続
した状態を説明する図。
FIG. 18 is a diagram illustrating a state in which four multipolar terminal batteries of FIG. 1 are hybrid-connected.

【符号の説明】[Explanation of symbols]

1 電解隔膜 3 正極活物質 4 負極活物質 G 導電性物質の電極 DESCRIPTION OF SYMBOLS 1 Electrolytic diaphragm 3 Positive electrode active material 4 Negative electrode active material G Electrode of conductive material

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 2/20 - 2/34 H01M 6/02 H01M 10/04──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 2/20-2/34 H01M 6/02 H01M 10/04

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解質中の正極活物質電極と負極活物質
電極との間に、イオンの移動が可能な形状とした少なく
とも1つの導電性物質の電極Gを配設した多極端子電池
を少なくとも2個並列に接続したものを、その電気的経
路中に含む多極端子電池の接続法であって、前記各多極
端子電池の導電性物質の電極Gを各正極と電気的な導通
状態としたことを特徴とする多極端子電池の接続法。
At least one multi-electrode terminal battery having at least one electrode of a conductive material having a shape capable of transferring ions is provided between a positive electrode active material electrode and a negative electrode active material electrode in an electrolyte. What is claimed is: 1. A method for connecting a multi-electrode terminal battery including two parallel-connected ones in an electric path thereof, wherein an electrode G of a conductive substance of each of the multi-pole terminal batteries is electrically connected to each positive electrode. A method of connecting a multi-pole terminal battery, characterized in that:
【請求項2】 電解質中の正極活物質電極と負極活物質
電極との間に、イオンの移動が可能な形状とした少なく
とも1つの導電性物質の電極Gを配設した多極端子電池
Aと、この多極端子電池Aと接続すべき電池Bとを、そ
の電気的経路中に含む多極端子電池の接続法であって、
前記電池Bの負極と多極端子電池Aの導電性物質の電極
Gとを電気的な導通状態とし、電池Bの正極からその負
極を介して多極端子電池Aの導電性物質の電極Gを経由
してその負極へと至る電気的経路が形成されるようにし
たことを特徴とする多極端子電池の接続法。
2. A multi-electrode terminal battery A in which at least one electrode G of a conductive material having a shape capable of moving ions is disposed between a positive electrode active material electrode and a negative electrode active material electrode in an electrolyte. A method of connecting a multipolar terminal battery including the multipolar terminal battery A and the battery B to be connected in its electric path,
The negative electrode of the battery B and the electrode G of the conductive material of the multipolar terminal battery A are electrically connected to each other, and the electrode G of the conductive material of the multipolar terminal battery A is connected from the positive electrode of the battery B via the negative electrode. A method for connecting a multi-electrode terminal battery, wherein an electric path to the negative electrode is formed through the battery.
【請求項3】 前記電池Bが、多極端子電池であること
を特徴とする請求項記載の多極端子電池の接続法。
3. The method for connecting a multi-pole terminal battery according to claim 2 , wherein the battery B is a multi-pole terminal battery.
【請求項4】 電解質中の正極活物質電極と負極活物質
電極との間に、イオンの移動が可能な形状とした少なく
とも1つの導電性物質の電極Gを配設した多極端子電池
A、この多極端子電池Aと接続すべき電池Bとを、その
電気的経路中に含む多極端子電池の接続法であって、前
記多極端子電池Aの導電性物質の電極Gと前記電池Bの
正極とを電気的な導通状態とするとともに、前記多極端
子電池Aの負極と前記電池Bの負極とを電気的な導通状
態としたことを特徴とする多極端子電池の接続法。
4. A multipolar terminal battery A in which at least one electrode G of a conductive material having a shape capable of transferring ions is disposed between a positive electrode active material electrode and a negative electrode active material electrode in an electrolyte. A method of connecting a multipolar terminal battery including the multipolar terminal battery A and a battery B to be connected in an electric path thereof, wherein the electrode G of a conductive substance of the multipolar terminal battery A and the battery B And a negative electrode of the battery A and a negative electrode of the battery B are electrically connected to each other.
【請求項5】 前記電池Bを多極端子電池とし、前記多
極端子電池Bの導電性物質の電極Gと、前記多極端子電
池Aの正極とを電気的な導通状態としたことを特徴とす
る請求項記載の多極端子電池の接続法。
5. The battery B is a multi-pole terminal battery, and an electrode G made of a conductive substance of the multi-pole terminal battery B and a positive electrode of the multi-pole terminal battery A are electrically connected. The method for connecting a multipolar terminal battery according to claim 4 .
【請求項6】 前記多極端子電池Aを、複数個が並列に
接続されたものとすることを特徴とする請求項4又は5
に記載の多極端子電池の接続法。
6. The method of claim wherein the multi-terminal cell A, is characterized in that it is assumed that a plurality is connected in parallel 4 or 5
3. The method for connecting a multipolar terminal battery according to the item 1.
【請求項7】 電解質中の正極活物質電極と負極活物質
電極との間に、イオンの移動が可能な形状とした少なく
とも1つの導電性物質の電極Gを配設した多極端子電池
Aと、この多極端子電池Aと接続すべき多極端子電池B
とを、その電気的経路中に含む多極端子電池の接続法で
あって、前記多極端子電池Bの負極と多極端子電池Aの
導電性物質の電極Gとを電気的な導通状態とし、多極端
子電池Bの導電性物質の電極Gからその負極を介して多
極端子電池Aの導電性物質の電極Gを経由してその負極
へと至る電気的経路が形成されるようにしたことを特徴
とする多極端子電池の接続法。
7. A multi-electrode terminal battery A in which at least one electrode G of a conductive material having a shape capable of transferring ions is disposed between a positive electrode active material electrode and a negative electrode active material electrode in an electrolyte. Multi-pole terminal battery B to be connected to this multi-pole terminal battery A
In the electrical path of the multipolar terminal battery, wherein the negative electrode of the multipolar terminal battery B and the electrode G of the conductive material of the multipolar terminal battery A are electrically connected. An electric path from the conductive material electrode G of the multipolar terminal battery B to the negative electrode via the conductive material electrode G of the multipolar terminal battery A via the negative electrode is formed. A method for connecting a multi-pole terminal battery, characterized in that:
【請求項8】 請求項1乃至のいずれかに記載の多極
端子電池の接続の仕方を1つ又は2つ以上を組み合わせ
たものを、その電気的経路中に含むことを特徴とする多
極端子電池の接続法。
8. what how the connection of the multi-terminal battery according to any one of claims 1 to 7 in combination with one or more, multi, characterized in that it comprises in its electrical path Connection method of pole terminal battery.
【請求項9】 前記正極活物質電極と負極活物質電極と
の間に電解隔膜を有することを特徴とする請求項1乃至
のいずれかに記載の多極端子電池の接続法。
9. The method according to claim 1, further comprising an electrolytic membrane between the positive electrode active material electrode and the negative electrode active material electrode.
9. The method for connecting a multipolar terminal battery according to any one of 8 .
【請求項10】 前記導電性物質電極Gを、前記電解隔
膜の片側或いは両側の近傍に配設したことを特徴とする
請求項記載の多極端子電池の接続法。
10. The method for connecting a multipolar terminal battery according to claim 9, wherein the conductive material electrode G is disposed near one or both sides of the electrolytic membrane.
【請求項11】 前記導電性物質電極Gは炭素等の非金
属、またはマグネシウムよりイオン化傾向の小さな金属
の単体若しくは合金を基材とするとともに、前記基材の
表面にこの基材よりもイオン化傾向の更に小さな導電性
物質を鍍金したことを特徴とする請求項1乃至10のい
ずれかに記載の多極端子電池の接続法。
11. The conductive material electrode G is made of a non-metal such as carbon or a simple substance or an alloy of a metal having a lower ionization tendency than magnesium, and a surface of the substrate having a higher ionization tendency than the base. The method for connecting a multipolar terminal battery according to any one of claims 1 to 10, wherein a smaller conductive material is plated.
【請求項12】 前記導電性物質電極Gを、網状の如く
イオンの透過が容易な形状としたことを特徴とする請求
項1乃至11のいずれかに記載の多極端子電池の接続
法。
12. The connection method of the multi-terminal battery according to any one of claims 1 to 11 wherein the conductive material electrodes G, characterized in that the transmission of as reticulated ions are easily shaped.
JP7076348A 1995-03-31 1995-03-31 Connection method of multi-pole terminal battery Expired - Lifetime JP2816947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7076348A JP2816947B2 (en) 1995-03-31 1995-03-31 Connection method of multi-pole terminal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7076348A JP2816947B2 (en) 1995-03-31 1995-03-31 Connection method of multi-pole terminal battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50A Division JPH06231747A (en) 1993-02-03 1993-02-03 Connecting method for multielectrode terminal battery

Publications (2)

Publication Number Publication Date
JPH07272711A JPH07272711A (en) 1995-10-20
JP2816947B2 true JP2816947B2 (en) 1998-10-27

Family

ID=13602860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7076348A Expired - Lifetime JP2816947B2 (en) 1995-03-31 1995-03-31 Connection method of multi-pole terminal battery

Country Status (1)

Country Link
JP (1) JP2816947B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484601B2 (en) * 2013-07-30 2016-11-01 Elwha Llc Load-managed electrochemical energy generation system
US9893369B2 (en) 2013-07-30 2018-02-13 Elwha Llc Managed access electrochemical energy generation system
US9343783B2 (en) 2013-07-30 2016-05-17 Elwha Llc Electrochemical energy generation system having individually controllable cells

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4717127U (en) * 1971-03-29 1972-10-27
JPS5043702Y2 (en) * 1971-03-31 1975-12-13
JPS5150992Y2 (en) * 1971-03-31 1976-12-07

Also Published As

Publication number Publication date
JPH07272711A (en) 1995-10-20

Similar Documents

Publication Publication Date Title
JP2020517050A5 (en)
EP0933828A3 (en) Electrochemical cells using a polymer electrolyte
JP2001512284A5 (en)
US20120328935A1 (en) Active material for rechargeable battery
GB2140966A (en) Metal-air battery
JPH0666229B2 (en) Electric double layer capacitor
JPS62501248A (en) Electrochemical cell with wound electrode structure
CA1077131A (en) Metal oxide cells having low internal impedance
JP2816947B2 (en) Connection method of multi-pole terminal battery
GB1425358A (en) Zinc bromide secondary battery
US3824130A (en) Cathode material for solid state batteries
JP2000164466A (en) Manufacture of electrode used for capacitor or cell
KR101140757B1 (en) Connecting structure for exteriorly connecting battery cells
RU2145132C1 (en) Electrochemical capacitor using combined charge storage mechanism
US623195A (en) Alexis werner
AU2181692A (en) Immobilized alkaline zinc anode for rechargeable cells with improved conductivity and cumulative capacity
JPH06231747A (en) Connecting method for multielectrode terminal battery
US7311997B2 (en) Rechargeable batteries based on nonconjugated conductive polymers
CN103579573A (en) Method for manufacturing a connecting contact for an electrode of an electrochemical store, method for manufacturing an electrochemical store, and electrochemical store
JP2662775B2 (en) Battery
JP2555710B2 (en) Zinc electrode
JPH06163057A (en) Battery
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
RU2121728C1 (en) Electrochemical energy storage
JP2014127466A5 (en)