JP2000164466A - Manufacture of electrode used for capacitor or cell - Google Patents

Manufacture of electrode used for capacitor or cell

Info

Publication number
JP2000164466A
JP2000164466A JP10335936A JP33593698A JP2000164466A JP 2000164466 A JP2000164466 A JP 2000164466A JP 10335936 A JP10335936 A JP 10335936A JP 33593698 A JP33593698 A JP 33593698A JP 2000164466 A JP2000164466 A JP 2000164466A
Authority
JP
Japan
Prior art keywords
current collector
intermediate film
carbon
electrode
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10335936A
Other languages
Japanese (ja)
Inventor
Osamu Ogawa
修 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10335936A priority Critical patent/JP2000164466A/en
Publication of JP2000164466A publication Critical patent/JP2000164466A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit a current-collector from eluted even if the use period of an electrode becomes longer, by a method wherein a carbon intermediate film or a metal intermediate film nobler than a conductive material film is provided on the collector formed of a conductive material, and an material layer is applied on the carbon intermediate film or the metal intermediate film. SOLUTION: A deposition unit having a carbon electrode with the sharpened point and a rod-shaped electrode is used and a carbon intermediate film 2 is formed on the surface of a current-collector 1 in a state such that the collector 1 is housed in a vacuum chamber of container of the deposition unit. The thickness of the film 2 is formed in a thickness of several nm, in short, 2 to 7 nm or thereabouts. Here, fine carbon grains are deposited on the collector 1. The reason for the deposition is guessed to be a reason that as the point part of the carbon electrode (k) is sharpened, the contact area of the contact site of the carbon electrode with the rod-shaped electrode is reduced, the electric resistance at the contact site is increased and the caloric value of the carbon electrode is increased. After that, an active material layer 3 is applied on the surface (surface and rear) of the collector 1 formed with the film 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はキャパシタまたは電
池に使用される電極の製造方法に関する。
The present invention relates to a method for manufacturing an electrode used for a capacitor or a battery.

【0002】[0002]

【従来の技術】キャパシタまたは電池が提供されてい
る。電池は化学変化で生成した電荷を放出するものであ
る。キャパシタは電荷の充電・放電を繰り返すものであ
る。キャパシタまたは電池においては、アルミニウム系
等の導電材料で形成した集電体に、活物質層が被覆され
ている。
BACKGROUND OF THE INVENTION Capacitors or batteries are provided. A battery discharges electric charge generated by a chemical change. The capacitor repeatedly charges and discharges electric charges. In a capacitor or a battery, an active material layer is coated on a current collector formed of a conductive material such as an aluminum-based material.

【0003】[0003]

【発明が解決しようとする課題】産業界では、キャパシ
タまたは電池の性能の一層の向上が要請されている。本
発明は上記した実情に鑑みなされたものであり、キャパ
シタまたは電池の性能の向上に有利なキャパシタまたは
電池に使用される電極の製造方法を提供することを課題
とする。
There is a need in the industry for further improvements in the performance of capacitors or batteries. The present invention has been made in view of the above circumstances, and has as its object to provide a method for manufacturing an electrode used in a capacitor or battery which is advantageous for improving the performance of the capacitor or battery.

【0004】[0004]

【課題を解決するための手段】本発明者は上記した課題
のもとに鋭意開発をすすめた。そして、導電材料で形成
された集電体に、カーボンの中間膜、または、導電材料
よりも貴な金属の中間膜を設け、その中間膜の上に活物
質層を被覆すれば、キャパシタまたは電池の長期にわた
る性能の向上に有利であることを知見し、試験で確認
し、本発明方法を完成した。
Means for Solving the Problems The present inventor has made intensive developments based on the above-mentioned problems. A current collector formed of a conductive material is provided with an intermediate film of carbon or an intermediate film of a metal that is more noble than the conductive material, and an active material layer is coated on the intermediate film, so that a capacitor or a battery can be obtained. Was found to be advantageous for long-term performance improvement, and confirmed by tests, thus completing the method of the present invention.

【0005】キャパシタまたは電池の性能の向上に有利
である理由は、次のように推察される。即ち、キャパシ
タまたは電池が劣化する要因の一つとして、使用期間が
長くなると、集電体を構成する導電材料が電解液に溶出
し、溶出に基づく集電体の表面性状の劣化が考えられ
る。図10に示すように、活物質層200の構成成分
(例えば活性炭やカーボンブラック)は一般的に粉末粒
子状であり、その構成成分が集電体100と接触してい
る部位は、微視的にみれば、点接触状態またはこれに近
い形態と考えられる。そのため、電荷の移動部位の面積
が小さく、電流密度が部分的に高くなり、集電体100
の溶出を誘発すると考えられる。従って使用初期におい
ては、図8に模式的に示すように集電体100と活物質
層200との密着性が良好であったとしても、電解液の
存在下において、集電体100を構成している導電材料
の溶出が過剰に進行すると、図9に模式的に示すように
両者の間に微小隙間300が生成し、集電体100と活
物質層200との間の密着性が低下する。これにより活
物質層200と集電体100との界面における電気抵抗
の増大を誘発する。これがキャパシタや電池の性能を低
下させる要因の一つとなると、本発明者は推察してい
る。
[0005] The reason why the performance of the capacitor or the battery is improved is presumed as follows. That is, as one of the factors that cause deterioration of the capacitor or the battery, when the use period is prolonged, the conductive material constituting the current collector elutes into the electrolytic solution, and the surface properties of the current collector are deteriorated due to the elution. As shown in FIG. 10, components of the active material layer 200 (for example, activated carbon and carbon black) are generally in the form of powder particles, and a portion where the components are in contact with the current collector 100 is microscopically. In view of the above, it is considered that the state is a point contact state or a form close thereto. Therefore, the area of the charge transfer site is small, the current density is partially increased, and the current collector 100
It is thought to induce the elution of Therefore, in the initial stage of use, even if the current collector 100 and the active material layer 200 have good adhesion as schematically shown in FIG. 8, the current collector 100 is formed in the presence of the electrolyte. If the elution of the conductive material progresses excessively, a minute gap 300 is generated between the two, as schematically shown in FIG. 9, and the adhesion between the current collector 100 and the active material layer 200 is reduced. . This induces an increase in electric resistance at the interface between the active material layer 200 and the current collector 100. The present inventors presume that this is one of the factors that degrade the performance of the capacitor and the battery.

【0006】そこで本発明者は、導電材料で形成された
集電体100に、カーボンの中間膜、または、導電材料
よりも貴な金属の中間膜を設け、その上に活物質層20
0を被覆すれば、使用期間が長くなったとしても、集電
体100の溶出を抑制でき、キャパシタまたは電池の長
期にわたる性能の向上に有利であることを知見し、試験
で確認し、本発明方法を完成した。
Therefore, the present inventor provided an intermediate film of carbon or an intermediate film of a metal which is more noble than the conductive material on the current collector 100 formed of the conductive material, and provided thereon the active material layer 20.
It has been found that coating with 0 can suppress elution of the current collector 100 even when the use period is prolonged, which is advantageous for improving the performance of a capacitor or a battery over a long period of time. Completed the method.

【0007】すなわち、本発明に係るキャパシタまたは
電池に使用される電極の製造方法は、導電材料で形成さ
れた集電体に、カーボンの中間膜、または、導電材料よ
りも貴な金属の中間膜を設け、その上に活物質層を被覆
することを特徴とするものである。
That is, according to the method of manufacturing an electrode used for a capacitor or a battery according to the present invention, a current collector formed of a conductive material is provided with a carbon intermediate film or a metal intermediate film nobler than the conductive material. And an active material layer is coated thereon.

【0008】[0008]

【発明の実施の形態】集電体は箔状のものを採用でき
る。集電体の厚みはキャパシタまたは電池の種類に応じ
て適宜選択でき、例えば5〜200μm、殊に10〜1
00μmを採用できる。集電体は導電材料で形成されて
いる。導電材料としてはアルミニウム系を採用できる。
アルミニウム系としては、純アルミニウム、アルミニウ
ム合金を採用できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A foil-like current collector can be employed. The thickness of the current collector can be appropriately selected depending on the type of the capacitor or the battery, and is, for example, 5 to 200 μm, particularly 10 to 1 μm.
00 μm can be adopted. The current collector is formed of a conductive material. Aluminum can be used as the conductive material.
Pure aluminum and aluminum alloy can be adopted as the aluminum-based material.

【0009】本発明方法においては、カーボンの中間
膜、または、導電材料よりも貴な金属の中間膜を集電体
に設ける。導電材料よりも貴な金属としては、導電材料
がアルミ系である場合には、金、白金、Sn、Cu、F
e、Ag、Ni、Znなどがあげられる。中間膜として
は、蒸着、スパッタリング等の物理的成膜手段で形成す
ることができるが、これに限定されるものではない。中
間膜の厚みは、電解液の種類、中間層の材質などを考慮
して適宜選択でき、上限値としては例えば1000nm
または500nmを採用でき、下限値としては例えば1
0nmまたは30nmを採用できる。ただしこれに限定
されるものではない。
In the method of the present invention, an intermediate film of carbon or an intermediate film of a metal which is more noble than a conductive material is provided on the current collector. When the conductive material is an aluminum-based material, gold, platinum, Sn, Cu, F
e, Ag, Ni, Zn and the like. The intermediate film can be formed by physical film forming means such as vapor deposition and sputtering, but is not limited thereto. The thickness of the intermediate film can be appropriately selected in consideration of the type of the electrolytic solution, the material of the intermediate layer, and the like.
Alternatively, 500 nm can be adopted, and the lower limit is, for example, 1
0 nm or 30 nm can be adopted. However, it is not limited to this.

【0010】本発明方法においては、集電体の全表面に
中間膜を生成することができる。あるいは、集電体のう
ち電解液と触れる部位にのみ中間膜を生成することがで
きる。集電体のうち電解液と触れない部位にマスキング
を適宜施すこともできる。本発明方法においては、中間
膜の上に、キャパシタまたは電池の活物質層を被覆す
る。
[0010] In the method of the present invention, an intermediate film can be formed on the entire surface of the current collector. Alternatively, the intermediate film can be formed only in a portion of the current collector that comes into contact with the electrolytic solution. Masking may be appropriately performed on a portion of the current collector that does not come into contact with the electrolytic solution. In the method of the present invention, an active material layer of a capacitor or a battery is coated on the intermediate film.

【0011】[0011]

【実施例】以下、本発明の実施例を説明する。本実施例
は、電気二重層キャパシタとも呼ばれるキャパシタを適
用する例である。まず、導電材料であるアルミニウム
(Al:99.99重量%)で形成した箔状の所定サイ
ズの集電体1(図1に模式化して示す)を用いる。集電
体1は上端部に耳部1sをもつ。集電体1は、幅が5c
m、耳部1sを除く高さが5.5cm、厚みが約50μ
mである。活物質塗布部は5cm×5cmである。
Embodiments of the present invention will be described below. The present embodiment is an example in which a capacitor called an electric double layer capacitor is applied. First, a foil-shaped current collector 1 (schematically shown in FIG. 1) formed of aluminum (Al: 99.99% by weight) as a conductive material and having a predetermined size is used. The current collector 1 has an ear 1s at the upper end. Current collector 1 has a width of 5c
m, height excluding ears 1s 5.5cm, thickness about 50μ
m. The active material application part is 5 cm × 5 cm.

【0012】次に、図3に示すように、先端部を尖らせ
たカーボン電極80kと棒状電極80mとをもつ蒸着装
置80を用い、蒸着装置80の容器81の真空室82に
集電体1を収容した状態で、集電体1の表面にカーボン
の中間膜2を成膜する(図2は模式化して示す)。カー
ボンの中間膜2の厚みは数nm、つまり2〜7nm程度
である。本実施例においては微小なカーボン粒子が集電
体1に堆積する。カーボン電極80kの先端部が尖って
いるため、カーボン電極80kと棒状電極80mとが接
触する部位の接触面積が小さくなり、接触する部位での
電気抵抗が大きくなり、発熱量が大きくなるためと推察
される。
Next, as shown in FIG. 3, a current collector 1 is placed in a vacuum chamber 82 of a container 81 of the vapor deposition device 80 using a vapor deposition device 80 having a carbon electrode 80k having a sharpened tip and a rod-shaped electrode 80m. Is stored, a carbon intermediate film 2 is formed on the surface of the current collector 1 (FIG. 2 is schematically shown). The thickness of the carbon intermediate film 2 is several nm, that is, about 2 to 7 nm. In this embodiment, fine carbon particles are deposited on the current collector 1. Because the tip of the carbon electrode 80k is sharp, the contact area of the portion where the carbon electrode 80k and the rod-shaped electrode 80m are in contact is reduced, the electrical resistance at the contacted portion is increased, and the amount of heat generated is estimated to be large. Is done.

【0013】その後、カーボンの中間膜2を成膜した集
電体1の表面(表裏)に活物質層3を被覆する(図1に
模式化して示す)。本実施例においては、活物質である
活性炭(粒径:10μm以下)と、導電材であるカーボ
ンブラックと、結着剤であるメチルセルロースとを、所
定の割合で混合したペースト状の混合材料を用い、この
混合材料を集電体1の中間膜2に被覆することにより、
活物質層3(厚み:20〜100μm)は形成されてい
る。活性炭は、表面積が大きく、電気二重層を効率よく
生成させ得る。
Thereafter, the surface (front and back) of the current collector 1 on which the carbon intermediate film 2 is formed is coated with an active material layer 3 (schematically shown in FIG. 1). In this example, a paste-like mixed material in which activated carbon (particle size: 10 μm or less) as an active material, carbon black as a conductive material, and methylcellulose as a binder were mixed at a predetermined ratio was used. By coating the mixed material on the intermediate film 2 of the current collector 1,
The active material layer 3 (thickness: 20 to 100 μm) is formed. Activated carbon has a large surface area and can efficiently generate an electric double layer.

【0014】本実施例によれば、集電体1に、カーボン
の薄膜状の中間膜2を設け、その上に活物質層3を被覆
している。このような本実施例においては、後述する試
験例においても示すように、集電体1が電解液に溶出す
ることが抑制される。故に、使用期間が長くなっても、
キャパシタの性能劣化を抑制するのに有利となる。 (試験例)本発明者が行った試験例を説明する。この試
験では、アルミニウム(Al:99.99重量%)で形
成した箔状の集電体1を用いた。集電体1の基本サイズ
は、幅が3cm、長さが3cm、厚みが約50μmであ
った。上記した箔状の集電体1の両方(表裏)の表面に
カーボンの中間膜2(厚み:数nm)を蒸着で成膜し
た。次にペースト状の混合材料を集電体1の中間膜2に
塗布し、前記した活物質層3(厚み:30μm)を被覆
し、電極Aを得た。
According to the present embodiment, the current collector 1 is provided with the carbon thin film-like intermediate film 2 and the active material layer 3 is coated thereon. In this embodiment, as shown in a test example described later, elution of the current collector 1 into the electrolytic solution is suppressed. Therefore, even if the use period becomes long,
This is advantageous for suppressing the performance degradation of the capacitor. (Test Example) A test example performed by the present inventors will be described. In this test, a foil-shaped current collector 1 formed of aluminum (Al: 99.99% by weight) was used. The basic size of the current collector 1 was 3 cm in width, 3 cm in length, and about 50 μm in thickness. A carbon intermediate film 2 (thickness: several nm) was formed on both surfaces (front and back) of the foil-shaped current collector 1 by vapor deposition. Next, a paste-like mixed material was applied to the intermediate film 2 of the current collector 1 to cover the above-mentioned active material layer 3 (thickness: 30 μm), thereby obtaining an electrode A.

【0015】ペースト状の混合材料は、活性炭(10μ
m以下)、カーボンブラック、メチルセルロースを重量
比で23:3:3の割合で混合し、更に水を加えて形成
した。このように形成した電極Aを、正極および負極と
して、図4に概念図を示すラボセルに組み込んだ。ラボ
セルは、キャパシタ用電解液70を収容したガラス製の
内容器72と、ガラス製の外容器と73、アルゴンガス
が封入される封入室74と、正極と負極とを仕切るセパ
レータ75とをもつ。
The paste-like mixed material is activated carbon (10 μm).
m), carbon black and methylcellulose were mixed at a weight ratio of 23: 3: 3, and water was further added to form the mixture. The electrode A thus formed was incorporated as a positive electrode and a negative electrode into a laboratory cell whose conceptual diagram is shown in FIG. The laboratory cell has a glass inner container 72 containing an electrolytic solution 70 for a capacitor, an outer container 73 made of glass, a sealing chamber 74 in which argon gas is sealed, and a separator 75 for separating a positive electrode and a negative electrode.

【0016】このラボセルを用いて、充放電試験を行
い、Al溶出量、つまり電解液に含まれるAl量をプラ
ズマ発光分析(ICP)により測定した。充放電試験
は、0〜3.5Vのサイクル(0.5サイクル/分)を
1時間行った。ラボセルに収容されたキャパシタ用電解
液70は、溶媒がプロピレンカーボネイト、電解質が
(C 254NBF4、電解質の濃度が1mol/リット
ルとした。
A charge / discharge test is performed using this lab cell.
The amount of Al elution, that is, the amount of Al contained in the electrolyte
Measured by zuma emission analysis (ICP). Charge / discharge test
Is a cycle of 0 to 3.5 V (0.5 cycles / minute)
Performed for 1 hour. Electrolysis for capacitors housed in lab cells
In the liquid 70, the solvent is propylene carbonate, and the electrolyte is
(C TwoHFive)FourNBFFour, Electrolyte concentration is 1mol / litre
And

【0017】別の試験例として、前記したカーボンの中
間膜2に代えて、金の中間膜2Bを成膜した。成膜にあ
たり、真空室90aをもつ成膜装置90を用い、金で形
成したターゲット91(負極)を真空室90a内の集電
体1(正極)に対面させるとともに、真空室90aを高
真空雰囲気(1〜10Pa)し、ターゲット91と集電
体1との間にグロー放電92を発生させ、ターゲット9
1から発生した金の微粒子を集電体1に堆積させて中間
膜2Bを成膜した。なお集電体1を裏がえして集電体1
の表裏の双方に成膜した。
As another test example, a gold intermediate film 2B was formed in place of the carbon intermediate film 2 described above. In forming the film, a target 91 (negative electrode) formed of gold is opposed to the current collector 1 (positive electrode) in the vacuum chamber 90a using a film forming apparatus 90 having a vacuum chamber 90a, and the vacuum chamber 90a is set in a high vacuum atmosphere. (1 to 10 Pa), a glow discharge 92 is generated between the target 91 and the current collector 1, and the target 9
The gold fine particles generated from No. 1 were deposited on the current collector 1 to form an intermediate film 2B. The current collector 1 is turned over and the current collector 1
Was formed on both sides.

【0018】成膜装置90の付属メータ(電流値から換
算)によれば、金の中間膜2Bの厚みは約30nmであ
った。その後に活物質層3を前述と同様な条件で被覆
し、電極Bを形成した(図6参照)。この電極Bについ
ても、同様にラボセルに組み込み、充放電試験を行い、
電解液に含まれているAl量をICP分析により測定し
た。
According to an attached meter (converted from a current value) of the film forming apparatus 90, the thickness of the gold intermediate film 2B was about 30 nm. Thereafter, the active material layer 3 was coated under the same conditions as described above to form an electrode B (see FIG. 6). This electrode B was similarly incorporated into a laboratory cell, and subjected to a charge / discharge test.
The amount of Al contained in the electrolyte was measured by ICP analysis.

【0019】また比較例として、同様な箔状の集電体を
用い、中間膜を形成することなく、その集電体に活物質
層を被覆し、電極Cを形成した。この電極Cについて
も、同様にラボセルに組み込み、充放電試験を行い、電
解液に含まれているAl量をICP分析により測定し
た。試験結果を表1に示す。表1に示すように、カーボ
ンの中間膜を成膜した電極Aの場合にはAl溶出量4.
6ppmであり、Al溶出量が抑えられていた。金の中
間膜を成膜した電極Bの場合にはAl溶出量0.2pp
mであり、Al溶出量が一層抑えられていた。中間膜が
形成されていない比較例の電極Cの場合には、13.3
ppmであり、Al溶出量が大きかった。
As a comparative example, an electrode C was formed by covering the current collector with an active material layer without forming an intermediate film, using the same foil-like current collector. This electrode C was similarly assembled in a laboratory cell, subjected to a charge / discharge test, and the amount of Al contained in the electrolyte was measured by ICP analysis. Table 1 shows the test results. As shown in Table 1, in the case of the electrode A on which an intermediate film of carbon was formed, the elution amount of Al was 3.
6 ppm, and the amount of Al eluted was suppressed. In the case of the electrode B having a gold intermediate film formed thereon, the amount of Al eluted is 0.2 pp.
m, and the Al elution amount was further suppressed. In the case of the electrode C of the comparative example where no intermediate film was formed, 13.3 was used.
ppm, and the Al elution amount was large.

【0020】[0020]

【表1】 (適用例)本適用例は、電気二重層キャパシタとも呼ば
れるキャパシタを適用した例である。図7はその概念図
を示す。図7に示すように、キャパシタ60は、電解液
61を収容した密閉容器62と、正極用の箔状をなす集
電体63と、集電体63に被覆された正極用活物質層6
4と、負極用の箔状をなす集電体65と、集電体65に
被覆された負極用活物質層66と、セパレータ67と、
正極用の集電体63につながる正極端子68と、負極用
の集電体65につながる負極端子69とを備えている。
正極用の集電体63と正極用活物質層64とで正極7A
が形成されている。負極用の集電体65と負極用活物質
層66とで負極7Bが形成されている。多数個の正極7
A及び多数個の負極7Bがその厚み方向において積層さ
れている。図7は概念図のため、個数を省略している。
本適用例においても、正極用の集電体63、負極用の集
電体65には、カーボンの中間膜、あるいは、金の中間
膜が成膜されている。
[Table 1] (Application Example) This application example is an example in which a capacitor called an electric double layer capacitor is applied. FIG. 7 shows a conceptual diagram thereof. As shown in FIG. 7, the capacitor 60 includes a sealed container 62 containing an electrolytic solution 61, a current collector 63 in the form of a foil for the positive electrode, and a positive electrode active material layer 6 coated on the current collector 63.
4, a negative electrode foil-like current collector 65, a negative electrode active material layer 66 coated on the current collector 65, a separator 67,
A positive electrode terminal 68 connected to the positive electrode current collector 63 and a negative electrode terminal 69 connected to the negative electrode current collector 65 are provided.
The current collector 63 for the positive electrode and the active material layer 64 for the positive electrode
Are formed. The negative electrode current collector 65 and the negative electrode active material layer 66 form the negative electrode 7B. Many positive electrodes 7
A and many negative electrodes 7B are stacked in the thickness direction. Since FIG. 7 is a conceptual diagram, the number is omitted.
Also in this application example, an intermediate film of carbon or an intermediate film of gold is formed on the current collector 63 for the positive electrode and the current collector 65 for the negative electrode.

【0021】[0021]

【発明の効果】本発明方法によれば、使用期間が長くな
っても、集電体を構成する導電材料の電解液への溶出
を、従来技術に比較して抑制できる。そのため従来技術
に比較して、集電体と活物質層との間における電気抵抗
の増大を抑制するのに有利となる。故に使用期間が長く
なっても、キャパシタまたは電池の性能劣化を抑制する
のに有利である。
According to the method of the present invention, elution of the conductive material constituting the current collector into the electrolytic solution can be suppressed as compared with the prior art, even when the use period is long. Therefore, it is advantageous in suppressing an increase in electric resistance between the current collector and the active material layer as compared with the related art. Therefore, it is advantageous in suppressing the performance deterioration of the capacitor or the battery even when the use period becomes long.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電極の製造過程を模式的に示す側面図である。FIG. 1 is a side view schematically showing a manufacturing process of an electrode.

【図2】カーボンの中間膜をもつ集電体に活物質層を被
覆した状態を模式的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing a state in which a current collector having a carbon intermediate film is coated with an active material layer.

【図3】カーボンの中間膜を集電体に成膜する過程を示
す構成図である。
FIG. 3 is a configuration diagram showing a process of forming an intermediate carbon film on a current collector.

【図4】試験で用いたラボセルの概念図である。FIG. 4 is a conceptual diagram of a laboratory cell used in the test.

【図5】金の中間膜をもつ集電体に成膜する過程を模式
的に示す構成図である。
FIG. 5 is a configuration diagram schematically showing a process of forming a film on a current collector having a gold intermediate film.

【図6】カーボンの中間膜をもつ集電体に活物質層を被
覆した状態を模式的に示す断面図である。
FIG. 6 is a cross-sectional view schematically showing a state where a current collector having a carbon intermediate film is coated with an active material layer.

【図7】キャパシタに適用した状態の概念図である。FIG. 7 is a conceptual diagram of a state applied to a capacitor.

【図8】従来技術に係り、集電体に活物質層を被覆した
状態を模式的に示す断面図である。
FIG. 8 is a cross-sectional view schematically showing a state where a current collector is covered with an active material layer according to a conventional technique.

【図9】従来技術に係り、集電体と活物質層との間に隙
間が生成した状態を模式的に示す断面図である。
FIG. 9 is a cross-sectional view schematically showing a state in which a gap is generated between a current collector and an active material layer according to a conventional technique.

【図10】活物質層を構成している活性炭等が集電体に
接触している形態を想像して示す構成図である。
FIG. 10 is a configuration diagram imagining a form in which activated carbon or the like constituting an active material layer is in contact with a current collector.

【符号の説明】[Explanation of symbols]

図中、1は集電体、2,2Bは中間膜、3は活物質層を
示す。
In the figure, 1 indicates a current collector, 2, 2B indicates an intermediate film, and 3 indicates an active material layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電材料で形成された集電体に、カーボン
の中間膜または前記導電材料よりも貴な金属の中間膜を
設け、その上に活物質層を被覆することを特徴とするキ
ャパシタまたは電池に使用される電極の製造方法。
1. A capacitor comprising: a current collector formed of a conductive material; and a carbon intermediate film or an intermediate film of a metal which is more noble than the conductive material, and an active material layer is coated thereon. Or a method for producing an electrode used in a battery.
JP10335936A 1998-11-26 1998-11-26 Manufacture of electrode used for capacitor or cell Pending JP2000164466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10335936A JP2000164466A (en) 1998-11-26 1998-11-26 Manufacture of electrode used for capacitor or cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10335936A JP2000164466A (en) 1998-11-26 1998-11-26 Manufacture of electrode used for capacitor or cell

Publications (1)

Publication Number Publication Date
JP2000164466A true JP2000164466A (en) 2000-06-16

Family

ID=18294012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10335936A Pending JP2000164466A (en) 1998-11-26 1998-11-26 Manufacture of electrode used for capacitor or cell

Country Status (1)

Country Link
JP (1) JP2000164466A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069321A1 (en) * 2004-01-19 2005-07-28 Matsushita Electric Industrial Co., Ltd. Electric double-layer capacitor, its manufacturing method, and electronic device using same
JP2005524974A (en) * 2002-05-03 2005-08-18 エプコス アクチエンゲゼルシャフト Electrode and method for producing the electrode
EP1796116A1 (en) * 2004-09-29 2007-06-13 Toyo Aluminium Kabushiki Kaisha Electrode material and method for producing same
EP1798743A1 (en) * 2004-09-29 2007-06-20 Toyo Aluminium Kabushiki Kaisha Capacitor electrode member, method for manufacturing the same, and capacitor provided with the electrode member
US7327556B2 (en) 2003-03-31 2008-02-05 Toyo Aluminum Kabushiki Kaisha Carbon-coated aluminum and method for producing same
WO2010086961A1 (en) 2009-01-28 2010-08-05 東洋アルミニウム株式会社 Carbon-coated aluminum member and method for producing the same
WO2010106749A1 (en) 2009-03-17 2010-09-23 東洋アルミニウム株式会社 Aluminum member covered with conductive coat and process for production of same
WO2011105451A1 (en) * 2010-02-25 2011-09-01 株式会社神戸製鋼所 Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and process for production of positive electrode current collector for lithium ion secondary battery
JP2011233564A (en) * 2010-04-23 2011-11-17 Aisin Seiki Co Ltd Battery
CN103022563A (en) * 2011-09-21 2013-04-03 株式会社日立制作所 Lithium ion secondary battery
CN104103418A (en) * 2014-07-21 2014-10-15 关秉羽 Solid-state capacitance negative carbon foil and manufacture method thereof
US9640800B2 (en) 2011-03-17 2017-05-02 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery having a positive electrode including an aluminum foil and a positive electrode active material layer formed thereon
JP2017527094A (en) * 2014-07-22 2017-09-14 リクリッス カンパニー リミテッド Micro battery, PCB substrate and semiconductor chip using the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524974A (en) * 2002-05-03 2005-08-18 エプコス アクチエンゲゼルシャフト Electrode and method for producing the electrode
US7327556B2 (en) 2003-03-31 2008-02-05 Toyo Aluminum Kabushiki Kaisha Carbon-coated aluminum and method for producing same
WO2005069321A1 (en) * 2004-01-19 2005-07-28 Matsushita Electric Industrial Co., Ltd. Electric double-layer capacitor, its manufacturing method, and electronic device using same
US7394648B2 (en) 2004-01-19 2008-07-01 Matsushita Electric Industrial Co., Ltd. Electric double-layer capacitor, its manufacturing method, and electronic device using same
EP1796116A1 (en) * 2004-09-29 2007-06-13 Toyo Aluminium Kabushiki Kaisha Electrode material and method for producing same
EP1798743A1 (en) * 2004-09-29 2007-06-20 Toyo Aluminium Kabushiki Kaisha Capacitor electrode member, method for manufacturing the same, and capacitor provided with the electrode member
US7639475B2 (en) 2004-09-29 2009-12-29 Toyo Aluminium Kabushiki Kaisha Electrode material and method for producing same
EP1798743A4 (en) * 2004-09-29 2010-02-24 Toyo Aluminium Kk Capacitor electrode member, method for manufacturing the same, and capacitor provided with the electrode member
EP1796116A4 (en) * 2004-09-29 2010-02-24 Toyo Aluminium Kk Electrode material and method for producing same
WO2010086961A1 (en) 2009-01-28 2010-08-05 東洋アルミニウム株式会社 Carbon-coated aluminum member and method for producing the same
WO2010106749A1 (en) 2009-03-17 2010-09-23 東洋アルミニウム株式会社 Aluminum member covered with conductive coat and process for production of same
JP2010215964A (en) * 2009-03-17 2010-09-30 Toyo Aluminium Kk Conductive substance coated aluminum material and method for manufacturing the same
KR20110133487A (en) 2009-03-17 2011-12-12 도요 알루미늄 가부시키가이샤 Aluminum member covered with conductive coat and process for production of same
WO2011105451A1 (en) * 2010-02-25 2011-09-01 株式会社神戸製鋼所 Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and process for production of positive electrode current collector for lithium ion secondary battery
JP2011233564A (en) * 2010-04-23 2011-11-17 Aisin Seiki Co Ltd Battery
US9640800B2 (en) 2011-03-17 2017-05-02 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery having a positive electrode including an aluminum foil and a positive electrode active material layer formed thereon
CN103022563A (en) * 2011-09-21 2013-04-03 株式会社日立制作所 Lithium ion secondary battery
CN104103418A (en) * 2014-07-21 2014-10-15 关秉羽 Solid-state capacitance negative carbon foil and manufacture method thereof
JP2017527094A (en) * 2014-07-22 2017-09-14 リクリッス カンパニー リミテッド Micro battery, PCB substrate and semiconductor chip using the same
US10418661B2 (en) 2014-07-22 2019-09-17 Rekrix Co., Ltd. Micro-battery, and PCB and semiconductor chip using same

Similar Documents

Publication Publication Date Title
JP3060145B2 (en) Mercury-free miniature zinc-air battery with indium-plated anode cup
US4326017A (en) Positive electrode for lead acid battery
JP2000164466A (en) Manufacture of electrode used for capacitor or cell
WO2013108839A1 (en) Liquid-injection-type metal-air battery
JPH0869793A (en) Zinc secondary battery and zinc electrode
JPS5873968A (en) Electrode unit, battery cell and method of improving inversion thereof
EP0307209A1 (en) A battery
WO2017040894A1 (en) Electrochemical device including three-dimensional electrode substrate
JP2000156328A (en) Manufacture of collector used in capacitor or battery
CA1105577A (en) Cathode depolarizer
WO1985004988A1 (en) Rechargeable electrochemical device
JPS60220555A (en) Electrochemical battery
RU2121728C1 (en) Electrochemical energy storage
JP2004502279A (en) Electrochemical cell with anode containing sulfur
JPH0275160A (en) Zinc electrode
JPH0513085A (en) Cylindrical alkaline battery
JP4043166B2 (en) battery
JP3261410B2 (en) Method for producing hydrogen storage electrode
JPS5834907B2 (en) dench
JP2000021459A (en) Button type air zinc battery
JPH0250585B2 (en)
JP2000195568A (en) Air battery
JP3542501B2 (en) Hydrogen storage electrode
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JP2022140160A (en) zinc secondary battery