WO2013108839A1 - Liquid-injection-type metal-air battery - Google Patents

Liquid-injection-type metal-air battery Download PDF

Info

Publication number
WO2013108839A1
WO2013108839A1 PCT/JP2013/050808 JP2013050808W WO2013108839A1 WO 2013108839 A1 WO2013108839 A1 WO 2013108839A1 JP 2013050808 W JP2013050808 W JP 2013050808W WO 2013108839 A1 WO2013108839 A1 WO 2013108839A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
coating layer
metal
injection
air battery
Prior art date
Application number
PCT/JP2013/050808
Other languages
French (fr)
Japanese (ja)
Inventor
佳子 塚田
宮澤 篤史
長山 森
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013108839A1 publication Critical patent/WO2013108839A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a metal-air battery.
  • the present invention relates to a liquid-injection-type metal-air battery that can be used by injecting an electrolyte or water for electrolyte during use.
  • a metal-air battery is a battery that uses oxygen in the air as a positive electrode active material and a metal such as aluminum (Al), iron (Fe), or zinc (Zn) as a negative electrode active material.
  • a metal such as aluminum (Al), iron (Fe), or zinc (Zn) as a negative electrode active material.
  • Al aluminum
  • Fe iron
  • Zn zinc
  • Such a battery is attracting attention as a battery that has a high energy density and can be reduced in size and weight.
  • Patent Document 1 As one type of metal-air battery, for example, as described in Patent Document 1, an infusion type in which an electrolytic solution is injected at the time of use and brought into a usable state by bringing the electrolytic solution into contact with an electrode. There is a battery. Such a liquid injection type battery is suitable as an emergency or emergency power source because the battery reaction does not proceed unless an electrolytic solution is injected, and long-term storage is possible.
  • Patent Document 2 describes a liquid-injection-type metal-air battery using a metal electrode that is configured so that at least the electrolyte side surface is in a liquid state at least temporarily in order to prevent dendrite growth during charging. Yes. More specifically, an example in which a Ga alloy containing 3% by mass of Hg is used as the negative electrode metal is described.
  • the present invention has been made in view of such problems of the conventional technology.
  • the object of the present invention is to suppress the corrosion or consumption of the negative electrode metal from the start of the injection of the electrolyte until the electrolyte penetrates the whole, and the capacity utilization rate and the energy density are improved.
  • the object is to provide an injection-type metal-air battery.
  • An injection-type metal-air battery is composed of a negative electrode mainly composed of a metal having a higher ionization tendency than hydrogen and a material different from the metal, and is formed on at least a part of the negative electrode surface. And a coating layer that suppresses a hydrogen generation reaction between the negative electrode and the electrolytic solution.
  • FIG. 1 is a schematic view showing a state of Zn coating treatment on the negative electrode substrate in Example 5.
  • FIG. 2 is a schematic diagram showing an apparatus used for evaluating the amount of hydrogen generation when discharging was performed using the negative electrode samples according to Examples and Comparative Examples.
  • FIG. 3 is a graph showing the amount of hydrogen generation in Examples 1 and 2 and the comparative example over time.
  • FIG. 4 is a schematic cross-sectional view showing an example of an electrode structure of a liquid injection type metal-air battery according to one embodiment of the present invention.
  • the liquid-injection-type metal-air battery according to the present embodiment is used for, for example, an electrode structure including a positive electrode (air electrode) and a negative electrode, an electrode storage unit that stores the electrode structure, and an electrolytic solution or an electrolytic solution. And a tank for storing the solvent.
  • the electrode structure 20 of the injection type metal-air battery of the present embodiment includes a negative electrode layer 21, a coating layer 25, an electrolyte layer 23, a positive electrode layer 22, a liquid tight ventilation member 24, Can be configured to be stacked in this order.
  • the positive electrode layer 22 may include a liquid-tight ventilation member 24 on the outer layer side.
  • the negative electrode layer 21 is provided with the coating layer 25 in at least one part of the surface in this form.
  • the coating layer 25 is formed on the surface of the negative electrode layer 21 facing the electrolyte layer 23, thereby suppressing the reaction that the electrolytic solution contained in the electrolyte layer 23 corrodes the negative electrode layer 21. it can.
  • the electrode storage portion is a case for storing an electrolytic solution together with the electrode structure, and has a structure that prevents leakage of the electrolytic solution. That is, the case is made of a material resistant to the electrolytic solution.
  • the tank has an integral structure with the electrode structure or a separation structure. In other words, the electrolytic solution or solvent in the tank can be injected into the electrode storage part that stores the electrode structure by an appropriate means.
  • the positive electrode uses oxygen as a positive electrode active material. That is, a positive electrode including a catalyst component that functions as an oxygen redox catalyst and a conductive catalyst carrier that supports the catalyst component can be obtained.
  • a metal oxide such as manganese dioxide or tricobalt tetroxide
  • the shape and size of the catalyst component are not particularly limited, and the same shape and size as those of conventionally known catalyst components can be employed.
  • the shape of the catalyst component is preferably granular, and the average particle size of the catalyst particles is preferably 1 to 30 nm.
  • the catalyst utilization rate is related to the effective electrode area that is important in causing the electrochemical reaction to proceed.
  • the value of “average particle diameter” refers to particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The value calculated as the average value of the particle diameters of the particles shall be adopted. The average particle size of other constituents can be defined in the same manner.
  • the catalyst carrier not only functions as a carrier for supporting the above-described catalyst component, but also functions as an electron conduction path material involved in the transfer of electrons between the catalyst component and other members.
  • the catalyst carrier is not particularly limited as long as it has a specific surface area for supporting the catalyst component in a desired dispersed state and has sufficient electron conductivity, and the main component may be carbon. preferable.
  • Specific examples of the catalyst carrier include carbon particles made of carbon black, activated carbon, coke, natural graphite, artificial graphite, and the like.
  • the “main component” means that the content of the component is 50% by mass or more with respect to the whole.
  • the main components of the other constituent components can be defined similarly.
  • the size of the catalyst carrier is not particularly limited, but it is preferable that the average particle diameter is about 5 to 200 nm from the viewpoint of easy loading, catalyst utilization, and control of the catalyst layer thickness within an appropriate range. . More preferably, it is about 10 to 100 nm.
  • the amount of the catalyst component supported on the catalyst carrier is preferably 10 to 80% by mass, more preferably 30 to 70% by mass, based on the total amount of the catalyst and the carrier carrying the catalyst.
  • the supported amount of the catalyst component is within such a range, the balance between the degree of dispersion of the catalyst component on the catalyst carrier and the catalyst performance is appropriate.
  • a conventionally well-known material can be used suitably as what is applied to an air battery.
  • the liquid-tight ventilation member is a member that is disposed on the outer layer side of the positive electrode and has liquid-tightness (water-tightness) with respect to the electrolytic solution and air-permeability with respect to oxygen.
  • a material a material composed of a water-repellent porous resin such as polyolefin or fluororesin can be adopted, which enables oxygen supply to the positive electrode while preventing the electrolyte from leaking to the outside. Demonstrate.
  • a metal having a higher ionization tendency than hydrogen is used as a main component. That is, a single metal whose standard electrode potential is lower than that of hydrogen, or an alloy containing these metals can be used.
  • Specific examples of constituent components of the negative electrode include simple metals such as zinc (Zn), iron (Fe), aluminum (Al), and magnesium (Mg).
  • Examples of the alloy include those obtained by adding one or more metal elements or non-metal elements to these metal elements.
  • the present invention is not limited to these, and any conventionally known material that is applied to an air battery can be applied as long as it meets the above purpose.
  • separator for example, glass paper that has not been subjected to water repellent treatment, or a microporous film made of polyolefin such as polyethylene or polypropylene can be used.
  • the material is not limited to these, and a conventionally known material applied to the air battery can be applied. Note that the separator is not necessarily required as long as a space is ensured between the positive electrode and the negative electrode.
  • electrolytic solution for example, an aqueous solution of potassium chloride, sodium chloride, potassium hydroxide, sodium hydroxide, or the like can be used. However, it is not limited to these, The conventionally well-known electrolyte solution applied to an air battery can be applied.
  • the above-described tank contains an electrolytic solution prepared in advance at a predetermined concentration, that is, an alkaline aqueous solution as described above, and water that is a solvent for the alkaline aqueous solution.
  • the electrolytic solution is stored in the tank before the use of the battery, the requirement for the components of the tank such as alkali resistance becomes severe, but an electrolytic solution having a uniform concentration can be supplied to the electrode structure from the beginning of the injection. There is an advantage.
  • water when only water is stored in the tank, it is necessary to previously arrange the electrolyte as described above in the electrode structure or the electrode storage portion.
  • a coating layer that is made of a material different from the negative electrode metal and suppresses the hydrogen generation reaction between the negative electrode and the electrolyte is formed on at least a part of the negative electrode surface.
  • the coating layer it is possible to avoid the entire contact between the negative electrode metal and the electrolytic solution for at least a certain period from the start of injection to the start of discharge. As a result, the amount of hydrogen generation and consumption due to corrosion of the negative electrode are reduced, and safety, capacity utilization of the battery, and energy density are improved. Further, by preventing wasteful consumption of the negative electrode, uneven discharge of the electrode at the start of discharge is improved. Furthermore, nonuniformity when such batteries are connected in series is eliminated, and variation in battery characteristics between cells due to uneven surface corrosion of the negative electrode is also improved.
  • the material of the coating layer even if a small amount is left from the start of injection of the electrolytic solution to the completion, it can remain on the negative electrode surface to prevent the entire contact between the negative electrode metal and the electrolytic solution. desirable. As long as it is such a material, a conventionally known material can be adopted. In particular, a material that does not react with the electrolytic solution to be used or a material that does not generate hydrogen even when reacted is preferable. From the above viewpoint, the thickness of the coating layer and the coating form can be adjusted according to the reactivity, solubility, and dispersibility of the coating layer material with respect to the electrolytic solution.
  • the coating layer When a material having high reactivity and easily dissolved in the electrolytic solution is used for the coating layer, the coating layer is thickened, and when a material difficult to dissolve in the electrolytic solution is used for the coating layer, depending on the solubility. What is necessary is just to make a coating layer thin.
  • a material that does not substantially react with the electrolytic solution when used for the coating layer, pinholes can be formed in the coating layer, or a discontinuous coating layer can be formed through gaps or grooves. If it does in this way, the elution to the electrolyte solution of a negative electrode component can be restrict
  • the elution from the discontinuous portion of the coating proceeds, so that the coating layer is detached from the electrode surface at the end of the injection, after the completion of the injection, and further at the start of discharge. Will be distributed. At this time, unevenness occurs due to local elution of the electrode from the discontinuous portion of the coating, and the reaction area of the negative electrode after the coating layer is peeled increases, so that a secondary effect of improving the output of the battery is obtained.
  • the material of the coating layer formed on the negative electrode surface is not limited to a specific one as long as the above purpose is satisfied.
  • typical examples thereof include metals, oxides, nitrides, and polymer materials.
  • the dissolution time in the electrolytic solution can be increased by increasing the thickness of the coating layer, which is preferable from the viewpoint of easy operation of the dissolution rate in the electrolytic solution.
  • metal-based materials include zinc (Zn), tin (Sn), aluminum (Al), silicon (Si), gallium (Ga), germanium (Ge), indium (In), and bismuth (Bi), and these Alloys can be employed. When employing these, it is preferable from the viewpoint of suppressing the generation of hydrogen and protecting the negative electrode surface. Also, for example, magnesium (Mg), titanium (Ti), cobalt (Co), nickel (Ni), molybdenum (Mo), copper (Cu), silver (Ag), chromium (Cr), iron (Fe) and manganese (Mn) and alloys thereof can also be employed. These are preferable because they are insoluble in the electrolyte and can be applied to the coating layer to mechanically or chemically protect the negative electrode surface.
  • the metal material for forming the coating layer does not include the same type as the negative electrode.
  • the coating layer comprised from these metals can be formed on the negative electrode surface by sputtering, plating, or the like.
  • a coverage can be calculated
  • an oxide that dissolves in an alkaline electrolyte can be used.
  • zinc oxide (ZnO), tin oxide (SnO x ), aluminum oxide (AlO x ), and the like can be given.
  • An oxide that is insoluble in an alkaline electrolyte can also be used.
  • the oxide When an oxide soluble in the electrolytic solution is used, the oxide is eluted into the electrolytic solution, and almost all of the oxide is eventually peeled off from the negative electrode surface.
  • the negative electrode metal is eluted from the pinholes formed in the coating layer or the discontinuous portions described above, so that most of the oxide eventually peels from the negative electrode surface.
  • the reaction area of the negative electrode after peeling of a coating layer increases, since the output of a battery improves, it is preferable.
  • the coating layer composed of such an oxide can be formed on the negative electrode surface by sputtering, anodizing treatment, thermal oxidation treatment, or the like. It should be noted that, on the surface of the metal negative electrode, an oxide film due to oxygen in the air is naturally formed without any special treatment, but such a natural oxide film is subject to the occurrence of corrosion by the electrolyte. . Therefore, the natural oxide film formed on the negative electrode surface does not correspond to the coating layer in this embodiment.
  • nitride material examples include nitrides such as silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), chromium nitride (CrN), gallium nitride (GaN), titanium nitride (TiN), and iron nitride (FeN x ). Can be mentioned. These nitrides are insoluble in the electrolytic solution and have a function of mechanically or chemically protecting the negative electrode surface. Moreover, such a coating layer can be formed on the negative electrode surface by sputtering, plasma nitriding, or the like.
  • the polymer material used as the coating layer examples include water-soluble starch, gelatin, cellulose, polyethylene glycol, polyvinyl alcohol (PVA), and the like.
  • PVA polyvinyl alcohol
  • the metal negative electrode can be protected until the material is gradually dissolved in the electrolytic solution and disappears from the negative electrode surface.
  • a polymer material that is insoluble in the electrolytic solution and mechanically or chemically functions as a masking agent that protects the negative electrode surface can be used.
  • hydrophobic silicon, polyamide, polyacetal, epoxy resin, acrylic resin, natural rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene propylene rubber, fluorine rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, and the like can be mentioned.
  • These polymer materials can be applied to the negative electrode surface by a dip method, a spin coating method, a spray method, a method using a roller or a brush, or the like. By the method as described above, the coating layer can be formed using the polymer material.
  • the thickness of the coating layer can be determined in consideration of various factors. For example, the physical properties of the material used for the coating layer, the denseness based on the coating method, the reactivity with the electrolyte, the coating form, the type of electrolyte, the size (capacity) of the battery, and the injection time determined by the injection method Can be considered as.
  • the thickness of the coating layer is preferably 0.1 to 10 ⁇ m. If the value of the thickness of the coating layer is within the above range, a particularly excellent hydrogen generation amount suppressing effect can be obtained while maintaining a high discharge capacity.
  • the layer thickness of the range As the constituent components of the coating layer, a silicon oxide (SiO x), zinc (Zn), aluminum oxide (AlO x), aluminum nitride (AlN) or tin (Sn) It is preferable to contain as a main component.
  • SiO x silicon oxide
  • Zn zinc
  • AlO x aluminum oxide
  • AlN aluminum nitride
  • Sn tin
  • Example 1 First, as a negative electrode substrate, an Al—Mn-based aluminum alloy sheet defined as A3003 in JISH4000 was prepared. The size of the substrate was 100 ⁇ 100 ⁇ 0.2 mm. Then, a SiO x layer as a coating layer was formed on the surface of the substrate so as to have a thickness of 100 nm by reactive sputtering using SiO 2 as a target. The sputtering was performed in a flow in which Ar gas was 61 sccm and O 2 gas was 2.9 sccm. The deposition pressure was 0.3 Pa and the sputtering power was 200 W.
  • Example 2 The negative electrode substrate was subjected to constant current electrolytic plating using a general zincate bath. Thus, a zinc (Zn) layer as a coating layer was formed on the negative electrode substrate surface so as to have a thickness of 100 nm.
  • Example 3 The negative electrode substrate was immersed in an aqueous sulfuric acid solution and anodized. In this manner, the aluminum oxide (Al 2 O 3) layer with sulfuric anodized as a covering layer was formed to a thickness of 10 [mu] m.
  • Example 4 An AlN film having a thickness of 100 nm was formed on the negative electrode substrate surface by reactive sputtering using Al as a target.
  • the sputtering was performed in a flow in which Ar gas was 41.5 sccm and N 2 gas was 27.3 sccm, the film forming pressure was 0.3 Pa, and the sputtering power was 200 W.
  • the thickness of the AlN layer was 0.1 ⁇ m.
  • Example 5 The negative electrode substrate was subjected to a zincate treatment using the beaker cell shown in FIG. As shown in FIG. 1, a PP (polypropylene) container 1 containing a predetermined mixed aqueous solution L was prepared, and an Hg / HgO reference electrode 2 and a cathode 3 were immersed therein. The cathode 3 is connected to the Hg / HgO reference electrode 2 by a current collecting nickel mesh 4. Further, the negative electrode substrate S was immersed in the mixed aqueous solution L. The negative electrode substrate S is attached with the masking agent M covering the side surface and the interface with the copper foil 5. First, the negative electrode substrate S was immersed in a zincate solution for 200 seconds.
  • a PP polypropylene
  • the zincate solution 100 ml of an aqueous solution in which 50 g of NaOH and 25 g of ZnO were dissolved was used.
  • the negative electrode substrate was washed with water and ethanol and then immersed in 50% nitric acid to dissolve the Zn layer on the surface of the negative electrode substrate S, thereby forming an oxide film on the Al surface.
  • substrate S for negative electrodes with water and ethanol it was immersed again in the zincate liquid of the same composition for 200 seconds, and the zinc layer as a coating layer was formed in the surface of the board
  • the thickness of the zinc layer was 0.1 ⁇ m.
  • Example 6 The negative electrode substrate was dip-coated using an aqueous solution containing 30% of commercially available polyvinyl alcohol. Subsequently, it heat-dried at 80 degreeC, and formed the polyvinyl alcohol layer as a coating layer on the said substrate surface.
  • Example 7 A masking agent was applied to the negative electrode substrate by dip coating.
  • a masking agent a commercially available San-Econ Mask Ace S was used.
  • the masking agent on the surface was partially wiped using a spatula made of PFA so as to form a partial coating, thereby forming a masking layer.
  • Example 8 The negative electrode substrate was subjected to constant current electrolytic plating using a common stannate bath. Thus, a tin (Sn) layer as a coating layer was formed on the negative electrode substrate surface so as to have a thickness of 1 ⁇ m.
  • the negative electrode sample 16, the positive electrode 17, and the reference electrode 18 are connected to the discharge device 15 by a conductive wire.
  • 8N KOH aqueous solution was used as electrolyte solution.
  • a hydrogen generation amount was monitored using a quadrupole mass spectrometer (Omnistar) manufactured by Pfeiffer Vacuum.
  • the hydrogen generation amount detected in each example was obtained by integrating the hydrogen generation amount detected during 600 seconds after the anode sample 16 was immersed in the KOH aqueous solution.
  • the hydrogen generation amounts of Examples 1 to 8 and Comparative Example are shown in Table 1.
  • the accumulated hydrogen generation amount is shown as a percentage with the generation amount of the comparative example being “100”.
  • Example 2 in which galvanization was applied as the coating layer, a higher discharge capacity was obtained than in the comparative example in which the coating layer was not formed. This is considered to be due to the fact that the zinc of the coating layer also functions as the negative electrode itself.
  • a negative electrode sample 16 corresponding to Examples 1 and 2 provided with a coating layer was placed in a beaker cell in a sealable container 11 in the same manner as in (B) above.
  • a commercially available air electrode was used as the positive electrode 17 serving as the counter electrode, and an Hg / HgO electrode was used as the reference electrode 18.
  • an 8N KOH aqueous solution was used as the electrolytic solution, and the electrolytic solution was injected into the cell with a syringe 13 having a tube attached to the tip.
  • An air flow of 100 sccm was introduced into the sealable container 11. And a part of gas was extract
  • the temporal change in the ratio of hydrogen gas contained in the exhaust gas was investigated from the time of injection, and compared with a case where a negative electrode sample of a comparative example in which a coating layer was not formed was immersed in an electrolytic solution. The result is shown in FIG.
  • the entire surface or a part of the negative electrode surface is a liquid injection type metal-air battery provided with a coating layer that suppresses the hydrogen generation reaction between the metal negative electrode and the electrolytic solution.
  • a liquid injection type metal-air battery corrosion or consumption of the negative electrode metal is suppressed during the liquid injection period from the start of injection of the electrolytic solution to the start of discharge. As a result, the capacity utilization rate and energy density of the liquid injection type air battery are improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Primary Cells (AREA)

Abstract

This liquid-injection-type metal-air battery is provided with: a negative electrode that is mainly composed of a metal that has a higher ionization tendency than hydrogen; and a coating layer that is configured of a material different from the above-mentioned metal and is formed on at least a part of the surface of the negative electrode so as to suppress the hydrogen generating reaction between the negative electrode and an electrolyte solution. In this liquid-injection-type metal-air battery, corrosion or wear of the negative electrode metal is suppressed during the liquid injection period, namely from the beginning of the injection of the electrolyte solution to the beginning of an electrical discharge. As a result, the capacity utilization rate and the energy density of this liquid-injection-type metal-air battery are improved.

Description

注液型金属空気電池Injection metal-air battery
 本発明は、金属空気電池に関する。特に、使用時に電解液や電解液用の水を注入することによって使用可能な状態となる注液型金属空気電池に関する。 The present invention relates to a metal-air battery. In particular, the present invention relates to a liquid-injection-type metal-air battery that can be used by injecting an electrolyte or water for electrolyte during use.
 金属空気電池は、空気中の酸素を正極活物質に用い、アルミニウム(Al)、鉄(Fe)、亜鉛(Zn)などの金属を負極活物質に用いた電池である。このような電池はエネルギー密度が高く、小型化、軽量化が可能な電池として注目されている。 A metal-air battery is a battery that uses oxygen in the air as a positive electrode active material and a metal such as aluminum (Al), iron (Fe), or zinc (Zn) as a negative electrode active material. Such a battery is attracting attention as a battery that has a high energy density and can be reduced in size and weight.
 金属空気電池の一形式としては、例えば特許文献1に記載されているように、使用時に電解液を注液して、電極に電解液を接触させることによって使用可能な状態とする注液型の電池がある。このような注液型電池においては、電解液を注液しない限り電池反応が進行せず、長期間の保存が可能となるため、非常用ないし緊急用の電源として好適である。 As one type of metal-air battery, for example, as described in Patent Document 1, an infusion type in which an electrolytic solution is injected at the time of use and brought into a usable state by bringing the electrolytic solution into contact with an electrode. There is a battery. Such a liquid injection type battery is suitable as an emergency or emergency power source because the battery reaction does not proceed unless an electrolytic solution is injected, and long-term storage is possible.
 また、特許文献2では、充電時のデンドライト成長防止のために、少なくとも電解質側表面が少なくとも一時的に液体状態になるように構成された金属電極を用いた注液型金属空気電池が記載されている。より詳細には、負極金属にHgを3質量%含有するGa合金を使用した例が記載されている。 Patent Document 2 describes a liquid-injection-type metal-air battery using a metal electrode that is configured so that at least the electrolyte side surface is in a liquid state at least temporarily in order to prevent dendrite growth during charging. Yes. More specifically, an example in which a Ga alloy containing 3% by mass of Hg is used as the negative electrode metal is described.
特開2002-151167号公報JP 2002-151167 A 特開2008-098075号公報JP 2008-098075 A
 ところが、特許文献2における上記合金と電解液とが接触すると、水素発生反応が進行する。すなわち、電解液の注液時において、上記合金が電解液に腐食されるという問題が生ずる。 However, when the alloy and the electrolytic solution in Patent Document 2 come into contact with each other, a hydrogen generation reaction proceeds. That is, there is a problem that the alloy is corroded by the electrolytic solution when the electrolytic solution is injected.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的とするところは、電解液の注液開始から当該電解液が全体に浸透するまでの間における負極金属の腐食ないし消耗を抑制し、容量利用率及びエネルギー密度が改善された注液型金属空気電池を提供することにある。 The present invention has been made in view of such problems of the conventional technology. The object of the present invention is to suppress the corrosion or consumption of the negative electrode metal from the start of the injection of the electrolyte until the electrolyte penetrates the whole, and the capacity utilization rate and the energy density are improved. The object is to provide an injection-type metal-air battery.
 本発明の態様に係る注液型金属空気電池は、イオン化傾向が水素よりも大きい金属を主成分とする負極と、上記金属とは異なる材料から構成され、上記負極表面の少なくとも一部に形成され、上記負極と電解液との間の水素発生反応を抑制する被覆層と、を備えることを特徴とする。 An injection-type metal-air battery according to an embodiment of the present invention is composed of a negative electrode mainly composed of a metal having a higher ionization tendency than hydrogen and a material different from the metal, and is formed on at least a part of the negative electrode surface. And a coating layer that suppresses a hydrogen generation reaction between the negative electrode and the electrolytic solution.
図1は、実施例5における負極用基板に対するZn被覆処理の様子を示す概略図である。FIG. 1 is a schematic view showing a state of Zn coating treatment on the negative electrode substrate in Example 5. FIG. 図2は、実施例及び比較例に係る負極試料を用いて放電を行った場合の水素発生量を評価する際に用いた装置を示す概略図である。FIG. 2 is a schematic diagram showing an apparatus used for evaluating the amount of hydrogen generation when discharging was performed using the negative electrode samples according to Examples and Comparative Examples. 図3は、実施例1,2及び比較例の水素発生量を経時的に示すグラフである。FIG. 3 is a graph showing the amount of hydrogen generation in Examples 1 and 2 and the comparative example over time. 図4は、本発明の一実施形態に係る注液型金属空気電池の電極構造体の一例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing an example of an electrode structure of a liquid injection type metal-air battery according to one embodiment of the present invention.
 以下、本発明の一実施形態に係る注液型金属空気電池について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を意味するものとする。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the injection-type metal-air battery according to an embodiment of the present invention will be described in detail. In the present specification, “%” means mass percentage unless otherwise specified. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from actual ratios.
 まず、本発明の一実施形態に係る注液型金属空気電池の基本的な構造と、これらを構成する材料について説明する。本形態に係る注液型金属空気電池は、例えば、正極(空気極)と負極とを備えた電極構造体と、当該電極構造体を収納する電極収納部と、電解液や電解液に用いられる溶媒を収納するタンクと、を備えるものとすることができる。 First, the basic structure of the injection-type metal-air battery according to one embodiment of the present invention and the materials constituting them will be described. The liquid-injection-type metal-air battery according to the present embodiment is used for, for example, an electrode structure including a positive electrode (air electrode) and a negative electrode, an electrode storage unit that stores the electrode structure, and an electrolytic solution or an electrolytic solution. And a tank for storing the solvent.
 図4に示すように、本形態の注液型金属空気電池の電極構造体20は、負極層21と、被覆層25と、電解質層23と、正極層22と、液密通気部材24と、がこの順番に積層された構成とすることができる。正極層22は、その外層側に液密通気部材24を備えるものとすることができる。そして、負極層21は、本形態において、その表面の少なくとも一部に被覆層25を備えている。図4のように、負極層21の電解質層23に対向する面において被覆層25が形成されていることにより、電解質層23に含まれる電解液が負極層21を腐食する反応を抑制することができる。電極収納部は、電極構造体と共に電解液を収納するケースであって、当該電解液の漏出を阻止する構造となっている。すなわち、上記ケースは、電解液に耐性を有する材料から構成される。また、上記タンクは、電極構造体との一体構造あるいは分離構造を有する。すなわち、適当な手段によって電極構造体を収納した電極収納部内にタンク内の電解液や溶媒を注入することができるようになっている。 As shown in FIG. 4, the electrode structure 20 of the injection type metal-air battery of the present embodiment includes a negative electrode layer 21, a coating layer 25, an electrolyte layer 23, a positive electrode layer 22, a liquid tight ventilation member 24, Can be configured to be stacked in this order. The positive electrode layer 22 may include a liquid-tight ventilation member 24 on the outer layer side. And the negative electrode layer 21 is provided with the coating layer 25 in at least one part of the surface in this form. As shown in FIG. 4, the coating layer 25 is formed on the surface of the negative electrode layer 21 facing the electrolyte layer 23, thereby suppressing the reaction that the electrolytic solution contained in the electrolyte layer 23 corrodes the negative electrode layer 21. it can. The electrode storage portion is a case for storing an electrolytic solution together with the electrode structure, and has a structure that prevents leakage of the electrolytic solution. That is, the case is made of a material resistant to the electrolytic solution. The tank has an integral structure with the electrode structure or a separation structure. In other words, the electrolytic solution or solvent in the tank can be injected into the electrode storage part that stores the electrode structure by an appropriate means.
[正極]
 正極は、酸素を正極活物質とする。すなわち、酸素の酸化還元触媒として機能する触媒成分と、これを担持する導電性の触媒担体と、を含む正極とすることができる。
[Positive electrode]
The positive electrode uses oxygen as a positive electrode active material. That is, a positive electrode including a catalyst component that functions as an oxygen redox catalyst and a conductive catalyst carrier that supports the catalyst component can be obtained.
 上記触媒成分としては、例えば、二酸化マンガンや四酸化三コバルトなどの金属酸化物を用いることができる。その他にも、白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、タングステン(W)、鉛(Pb)、鉄(Fe)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)、ガリウム(Ga)及びアルミニウム(Al)等の金属並びにこれらの合金などから選択することができる。 As the catalyst component, for example, a metal oxide such as manganese dioxide or tricobalt tetroxide can be used. In addition, platinum (Pt), ruthenium (Ru), iridium (Ir), rhodium (Rh), palladium (Pd), osmium (Os), tungsten (W), lead (Pb), iron (Fe), chromium Select from metals such as (Cr), cobalt (Co), nickel (Ni), manganese (Mn), vanadium (V), molybdenum (Mo), gallium (Ga) and aluminum (Al), and alloys thereof. Can do.
 触媒成分の形状や大きさは、特に限定されるものではなく、従来公知の触媒成分と同様の形状及び大きさを採用することができる。ただし、触媒成分の形状は、粒状であることが好ましく、触媒粒子の平均粒子径は、1~30nmであることが好ましい。触媒粒子の平均粒子径の値が上記範囲内であると、触媒利用率と担持の簡便さとのバランスを適切に制御することができる。なお、触媒利用率は、電気化学反応を進行させる上で重要となる有効電極面積に関連するものである。 The shape and size of the catalyst component are not particularly limited, and the same shape and size as those of conventionally known catalyst components can be employed. However, the shape of the catalyst component is preferably granular, and the average particle size of the catalyst particles is preferably 1 to 30 nm. When the value of the average particle diameter of the catalyst particles is within the above range, the balance between the catalyst utilization and the ease of loading can be appropriately controlled. The catalyst utilization rate is related to the effective electrode area that is important in causing the electrochemical reaction to proceed.
 なお、本明細中において、「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の平均粒子径も同様に定義することができる。 In the present specification, the value of “average particle diameter” refers to particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The value calculated as the average value of the particle diameters of the particles shall be adopted. The average particle size of other constituents can be defined in the same manner.
 触媒担体は、上述した触媒成分を担持するための担体として機能するだけでなく、触媒成分と他の部材との間における電子の授受に関与する電子伝導パス材としても機能する。触媒担体としては、触媒成分を所望の分散状態で担持させるための比表面積を有し、充分な電子伝導性を有しているものであれば特に限定されず、主成分がカーボンであることが好ましい。触媒担体としては、具体的には、カーボンブラック、活性炭、コークス、天然黒鉛、人造黒鉛などからなるカーボン粒子が挙げられる。なお、本明細書において、「主成分」とは、当該成分の含有量が全体に対して50質量%以上であるものを意味する。他の構成成分の主成分も同様に定義することができる。 The catalyst carrier not only functions as a carrier for supporting the above-described catalyst component, but also functions as an electron conduction path material involved in the transfer of electrons between the catalyst component and other members. The catalyst carrier is not particularly limited as long as it has a specific surface area for supporting the catalyst component in a desired dispersed state and has sufficient electron conductivity, and the main component may be carbon. preferable. Specific examples of the catalyst carrier include carbon particles made of carbon black, activated carbon, coke, natural graphite, artificial graphite, and the like. In the present specification, the “main component” means that the content of the component is 50% by mass or more with respect to the whole. The main components of the other constituent components can be defined similarly.
 触媒担体のサイズについては特に限定されないが、担持の簡便さ、触媒利用率、触媒層の厚みを適切な範囲で制御する等の観点からは、平均粒子径を5~200nm程度とすることが好ましい。より好ましくは10~100nm程度である。 The size of the catalyst carrier is not particularly limited, but it is preferable that the average particle diameter is about 5 to 200 nm from the viewpoint of easy loading, catalyst utilization, and control of the catalyst layer thickness within an appropriate range. . More preferably, it is about 10 to 100 nm.
 触媒担体に対する触媒成分の担持量については、触媒とこれを担持した担体の全量に対して、好ましくは10~80質量%、より好ましくは30~70質量%である。触媒成分の担持量の値がこのような範囲内であると、触媒担体上での触媒成分の分散度と触媒性能とのバランスが適切なものとなる。なお、上記した触媒成分や、これを担持する担体の種類については、上記したもののみに限定されるものではなく、空気電池に適用されるものとして従来公知の材料を適宜使用することができる。 The amount of the catalyst component supported on the catalyst carrier is preferably 10 to 80% by mass, more preferably 30 to 70% by mass, based on the total amount of the catalyst and the carrier carrying the catalyst. When the supported amount of the catalyst component is within such a range, the balance between the degree of dispersion of the catalyst component on the catalyst carrier and the catalyst performance is appropriate. In addition, about the above-mentioned catalyst component and the kind of support | carrier which carry | supports this, it is not limited only to what was mentioned above, A conventionally well-known material can be used suitably as what is applied to an air battery.
[液密通気部材]
 液密通気部材は、正極の外層側に配置され、電解液に対する液密性(水密性)と、酸素に対する通気性を有する部材である。材料としては、ポリオレフインやフッ素樹脂などの撥水性多孔質樹脂から構成されるものを採用することができ、正極への酸素供給を可能にする一方、電解液が外部に漏出するのを防止する機能を発揮する。
[Liquid-tight ventilation member]
The liquid-tight ventilation member is a member that is disposed on the outer layer side of the positive electrode and has liquid-tightness (water-tightness) with respect to the electrolytic solution and air-permeability with respect to oxygen. As a material, a material composed of a water-repellent porous resin such as polyolefin or fluororesin can be adopted, which enables oxygen supply to the positive electrode while preventing the electrolyte from leaking to the outside. Demonstrate.
[負極]
 負極には、イオン化傾向が水素よりも大きい金属が主成分として用いられる。すなわち、標準電極電位が水素より卑な金属単体や、これら金属を含む合金を用いることができる。具体的な負極の構成成分としては、例えば、亜鉛(Zn)、鉄(Fe)、アルミニウム(Al)、マグネシウム(Mg)などの金属単体を挙げることができる。また、合金としては、これらの金属元素に1種以上の金属元素又は非金属元素を加えたものを挙げることができる。しかしながら、これらに限定されるものではなく、上記趣旨に合致する限り、空気電池に適用される従来公知の材料を適用することができる。
[Negative electrode]
For the negative electrode, a metal having a higher ionization tendency than hydrogen is used as a main component. That is, a single metal whose standard electrode potential is lower than that of hydrogen, or an alloy containing these metals can be used. Specific examples of constituent components of the negative electrode include simple metals such as zinc (Zn), iron (Fe), aluminum (Al), and magnesium (Mg). Examples of the alloy include those obtained by adding one or more metal elements or non-metal elements to these metal elements. However, the present invention is not limited to these, and any conventionally known material that is applied to an air battery can be applied as long as it meets the above purpose.
[セパレータ]
 セパレータとしては、例えば撥水処理を行っていないグラスペーパー、ポリエチレンやポリプロピレン等のポリオレフインからなる微多孔膜を用いることができる。しかしながら、これらに限定されるものではなく、空気電池に適用される従来公知の材料を適用することができる。なお、セパレータは、正極-負極間におけるスペースが確保される構造であれば、必ずしも必要ではない。
[Separator]
As the separator, for example, glass paper that has not been subjected to water repellent treatment, or a microporous film made of polyolefin such as polyethylene or polypropylene can be used. However, the material is not limited to these, and a conventionally known material applied to the air battery can be applied. Note that the separator is not necessarily required as long as a space is ensured between the positive electrode and the negative electrode.
[電解液]
 電解液としては、例えば、塩化カリウム、塩化ナトリウム、水酸化カリウム、水酸化ナトリウムなどの水溶液を用いることができる。しなしながら、これらに限定されるものではなく、空気電池に適用される従来公知の電解液を適用することができる。なお、前述のタンク内には、予め所定濃度に調製された電解液、すなわち上記のようなアルカリ水溶液や、これらアルカリ水溶液の溶媒である水が収納されることになる。電池の使用前からタンク内に電解液を収納する場合は、アルカリ耐性などタンクの構成部材に対する要求が厳しくなるものの、注液当初から均一な濃度の電解液を電極構造体に供給することができるという利点がある。一方、タンク内に水のみを収納する場合、上記のような電解質を予め電極構造体や電極収納部内に配置しておくことが必要である。
[Electrolyte]
As the electrolytic solution, for example, an aqueous solution of potassium chloride, sodium chloride, potassium hydroxide, sodium hydroxide, or the like can be used. However, it is not limited to these, The conventionally well-known electrolyte solution applied to an air battery can be applied. The above-described tank contains an electrolytic solution prepared in advance at a predetermined concentration, that is, an alkaline aqueous solution as described above, and water that is a solvent for the alkaline aqueous solution. When the electrolytic solution is stored in the tank before the use of the battery, the requirement for the components of the tank such as alkali resistance becomes severe, but an electrolytic solution having a uniform concentration can be supplied to the electrode structure from the beginning of the injection. There is an advantage. On the other hand, when only water is stored in the tank, it is necessary to previously arrange the electrolyte as described above in the electrode structure or the electrode storage portion.
[被覆層]
 本形態の注液型金属空気電池においては、負極表面の少なくとも一部に、当該負極金属とは異なる材料から構成され、負極と電解液との間の水素発生反応を抑制する被覆層が形成される。上記被覆層により、注液開始から放電が開始されるまでの少なくとも一定期間、負極金属と電解液との全面接触を回避することができる。その結果、水素発生量や負極の腐食による消耗が減少し、安全性や電池の容量利用率、エネルギー密度が向上することになる。また、負極の無駄な消耗が防止されることによって、放電開始時における電極の放電ムラが改善される。さらに、このような電池を直列に接続した場合の不均一性が解消され、負極の表面腐食状態のムラによるセル間の電池特性のばらつきも改善されることになる。
[Coating layer]
In the injection type metal-air battery of this embodiment, a coating layer that is made of a material different from the negative electrode metal and suppresses the hydrogen generation reaction between the negative electrode and the electrolyte is formed on at least a part of the negative electrode surface. The By the coating layer, it is possible to avoid the entire contact between the negative electrode metal and the electrolytic solution for at least a certain period from the start of injection to the start of discharge. As a result, the amount of hydrogen generation and consumption due to corrosion of the negative electrode are reduced, and safety, capacity utilization of the battery, and energy density are improved. Further, by preventing wasteful consumption of the negative electrode, uneven discharge of the electrode at the start of discharge is improved. Furthermore, nonuniformity when such batteries are connected in series is eliminated, and variation in battery characteristics between cells due to uneven surface corrosion of the negative electrode is also improved.
 上記被覆層の材料としては、電解液の注液を開始してから完了するまでの間、少量であっても負極表面に残存して、負極金属と電解液との全面接触を防止することが望ましい。そのような材料である限り、従来公知の材料を採用することができる。特に、使用する電解液と反応しない材料や、反応しても水素を発生しない材料であることが好ましい。上記観点から、被覆層材料の電解液に対する反応性や、溶解性、分散性に応じて、被覆層の厚さや、被覆形態を調整することができる。このように調整すれば、電解液としての機能に悪影響を与えるものや、膜状に剥離して両極間を短絡させるような導電材料であるものを除き、様々な材料を適用することができる。さらに、大気中の酸素や水蒸気等との反応性が低い材料であれば、負極金属の長期保管時における酸化や搬送時などにおける表面へのキズなどから保護できる効果も期待できるため好ましい。 As the material of the coating layer, even if a small amount is left from the start of injection of the electrolytic solution to the completion, it can remain on the negative electrode surface to prevent the entire contact between the negative electrode metal and the electrolytic solution. desirable. As long as it is such a material, a conventionally known material can be adopted. In particular, a material that does not react with the electrolytic solution to be used or a material that does not generate hydrogen even when reacted is preferable. From the above viewpoint, the thickness of the coating layer and the coating form can be adjusted according to the reactivity, solubility, and dispersibility of the coating layer material with respect to the electrolytic solution. By adjusting in this way, various materials can be applied except those that adversely affect the function as an electrolytic solution and those that are conductive materials that peel into a film and short-circuit both electrodes. Furthermore, a material having low reactivity with oxygen, water vapor, etc. in the atmosphere is preferable because it can be expected to protect the anode metal from oxidation during long-term storage and scratches on the surface during transportation.
 なお、反応性が高く、電解液に溶解し易い材料を被覆層に用いる場合には、被覆層を厚くし、電解液に溶解し難い材料を被覆層に用いる場合には、溶解性に応じて被覆層を薄くすればよい。一方、電解液と実質的に反応しない材料を被覆層に用いる場合には、被覆層にピンホールを形成する、あるいは、隙間や溝を介して不連続な被覆層とすることができる。このようにすれば、負極構成成分の電解液への溶出を不連続部分からのみに制限し、放電開始までの負極消費を抑えることができる。なお、この場合、被覆の不連続部分からの上記溶出が進行することによって、注液の終盤、注液完了後、さらには放電開始の際に被覆層が電極表面から脱離して、電解液中に分散することになる。このとき、被覆の不連続部分からの電極の局部溶出により凹凸が生じ、被覆層剥離後の負極の反応面積が増大することから、電池の出力が向上するという副次的な効果が得られる。 When a material having high reactivity and easily dissolved in the electrolytic solution is used for the coating layer, the coating layer is thickened, and when a material difficult to dissolve in the electrolytic solution is used for the coating layer, depending on the solubility. What is necessary is just to make a coating layer thin. On the other hand, when a material that does not substantially react with the electrolytic solution is used for the coating layer, pinholes can be formed in the coating layer, or a discontinuous coating layer can be formed through gaps or grooves. If it does in this way, the elution to the electrolyte solution of a negative electrode component can be restrict | limited only from a discontinuous part, and the negative electrode consumption until discharge start can be suppressed. In this case, the elution from the discontinuous portion of the coating proceeds, so that the coating layer is detached from the electrode surface at the end of the injection, after the completion of the injection, and further at the start of discharge. Will be distributed. At this time, unevenness occurs due to local elution of the electrode from the discontinuous portion of the coating, and the reaction area of the negative electrode after the coating layer is peeled increases, so that a secondary effect of improving the output of the battery is obtained.
 本形態の注液型金属空気電池においては、上記趣旨を満足する限り、負極表面に形成される被覆層の材料は特定のものに限定されない。ただし、その典型例として、金属や酸化物、窒化物、さらには高分子材料を挙げることができる。これらの材料を採用する場合、被覆層を厚くすることで電解液に対する溶解時間を長くできるので、電解液に対する溶解速度の操作を行い易いという観点から好ましい。 In the liquid-injection-type metal-air battery of this embodiment, the material of the coating layer formed on the negative electrode surface is not limited to a specific one as long as the above purpose is satisfied. However, typical examples thereof include metals, oxides, nitrides, and polymer materials. When these materials are employed, the dissolution time in the electrolytic solution can be increased by increasing the thickness of the coating layer, which is preferable from the viewpoint of easy operation of the dissolution rate in the electrolytic solution.
 金属系材料としては、例えば、亜鉛(Zn)、錫(Sn)、アルミニウム(Al)、ケイ素(Si)、ガリウム(Ga)、ゲルマニウム(Ge)、インジウム(In)及びビスマス(Bi)並びにこれらの合金を採用することができる。これらを採用する場合、水素の発生を抑制し、負極表面を保護する観点から好ましい。また、例えば、マグネシウム(Mg)、チタン(Ti)、コバルト(Co)、ニッケル(Ni)、モリブデン(Mo)、銅(Cu)、銀(Ag)、クロム(Cr)、鉄(Fe)及びマンガン(Mn)並びにこれらの合金を採用することもできる。これらは電解液に対して不溶であり、被覆層に適用することで機械的ないし化学的に負極表面を保護することができるため好ましい。 Examples of metal-based materials include zinc (Zn), tin (Sn), aluminum (Al), silicon (Si), gallium (Ga), germanium (Ge), indium (In), and bismuth (Bi), and these Alloys can be employed. When employing these, it is preferable from the viewpoint of suppressing the generation of hydrogen and protecting the negative electrode surface. Also, for example, magnesium (Mg), titanium (Ti), cobalt (Co), nickel (Ni), molybdenum (Mo), copper (Cu), silver (Ag), chromium (Cr), iron (Fe) and manganese (Mn) and alloys thereof can also be employed. These are preferable because they are insoluble in the electrolyte and can be applied to the coating layer to mechanically or chemically protect the negative electrode surface.
 なお、被覆層を形成する金属材料には、負極と同種のものが含まれないことが望ましい。また、これら金属から構成される被覆層は、スパッタリングやめっき等によって負極表面に形成することができる。また、金属で被覆する場合には、被覆層を構成する金属と負極を構成する主成分である負極金属とのイオン化傾向の差も考慮することが望ましい。上記イオン化傾向の差が大きい金属ほど、被覆表面が安定となる。ここで、被覆層に適用する金属と負極金属とのイオン化傾向の差が大きくなるにしたがって、被覆層の被覆率を高くすることが望ましい。上記イオン化傾向の差が大きい金属を被覆層に適用する場合、負極表面が曝露された部分の腐食が促進される傾向がある。そのため、水素発生量の増加を防止する観点から、上記のように被覆率を高くすることが好ましいといえる。なお、被覆率は、電解液と接する側の負極表面全体の表面積と、被覆層により被覆された当該負極表面の表面積と、の比から求めることができる。 It should be noted that it is desirable that the metal material for forming the coating layer does not include the same type as the negative electrode. Moreover, the coating layer comprised from these metals can be formed on the negative electrode surface by sputtering, plating, or the like. In the case of coating with a metal, it is desirable to consider the difference in ionization tendency between the metal constituting the coating layer and the negative electrode metal which is the main component constituting the negative electrode. As the difference in ionization tendency increases, the coated surface becomes more stable. Here, it is desirable to increase the coverage of the coating layer as the difference in ionization tendency between the metal applied to the coating layer and the negative electrode metal increases. When a metal having a large difference in ionization tendency is applied to the coating layer, corrosion of a portion where the negative electrode surface is exposed tends to be accelerated. Therefore, it can be said that it is preferable to increase the coverage as described above from the viewpoint of preventing an increase in the amount of hydrogen generation. In addition, a coverage can be calculated | required from ratio of the surface area of the whole negative electrode surface by the side which contacts electrolyte solution, and the surface area of the said negative electrode surface coat | covered with the coating layer.
 酸化物系材料としては、アルカリ性の電解液に溶解する酸化物を使用することができる。例えば、酸化亜鉛(ZnO)、酸化錫(SnO)、酸化アルミニウム(AlO)等を挙げることができる。また、アルカリ性の電解液に不溶である酸化物を使用することもできる。例えば、酸化ケイ素(SiO)、酸化チタン(TiO)、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化モリブデン(MoO)、酸化マンガン(MnO)、酸化クロム(CrO)等を挙げることができる。上記した酸化物はいずれも親水性を示す。そして、電解液に可溶な酸化物を用いる場合、当該酸化物は電解液に溶出していき、やがてその殆どが負極表面から剥離する。一方で、電解液に不溶な酸化物を用いる場合、被覆層に形成されたピンホールや上記した不連続部分から負極金属が溶出することによって、やがて当該酸化物の殆どが負極表面から剥離する。このようにして被覆層剥離後の負極の反応面積が増大すると、電池の出力が向上するため好ましい。 As the oxide-based material, an oxide that dissolves in an alkaline electrolyte can be used. For example, zinc oxide (ZnO), tin oxide (SnO x ), aluminum oxide (AlO x ), and the like can be given. An oxide that is insoluble in an alkaline electrolyte can also be used. For example, silicon oxide (SiO x ), titanium oxide (TiO x ), cobalt oxide (CoO x ), nickel oxide (NiO x ), molybdenum oxide (MoO x ), manganese oxide (MnO x ), chromium oxide (CrO x ) Etc. Any of the oxides described above is hydrophilic. When an oxide soluble in the electrolytic solution is used, the oxide is eluted into the electrolytic solution, and almost all of the oxide is eventually peeled off from the negative electrode surface. On the other hand, when an oxide insoluble in the electrolyte is used, the negative electrode metal is eluted from the pinholes formed in the coating layer or the discontinuous portions described above, so that most of the oxide eventually peels from the negative electrode surface. Thus, when the reaction area of the negative electrode after peeling of a coating layer increases, since the output of a battery improves, it is preferable.
 このような酸化物から構成される被覆層は、スパッタリングや陽極酸化処理、熱酸化処理などによって負極表面に形成することができる。なお、金属負極の表面には、特段の処理を施さなくとも空気中の酸素による酸化膜が自然に形成されるものであるが、このような自然酸化膜では電解液による腐食の発生を免れない。したがって、負極表面に形成された自然酸化膜は、本形態における被覆層には該当しない。 The coating layer composed of such an oxide can be formed on the negative electrode surface by sputtering, anodizing treatment, thermal oxidation treatment, or the like. It should be noted that, on the surface of the metal negative electrode, an oxide film due to oxygen in the air is naturally formed without any special treatment, but such a natural oxide film is subject to the occurrence of corrosion by the electrolyte. . Therefore, the natural oxide film formed on the negative electrode surface does not correspond to the coating layer in this embodiment.
 窒化物系材料としては、窒化ケイ素(Si)、窒化アルミニウム(AlN)、窒化クロム(CrN)、窒化ガリウム(GaN)、窒化チタン(TiN)、窒化鉄(FeN)などの窒化物を挙げることができる。これらの窒化物は、電解液に不溶であって、機械的ないし化学的に負極表面を保護する機能を有する。また、このような被覆層は、スパッタリングやプラズマ窒化などによって負極表面に形成することができる。 Examples of the nitride material include nitrides such as silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), chromium nitride (CrN), gallium nitride (GaN), titanium nitride (TiN), and iron nitride (FeN x ). Can be mentioned. These nitrides are insoluble in the electrolytic solution and have a function of mechanically or chemically protecting the negative electrode surface. Moreover, such a coating layer can be formed on the negative electrode surface by sputtering, plasma nitriding, or the like.
 そして、被覆層として用いる高分子系材料としては、水溶性のデンプン、ゼラチン、セルロース、ポリエチレングリコール、ポリビニルアルコール(PVA)、などを挙げることができる。このような材料を用いる場合、当該材料が電解液に徐々に溶解していき負極表面から消失するまでの間、金属負極を保護することができる。また、電解液に対して不溶性を示し、機械的ないし化学的に負極表面を保護するマスキング剤として機能する高分子材料を用いることもできる。例えば、疎水性のシリコン、ポリアミド、ポリアセタール、エポキシ樹脂、アクリル樹脂、天然ゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、エチレンプロピレンゴム、フッ素ゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴムなどを挙げることができる。これらの高分子材料は、ディップ法、スピンコート法、スプレー法、又はローラーや刷毛を使用した方法等により負極表面に塗布することができる。上記したような方法により、高分子材料を用いて被覆層を形成することができる。 And examples of the polymer material used as the coating layer include water-soluble starch, gelatin, cellulose, polyethylene glycol, polyvinyl alcohol (PVA), and the like. When such a material is used, the metal negative electrode can be protected until the material is gradually dissolved in the electrolytic solution and disappears from the negative electrode surface. Alternatively, a polymer material that is insoluble in the electrolytic solution and mechanically or chemically functions as a masking agent that protects the negative electrode surface can be used. For example, hydrophobic silicon, polyamide, polyacetal, epoxy resin, acrylic resin, natural rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene propylene rubber, fluorine rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, and the like can be mentioned. . These polymer materials can be applied to the negative electrode surface by a dip method, a spin coating method, a spray method, a method using a roller or a brush, or the like. By the method as described above, the coating layer can be formed using the polymer material.
 なお、被覆層の厚さとしては、様々な要因を考慮して決定することができる。例えば、被覆層に用いる材料の物性、被覆方法に基づく緻密性、電解液との反応性、被覆形態、電解液の種類又は電池のサイズ(容量)や注液方法によって定まる注液時間等を要因として考慮することができる。なお、被覆層の厚さとしては、0.1~10μmとすることが好ましい。被覆層の厚さの値が上記範囲内であれば、高い放電容量量を維持しつつ、特に優れた水素発生量抑制効果を得ることができる。さらに、上記範囲の層厚に形成する場合、被覆層の構成成分としては、酸化ケイ素(SiO)、亜鉛(Zn)、酸化アルミニウム(AlO)、窒化アルミニウム(AlN)又は錫(Sn)を主成分として含むことが好ましい。このような材料を含む被覆層を上記範囲の層厚に形成する場合、高い放電容量量を維持しつつ、さらに優れた水素発生量抑制効果を得ることができる。 Note that the thickness of the coating layer can be determined in consideration of various factors. For example, the physical properties of the material used for the coating layer, the denseness based on the coating method, the reactivity with the electrolyte, the coating form, the type of electrolyte, the size (capacity) of the battery, and the injection time determined by the injection method Can be considered as. The thickness of the coating layer is preferably 0.1 to 10 μm. If the value of the thickness of the coating layer is within the above range, a particularly excellent hydrogen generation amount suppressing effect can be obtained while maintaining a high discharge capacity. Furthermore, the case of forming the layer thickness of the range, as the constituent components of the coating layer, a silicon oxide (SiO x), zinc (Zn), aluminum oxide (AlO x), aluminum nitride (AlN) or tin (Sn) It is preferable to contain as a main component. When the coating layer containing such a material is formed in a layer thickness within the above range, a more excellent hydrogen generation amount suppressing effect can be obtained while maintaining a high discharge capacity.
 以下、本発明を実施例及び比較例に基づいて更に詳細に説明するが、本発明は、これらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples and comparative examples, but the present invention is not limited to only these examples.
(実施例1)
 まず、負極用基板として、JISH4000にA3003として規定されているAl-Mn系アルミニウム合金板材を用意した。当該基板のサイズは、100×100×0.2mmとした。そして、SiOをターゲットに使用した反応性スパッタにより、上記基板表面に被覆層としてのSiO層を100nmの厚さとなるように形成した。上記スパッタにおいては、Arガスを61sccm、Oガスを2.9sccmとするフロー中で行われ、成膜圧力を0.3Pa、スパッタパワーを200Wとした。
(Example 1)
First, as a negative electrode substrate, an Al—Mn-based aluminum alloy sheet defined as A3003 in JISH4000 was prepared. The size of the substrate was 100 × 100 × 0.2 mm. Then, a SiO x layer as a coating layer was formed on the surface of the substrate so as to have a thickness of 100 nm by reactive sputtering using SiO 2 as a target. The sputtering was performed in a flow in which Ar gas was 61 sccm and O 2 gas was 2.9 sccm. The deposition pressure was 0.3 Pa and the sputtering power was 200 W.
(実施例2)
 上記負極用基板に一般的なジンケート浴を用いて、定電流電解めっきを施した。このようにして、当該負極用基板表面に被覆層としての亜鉛(Zn)層を100nmの厚さとなるように形成した。
(Example 2)
The negative electrode substrate was subjected to constant current electrolytic plating using a general zincate bath. Thus, a zinc (Zn) layer as a coating layer was formed on the negative electrode substrate surface so as to have a thickness of 100 nm.
(実施例3)
 上記負極用基板を硫酸水溶液中に浸漬し、陽極酸化処理を施した。このようにして、被覆層としての硫酸アルマイト処理による酸化アルミニウム(Al)層を10μmの厚さとなるように形成した。
(Example 3)
The negative electrode substrate was immersed in an aqueous sulfuric acid solution and anodized. In this manner, the aluminum oxide (Al 2 O 3) layer with sulfuric anodized as a covering layer was formed to a thickness of 10 [mu] m.
(実施例4)
 Alをターゲットに使用した反応性スパッタにより、上記負極用基板表面にAlN膜を100nmの厚さとなるように形成した。上記スパッタにおいては、Arガスを41.5sccm、Nガスを27.3sccmとするフロー中で行われ、成膜圧力を0.3Pa、スパッタパワーを200Wとした。AlN層の厚さは0.1μmであった。
(Example 4)
An AlN film having a thickness of 100 nm was formed on the negative electrode substrate surface by reactive sputtering using Al as a target. The sputtering was performed in a flow in which Ar gas was 41.5 sccm and N 2 gas was 27.3 sccm, the film forming pressure was 0.3 Pa, and the sputtering power was 200 W. The thickness of the AlN layer was 0.1 μm.
(実施例5)
 図1に示すビーカーセルを用いて上記負極用基板にジンケート処理を施した。図1に示すように、所定の混合水溶液Lを入れたPP(ポリプロピレン)製容器1を準備し、ここにHg/HgO参照電極2と、カソード3を浸漬した。なお、カソード3は、集電用ニッケルメッシュ4によりHg/HgO参照電極2と接続される。さらに、負極用基板Sを、混合水溶液Lの中に浸漬した。なお、負極用基板Sは、マスキング剤Mによりその側面及び銅箔5との界面を被覆された状態で取り付けられている。まず、負極用基板Sをジンケート液に200秒浸漬した。なお、ジンケート液として、50gのNaOHと25gのZnOを溶解させた100mlの水溶液を用いた。次いで、上記負極用基板を水,エタノールで洗浄した後、50%硝酸に浸漬することにより、負極用基板S表面のZn層を溶解させ、Al表面に酸化膜を形成させた。そして、負極用基板Sを水,エタノールで洗浄した後、同組成のジンケート液に再び200秒浸漬し、負極用基板Sの表面に被覆層としての亜鉛層を形成した。亜鉛層の厚さは0.1μmであった。
(Example 5)
The negative electrode substrate was subjected to a zincate treatment using the beaker cell shown in FIG. As shown in FIG. 1, a PP (polypropylene) container 1 containing a predetermined mixed aqueous solution L was prepared, and an Hg / HgO reference electrode 2 and a cathode 3 were immersed therein. The cathode 3 is connected to the Hg / HgO reference electrode 2 by a current collecting nickel mesh 4. Further, the negative electrode substrate S was immersed in the mixed aqueous solution L. The negative electrode substrate S is attached with the masking agent M covering the side surface and the interface with the copper foil 5. First, the negative electrode substrate S was immersed in a zincate solution for 200 seconds. As the zincate solution, 100 ml of an aqueous solution in which 50 g of NaOH and 25 g of ZnO were dissolved was used. Next, the negative electrode substrate was washed with water and ethanol and then immersed in 50% nitric acid to dissolve the Zn layer on the surface of the negative electrode substrate S, thereby forming an oxide film on the Al surface. And after wash | cleaning the board | substrate S for negative electrodes with water and ethanol, it was immersed again in the zincate liquid of the same composition for 200 seconds, and the zinc layer as a coating layer was formed in the surface of the board | substrate S for negative electrodes. The thickness of the zinc layer was 0.1 μm.
(実施例6)
 上記負極用基板を市販のポリビニルアルコールを30%含む水溶液を用いてディップコートした。次いで、80℃で加熱乾燥し、当該基板表面に被覆層としてのポリビニルアルコール層を形成した。
(Example 6)
The negative electrode substrate was dip-coated using an aqueous solution containing 30% of commercially available polyvinyl alcohol. Subsequently, it heat-dried at 80 degreeC, and formed the polyvinyl alcohol layer as a coating layer on the said substrate surface.
(実施例7)
 上記負極用基板にマスキング剤をディップコートにより塗布した。マスキング剤としては、市販品のサンエコンマスクエースSを用いた。次いで、部分被覆になるようPFA製のヘラを用いて表面のマスキング剤を部分的に拭き取り、マスキング層を形成した。
(Example 7)
A masking agent was applied to the negative electrode substrate by dip coating. As a masking agent, a commercially available San-Econ Mask Ace S was used. Next, the masking agent on the surface was partially wiped using a spatula made of PFA so as to form a partial coating, thereby forming a masking layer.
(実施例8)
 上記負極用基板に一般的なスタネート浴を用いて、定電流電解めっきを施した。このようにして、当該負極用基板表面に被覆層としてのスズ(Sn)層を1μmの厚さとなるように形成した。
(Example 8)
The negative electrode substrate was subjected to constant current electrolytic plating using a common stannate bath. Thus, a tin (Sn) layer as a coating layer was formed on the negative electrode substrate surface so as to have a thickness of 1 μm.
[評価試験]
(A)水素発生量
 上記のとおり被覆層を形成した8種の負極試料を、水素発生量の評価試験に供した。評価手段としては、図2に示す測定系を用いた。すなわち、密閉可能容器11は、マスフローコントローラ(MFC)12及びガス分析装置14に接続され、密閉可能容器11内には100sccmの空気フローが導入されるように測定系を構成した。また、密閉可能容器11内に設置された容器には、先端にチューブを取り付けたシリンジ13により電解液が導入されており、当該電解液に負極試料16、正極17及び参照極18が浸漬されている。負極試料16、正極17及び参照極18は、導電線により放電装置15に接続される。なお、電解液としては、8NのKOH水溶液を使用した。フロー排気を分析するガス分析装置14としては、ファイファーバキューム社製の四重極質量分析計(オムニスター)を用いて、水素発生量のモニタリングを行った。負極試料16をKOH水溶液に浸漬してから600秒が経過するまでの間に検出された水素発生量を積算して各実施例の水素発生量を求めた。これらに対して、被覆層を形成していない上記負極用基板をそのまま負極試料16としたものを比較例とした。これら実施例1~8及び比較例の水素発生量を表1に示した。なお、積算水素発生量は、比較例の発生量を「100」とする百分率で示した。
[Evaluation test]
(A) Hydrogen generation amount Eight types of negative electrode samples on which the coating layer was formed as described above were subjected to a hydrogen generation amount evaluation test. As an evaluation means, the measurement system shown in FIG. 2 was used. That is, the sealable container 11 was connected to the mass flow controller (MFC) 12 and the gas analyzer 14, and the measurement system was configured so that an air flow of 100 sccm was introduced into the sealable container 11. In addition, an electrolytic solution is introduced into a container installed in the sealable container 11 by a syringe 13 having a tube attached to the tip, and the negative electrode sample 16, the positive electrode 17, and the reference electrode 18 are immersed in the electrolytic solution. Yes. The negative electrode sample 16, the positive electrode 17, and the reference electrode 18 are connected to the discharge device 15 by a conductive wire. In addition, 8N KOH aqueous solution was used as electrolyte solution. As the gas analyzer 14 for analyzing the flow exhaust, a hydrogen generation amount was monitored using a quadrupole mass spectrometer (Omnistar) manufactured by Pfeiffer Vacuum. The hydrogen generation amount detected in each example was obtained by integrating the hydrogen generation amount detected during 600 seconds after the anode sample 16 was immersed in the KOH aqueous solution. On the other hand, a negative electrode sample 16 as it was was used as a comparative example. The hydrogen generation amounts of Examples 1 to 8 and Comparative Example are shown in Table 1. The accumulated hydrogen generation amount is shown as a percentage with the generation amount of the comparative example being “100”.
(B)放電容量
 実施例1~8及び比較例に対応する負極試料16に対し、一般的な構成の市販の空気極を正極17とし、Hg/HgO電極を参照極18とし、図2中に示すような放電セルを準備した。なお、上記(A)と同様の電解液を用いた。そして、負極試料16、正極17及び参照極18が電解液に浸漬された状態で、当該放電セルを10分間放置した。その後、100mA/cmの電流密度で定電流放電を行った。参照極18に対する負極電位が0Vに到達した時点を放電終了として、放電終了までの各例の放電容量を求めた。その結果を表1に併せて示す。
(B) Discharge capacity With respect to the negative electrode sample 16 corresponding to Examples 1 to 8 and Comparative Example, a commercially available air electrode having a general configuration is used as the positive electrode 17, and the Hg / HgO electrode is used as the reference electrode 18. A discharge cell as shown was prepared. In addition, the same electrolyte solution as the above (A) was used. Then, with the negative electrode sample 16, the positive electrode 17, and the reference electrode 18 immersed in the electrolyte, the discharge cell was left for 10 minutes. Thereafter, constant current discharge was performed at a current density of 100 mA / cm 2 . When the negative electrode potential with respect to the reference electrode 18 reached 0 V, the discharge was terminated, and the discharge capacity of each example until the end of the discharge was determined. The results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、被覆層を備えた実施例1~8の負極試料は、被覆層を形成していない比較例に比べて、水素発生量が大幅に低減されることが確認された。また、被覆層を形成したとしても、電池の放電容量が低下する傾向は認められないことも確認された。なお、被覆層として亜鉛めっきを施した実施例2においては、被覆層を形成していない比較例よりも高い放電容量が得られている。これは、被覆層の亜鉛が負極そのものとしての機能も発揮したことによるものと考えられる。 As shown in Table 1, it was confirmed that the negative electrode samples of Examples 1 to 8 provided with the coating layer were significantly reduced in hydrogen generation compared to the comparative example in which the coating layer was not formed. It was also confirmed that even when the coating layer was formed, there was no tendency to decrease the discharge capacity of the battery. In Example 2 in which galvanization was applied as the coating layer, a higher discharge capacity was obtained than in the comparative example in which the coating layer was not formed. This is considered to be due to the fact that the zinc of the coating layer also functions as the negative electrode itself.
(C)水素発生量の経時変化
 被覆層を備えた実施例1,2に対応する負極試料16を、上記(B)と同様に密閉可能容器11中のビーカーセルに配置した。対極となる正極17には市販の空気極を用い、参照極18にはHg/HgO電極を用いた。また、電解液としては8NのKOH水溶液中を使用し、先端にチューブを取り付けたシリンジ13により当該電解液をセルに注液した。密閉可能容器11内には100sccmの空気フローを導入した。そして、容器上面からガスの一部を採取し、ガス分析装置14によりガス中に含まれる水素比率のモニタリングを行った。注液時点から排出ガス中に含まれる水素ガス比率の時間的変化を調査し、被覆層を形成していない比較例の負極試料を電解液に浸漬した場合と比較した。その結果を図3に示す。
(C) Change over time of hydrogen generation amount A negative electrode sample 16 corresponding to Examples 1 and 2 provided with a coating layer was placed in a beaker cell in a sealable container 11 in the same manner as in (B) above. A commercially available air electrode was used as the positive electrode 17 serving as the counter electrode, and an Hg / HgO electrode was used as the reference electrode 18. Further, an 8N KOH aqueous solution was used as the electrolytic solution, and the electrolytic solution was injected into the cell with a syringe 13 having a tube attached to the tip. An air flow of 100 sccm was introduced into the sealable container 11. And a part of gas was extract | collected from the container upper surface, and the hydrogen analyzer contained in gas was monitored by the gas analyzer 14. The temporal change in the ratio of hydrogen gas contained in the exhaust gas was investigated from the time of injection, and compared with a case where a negative electrode sample of a comparative example in which a coating layer was not formed was immersed in an electrolytic solution. The result is shown in FIG.
 図3から以下のことが明らかとなった。すなわち、被覆層を形成していない比較例では水素検出までの時間が100秒であるのに対し、被覆層を形成した実施例1,2の負極試料では、水素が検出されるまでの時間をさらに50~100秒遅らせることができた。このように、負極表面に被覆層を形成することにより、初期の水素発生を抑制する効果が得られることが確認された。また、負極表面に被覆層を形成することにより、水素の発生総量も全体的に抑制できることが判明した。 From Figure 3, the following became clear. That is, in the comparative example in which the coating layer is not formed, the time until hydrogen detection is 100 seconds, whereas in the negative electrode samples of Examples 1 and 2 in which the coating layer is formed, the time until hydrogen is detected is It could be further delayed by 50 to 100 seconds. Thus, it was confirmed that the effect of suppressing initial hydrogen generation can be obtained by forming the coating layer on the negative electrode surface. It was also found that the total amount of hydrogen generated can be suppressed as a whole by forming a coating layer on the negative electrode surface.
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、本発明の用紙の範囲内で種々の変形及び改良が可能であることは、当業者には自明である。 As mentioned above, although the content of the present invention was explained along with the example, the present invention is not limited to these descriptions, and various modifications and improvements can be made within the scope of the paper of the present invention. It will be obvious to those skilled in the art.
 日本国特許出願特願2012-009117号(出願日:2012年1月19日)及び日本国特許出願特願2013-003328(出願日:2013年1月11日)の全内容は、ここに引用される。 The entire contents of Japanese Patent Application No. 2012-009117 (Application Date: January 19, 2012) and Japanese Patent Application No. 2013-003328 (Application Date: January 11, 2013) are cited here. Is done.
 本発明によれば、負極表面の全体又は一部が金属負極と電解液との間の水素発生反応を抑制する被覆層を備える注液型金属空気電池とした。このような注液型金属空気電池は、電解液の注入開始から放電が開始されるまでの注液期間中における負極金属の腐食ないし消耗が抑制される。その結果、当該注液型空気電池の容量利用率及びエネルギー密度が向上する。 According to the present invention, the entire surface or a part of the negative electrode surface is a liquid injection type metal-air battery provided with a coating layer that suppresses the hydrogen generation reaction between the metal negative electrode and the electrolytic solution. In such a liquid injection type metal-air battery, corrosion or consumption of the negative electrode metal is suppressed during the liquid injection period from the start of injection of the electrolytic solution to the start of discharge. As a result, the capacity utilization rate and energy density of the liquid injection type air battery are improved.
  S 負極用基板
  16 負極試料
  20 電極構造体
  21 負極層
  25 被覆層
S negative electrode substrate 16 negative electrode sample 20 electrode structure 21 negative electrode layer 25 coating layer

Claims (8)

  1.  イオン化傾向が水素よりも大きい金属を主成分とする負極と、
     前記金属とは異なる材料から構成され、前記負極表面の少なくとも一部に形成され、前記負極と電解液との間の水素発生反応を抑制する被覆層と、
     を備えることを特徴とする注液型金属空気電池。
    A negative electrode mainly composed of a metal having a higher ionization tendency than hydrogen;
    A coating layer made of a material different from the metal, formed on at least a part of the negative electrode surface, and suppressing a hydrogen generation reaction between the negative electrode and an electrolyte;
    A liquid-injection metal-air battery comprising:
  2.  前記被覆層が不連続に形成されていることを特徴とする請求項1に記載の注液型金属空気電池。 The injection type metal-air battery according to claim 1, wherein the coating layer is formed discontinuously.
  3.  前記被覆層が金属、酸化物、窒化物又は高分子材料から構成されることを特徴とする請求項1又は2に記載の注液型金属空気電池。 The injection type metal-air battery according to claim 1 or 2, wherein the coating layer is made of a metal, an oxide, a nitride, or a polymer material.
  4.  前記被覆層が亜鉛、錫、アルミニウム、ガリウム、ゲルマニウム、インジウム、ビスマス、マグネシウム、チタン、コバルト、ニッケル、モリブデン、銅、銀、クロム、鉄及びマンガンからなる群より選ばれた少なくとも1種の金属から構成されることを特徴とする請求項3に記載の注液型金属空気電池。 The coating layer is made of at least one metal selected from the group consisting of zinc, tin, aluminum, gallium, germanium, indium, bismuth, magnesium, titanium, cobalt, nickel, molybdenum, copper, silver, chromium, iron and manganese. 4. The injection type metal-air battery according to claim 3, wherein the injection-type metal-air battery is configured.
  5.  前記被覆層がダブルジンケート処理により形成された亜鉛から構成されることを特徴とする請求項3に記載の注液型金属空気電池。 The injection type metal-air battery according to claim 3, wherein the coating layer is made of zinc formed by a double zincate process.
  6.  前記被覆層が酸化ケイ素、酸化アルミニウム、酸化クロム、酸化亜鉛、酸化錫、酸化チタン、酸化コバルト、酸化ニッケル、酸化モリブデン及び酸化マンガンからなる群より選ばれた少なくとも1種の酸化物から構成されることを特徴とする請求項3に記載の注液型金属空気電池。 The coating layer is composed of at least one oxide selected from the group consisting of silicon oxide, aluminum oxide, chromium oxide, zinc oxide, tin oxide, titanium oxide, cobalt oxide, nickel oxide, molybdenum oxide, and manganese oxide. The liquid-injection metal-air battery according to claim 3.
  7.  前記被覆層が窒化ケイ素、窒化アルミニウム、窒化クロム、窒化ガリウム、窒化チタン及び窒化鉄からなる群より選ばれた少なくとも1種の窒化物から構成されることを特徴とする請求項3に記載の注液型金属空気電池。 The note according to claim 3, wherein the coating layer is made of at least one nitride selected from the group consisting of silicon nitride, aluminum nitride, chromium nitride, gallium nitride, titanium nitride, and iron nitride. Liquid metal-air battery.
  8.  前記被覆層がデンプン、ゼラチン、セルロース、ポリエチレングリコール、ポリビニルアルコール、シリコン、ポリアミド、ポリアセタール、エポキシ樹脂、アクリル樹脂、天然ゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、エチレンプロピレンゴム、フッ素ゴム、スチレン-ブタジエンゴム及びアクリロニトリル-ブタジエンゴムからなる群より選ばれた少なくとも1種の高分子材料から構成されることを特徴とする請求項3に記載の注液型金属空気電池。 The coating layer is starch, gelatin, cellulose, polyethylene glycol, polyvinyl alcohol, silicon, polyamide, polyacetal, epoxy resin, acrylic resin, natural rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene propylene rubber, fluorine rubber, styrene-butadiene rubber. 4. The injection-type metal-air battery according to claim 3, wherein the injection-type metal-air battery is composed of at least one polymer material selected from the group consisting of acrylonitrile-butadiene rubber.
PCT/JP2013/050808 2012-01-19 2013-01-17 Liquid-injection-type metal-air battery WO2013108839A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-009117 2012-01-19
JP2012009117 2012-01-19
JP2013003328A JP6032018B2 (en) 2012-01-19 2013-01-11 Injection metal-air battery
JP2013-003328 2013-01-11

Publications (1)

Publication Number Publication Date
WO2013108839A1 true WO2013108839A1 (en) 2013-07-25

Family

ID=48799262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050808 WO2013108839A1 (en) 2012-01-19 2013-01-17 Liquid-injection-type metal-air battery

Country Status (3)

Country Link
JP (1) JP6032018B2 (en)
TW (1) TW201349629A (en)
WO (1) WO2013108839A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633378A (en) * 2016-03-02 2016-06-01 三峡大学 Method for preparing GaN/conductive substrate composite material by magnetron sputtering method and application of GaN/conductive substrate composite material on lithium ion battery
CN113972374A (en) * 2021-10-20 2022-01-25 浙江大学 Preparation method and application of gelatin modified zinc metal negative electrode
CN115148969A (en) * 2022-07-06 2022-10-04 大连工业大学 Preparation method and application of starch film protected zinc metal negative electrode
CN116024470A (en) * 2022-12-05 2023-04-28 太原理工大学 Magnesium-silver alloy and preparation method and application thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6149404B2 (en) * 2013-01-21 2017-06-21 日産自動車株式会社 Aluminum-air battery
JP6203139B2 (en) * 2014-07-02 2017-09-27 冨士色素株式会社 Composition, electrode having porous layer containing the composition, and metal-air secondary battery having the electrode
BR112019000713B1 (en) 2016-07-22 2023-04-25 Nantenergy, Inc ELECTROCHEMICAL CELL AND METHOD OF CONSERVING MOISTURE INSIDE AN ELECTROCHEMICAL CELL
JP6383396B2 (en) * 2016-12-05 2018-08-29 冨士色素株式会社 Composition, electrode having porous layer containing the composition, and metal-air secondary battery having the electrode
JP6695614B2 (en) * 2017-03-10 2020-05-20 ineova株式会社 Metal negative battery
US11394035B2 (en) 2017-04-06 2022-07-19 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
US11611115B2 (en) 2017-12-29 2023-03-21 Form Energy, Inc. Long life sealed alkaline secondary batteries
CN108365301B (en) * 2018-01-26 2020-03-17 云南靖创液态金属热控技术研发有限公司 Chargeable and dischargeable liquid metal battery
JP6619481B2 (en) * 2018-06-25 2019-12-11 冨士色素株式会社 Composition, electrode having porous layer containing the composition, and metal-air secondary battery having the electrode
EP3815167A4 (en) 2018-06-29 2022-03-16 Form Energy, Inc. Aqueous polysulfide-based electrochemical cell
CA3105128A1 (en) 2018-07-27 2020-01-30 Form Energy, Inc. Negative electrodes for electrochemical cells
US11949129B2 (en) 2019-10-04 2024-04-02 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
CN116325221A (en) 2020-10-30 2023-06-23 株式会社村田制作所 Alkaline battery and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283157A (en) * 1992-09-14 1994-10-07 Canon Inc Secondary battery
JP2002151167A (en) * 2000-11-10 2002-05-24 Nippon Mitsubishi Oil Corp Air cell
JP2007508672A (en) * 2003-10-15 2007-04-05 コミサリア、ア、レネルジ、アトミク Alkaline fuel cell wherein the anode comprises aluminum and zinc and a method for producing such an anode
JP2011249488A (en) * 2010-05-26 2011-12-08 Panasonic Corp Electrode foil and capacitor using the same, and method for producing electrode foil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283157A (en) * 1992-09-14 1994-10-07 Canon Inc Secondary battery
JP2002151167A (en) * 2000-11-10 2002-05-24 Nippon Mitsubishi Oil Corp Air cell
JP2007508672A (en) * 2003-10-15 2007-04-05 コミサリア、ア、レネルジ、アトミク Alkaline fuel cell wherein the anode comprises aluminum and zinc and a method for producing such an anode
JP2011249488A (en) * 2010-05-26 2011-12-08 Panasonic Corp Electrode foil and capacitor using the same, and method for producing electrode foil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633378A (en) * 2016-03-02 2016-06-01 三峡大学 Method for preparing GaN/conductive substrate composite material by magnetron sputtering method and application of GaN/conductive substrate composite material on lithium ion battery
CN113972374A (en) * 2021-10-20 2022-01-25 浙江大学 Preparation method and application of gelatin modified zinc metal negative electrode
CN115148969A (en) * 2022-07-06 2022-10-04 大连工业大学 Preparation method and application of starch film protected zinc metal negative electrode
CN115148969B (en) * 2022-07-06 2024-07-23 大连工业大学 Preparation method and application of starch film-protected zinc metal anode
CN116024470A (en) * 2022-12-05 2023-04-28 太原理工大学 Magnesium-silver alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JP6032018B2 (en) 2016-11-24
JP2013168360A (en) 2013-08-29
TW201349629A (en) 2013-12-01

Similar Documents

Publication Publication Date Title
JP6032018B2 (en) Injection metal-air battery
EP1187236B1 (en) Alkaline battery
KR101265909B1 (en) Alkaline electrochemical cell with reduced gassing and reduced discolouration
Li et al. Hybrid Li-air battery cathodes with sparse carbon nanotube arrays directly grown on carbon fiber papers
CN1797811B (en) Negative electrode can, alkaline cell and production method for same
JP5181585B2 (en) Method for producing negative electrode for lithium secondary battery
TWI515944B (en) Stainless steel foil for separator between solid polymer fuel cell
CN111755699A (en) High-stability long-life metal lithium negative electrode material and preparation method and application thereof
KR20190034027A (en) Lithum ion battery including nano-crystalline graphene electrode
Zhu et al. Anode/Cathode Dual‐Purpose Aluminum Current Collectors for Aqueous Zinc‐Ion Batteries
JP2000164466A (en) Manufacture of electrode used for capacitor or cell
JP6665006B2 (en) Battery and manufacturing method thereof
JP4717222B2 (en) Alkaline battery
FR2978617A1 (en) ELECTRODE FOR ALKALINE ACCUMULATOR
JP2011198743A (en) Positive electrode for lithium ion secondary battery and method of manufacturing positive electrode collector for lithium ion secondary battery
KR100773952B1 (en) Anode active material for mercury-free air zinc cell and mercury-free air zinc cell comprising the same
JP4225391B2 (en) Button type zinc-air battery
KR102208834B1 (en) Magnesium air battery
JP2015525436A (en) Cathode for lithium / air battery comprising bilayer structure of different catalysts, and lithium / air battery comprising this cathode
Xiong et al. Electrodeposited MnOX-CoFe as Bifunctional Electrocatalysts for Rechargeable Zinc-Air Batteries
US20240079659A1 (en) Aqueous potassium ion battery
EP2738841B1 (en) Negative electrode for alkaline storage battery and alkaline storage battery
CN115706232A (en) Negative electrode current collector and battery
JP2014505793A (en) Coating for metal cell element material of electrolysis cell
CN1205116A (en) Rechangable alkaline cells containing zinc anodes without added mercury

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738035

Country of ref document: EP

Kind code of ref document: A1