JP4225391B2 - Button type zinc-air battery - Google Patents

Button type zinc-air battery Download PDF

Info

Publication number
JP4225391B2
JP4225391B2 JP18953698A JP18953698A JP4225391B2 JP 4225391 B2 JP4225391 B2 JP 4225391B2 JP 18953698 A JP18953698 A JP 18953698A JP 18953698 A JP18953698 A JP 18953698A JP 4225391 B2 JP4225391 B2 JP 4225391B2
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
button
air battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18953698A
Other languages
Japanese (ja)
Other versions
JP2000021459A (en
Inventor
真智 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP18953698A priority Critical patent/JP4225391B2/en
Publication of JP2000021459A publication Critical patent/JP2000021459A/en
Application granted granted Critical
Publication of JP4225391B2 publication Critical patent/JP4225391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はボタン型空気亜鉛電池に関し、さらに詳しくは、高容量化と水素ガス発生抑制化を図ったボタン型空気亜鉛電池に関する。
【0002】
【従来の技術】
空気亜鉛電池は正極に大気中の酸素を、負極に亜鉛を、そして電解液にアルカリ水溶液を用いており、主に補聴器やペイジャー用にボタンタイプのものが製品化されている。これらの空気亜鉛電池は、正極としての酸素を還元するための触媒層を備えており、この触媒層には集電するための金属網がある。一方、負極としては水銀を含有する汞化亜鉛粉が用いられている。
【0003】
近年、空気亜鉛電池において、これをさらに高容量化すること、および環境問題の面から負極の低汞化もしくは無汞化を図ることが進められている。一般に空気亜鉛電池を高容量化する手段としては、負極作用物質である亜鉛を増やすことが行われ、そのため亜鉛に対する電解液を減少したり、亜鉛中の水銀を減らす等の方法が採られている。
【0004】
【発明が解決しようとする課題】
しかしながら、水銀は亜鉛と合金化させることによって、水素過電圧を高め、水素ガスの発生を抑制するのであるから、亜鉛中の水銀を減らすことによって水素ガスが発生しやすくなる。また、亜鉛に対する電解液を減少させた場合も、負極亜鉛上の自由電子が局在化して局部電池を形成しやすくなり、水素ガスが発生しやすくなる。したがって、亜鉛の汞化率を低減させ、さらに亜鉛に対する電解液を減少させた場合には、亜鉛から発生する水素ガスが大幅に増加することになり、長期貯蔵における放電特性の劣化が早くなる。
【0005】
本発明は上記問題に対処してなされたもので、ボタン型空気亜鉛電池において、高容量化するに際し、負極に使用する水銀量を低減しかつ電解液量を減少させた場合でも、水素ガスの発生を抑制して長期貯蔵における放電特性の劣化を防止することを目的とするものである。
【0006】
【課題を解決するための手段】
すなわち本発明は、負極に亜鉛粉を用い、正極に金属網を有する触媒層を用いたボタン型空気亜鉛電池おいて、触媒層の金属網が酸洗浄した後にニッケルメッキしたステンレス製のものであり、かつ負極亜鉛粉が水銀含有率2%以下の低汞化亜鉛粉または無汞化亜鉛粉であり、該亜鉛粉と電解液との重量比が1:0.28〜1:0.20であることを特徴とする。
【0007】
触媒層の金属網はその構造上不純物などが付着しやすく、これにニッケルメッキを施してもステンレスが露出することがあり、水素ガス発生の原因はこの露出したステンレスから鉄等が溶出するために起こることが、本発明者の研究の結果分かった。そこで、本発明においては、触媒層の金属網をニッケルメッキ処理する前にあらかじめ酸洗浄しておき、ニッケルメッキを均質化してステンレスの露出がないようにすることにより、亜鉛粉からの水素ガス発生量を抑制することができた。その結果、上記のように亜鉛粉を低汞化または無汞化し、さらに亜鉛粉に対する電解液の重量比を減らしても、亜鉛粉から発生する水素ガス量を従来と同等程度に抑えることができる。したがって、本発明によれば、高容量化が、水素ガスの発生量の増加や長期貯蔵における放電特性の劣化を伴うことなく達成できる。
【0008】
【発明の実施の形態】
本発明の実施の形態を図1を参照して説明する。
図1は本発明の一実施例であるボタン型空気亜鉛電池(PR44型、直径11mm,総高5.4mm)の断面図である。図1において、1は正極缶、2は正極触媒層、2´は金属網、3は亜鉛粉および電解液を含有するゲル負極、4は負極容器、5は隔離材、6は撥水層、7は空気拡散層、8は空気孔、9はシールテープ、10は絶縁ガスケットであり、負極容器4内には上記ゲル負極が充填され、正極側は負極対向面から順に、隔離材5、触媒層2、撥水層6、空気拡散層7が積層されている。正極缶1には底部に空気孔8を設けて大気中の酸素が電池内に供給されるようになっている。
【0009】
(実施例1)
負極亜鉛として水銀含有量2%の汞化亜鉛を使用し、この汞化亜鉛と電解液(30%水酸化カリウム水溶液)の重量比を1:0.28としてゲル負極とした。また、触媒層(二酸化マンガン30%、活性炭50%およびPTFE20%からなる混合物を混練し、シート状にしたもの)の金網は酸洗浄後、常法によりニッケルメッキしたものを使用した。これらを用いて上記図1のボタン型空気亜鉛電池を作成した。なお、上記酸洗浄は、4モル/lの塩酸に10秒間金属網を浸漬することによって行った。
【0010】
(実施例2)
負極亜鉛として水銀含有量2%の汞化亜鉛を使用し、この汞化亜鉛と電解液の重量比を1:0.25としてゲル負極とした。正極触媒層は実施例1と同じように作成したものを用いた。これらを用いて上記図1のボタン型空気亜鉛電池を作成した。
【0011】
(実施例3)
負極亜鉛として水銀含有量2%の汞化亜鉛を使用し、汞化亜鉛と電解液との重量比を1:0.20とした。それ以外は実施例1と同様にして図1のボタン型空気亜鉛電池を作成した。
【0012】
(実施例4)
負極亜鉛として水銀含有量1%の汞化亜鉛を使用し、汞化亜鉛と電解液との重量比を1:0.28とした。それ以外は実施例1と同様にして図1のボタン型空気亜鉛電池を作成した。
【0013】
(実施例5)
負極亜鉛として水銀含有量1%の汞化亜鉛を使用し、汞化亜鉛と電解液との重量比を1:0.20とした。それ以外は実施例1と同様にして図1のボタン型空気亜鉛電池を作成した。
【0014】
(実施例6)
負極亜鉛として無汞化亜鉛を使用し、無汞化亜鉛と電解液との重量比を1:0.28とした。それ以外は実施例1と同様にして図1のボタン型空気亜鉛電池を作成した。
【0015】
(実施例7)
負極亜鉛として無汞化亜鉛を使用し、無汞化亜鉛と電解液との重量比を1:0.20とした。それ以外は実施例1と同様にして図1のボタン型空気亜鉛電池を作成した。
【0016】
(比較例1)
負極亜鉛として水銀含有量2%の汞化亜鉛を使用し、汞化亜鉛と電解液との重量比を1:0.25とした。また、金属網は洗浄せずにメッキ処理したものを使用した。それ以外は実施例1と同様にして図1のボタン型空気亜鉛電池を作成した。
【0017】
(比較例2)
負極亜鉛として水銀含有量1%の汞化亜鉛を使用し、汞化亜鉛と電解液との重量比を1:0.25とした。また、金属網は洗浄せずにメッキ処理したものを使用した。それ以外は実施例1と同様にして図1のボタン型空気亜鉛電池を作成した。
【0018】
(比較例3)
負極亜鉛として水銀含有量5%の汞化亜鉛を使用し、汞化亜鉛と電解液との重量比を1:0.20とした。また、金属網は洗浄せずにメッキ処理したものを使用した。それ以外は実施例1と同様にして図1のボタン型空気亜鉛電池を作成した。
【0019】
(比較例4)
負極亜鉛として水銀含有量5%の汞化亜鉛を使用し、汞化亜鉛と電解液との重量比を1:0.15とした。また、金属網は洗浄せずにメッキ処理したものを使用した。それ以外は実施例1と同様にして図1のボタン型空気亜鉛電池を作成した。
【0020】
(比較例5)
負極亜鉛として水銀含有量2%の汞化亜鉛を使用し、汞化亜鉛と電解液との重量比を1:0.30とした。また、金属網は酸洗浄してメッキ処理したものを使用した。それ以外は実施例1と同様にして図1のボタン型空気亜鉛電池を作成した。
【0021】
(比較例6)
負極亜鉛として水銀含有量2%の汞化亜鉛を使用し、汞化亜鉛と電解液との重量比を1:0.15とした。また、金属網は酸洗浄してメッキ処理したものを使用した。それ以外は実施例1と同様にして図1のボタン型空気亜鉛電池を作成した。
【0022】
(比較例7)…従来例
負極亜鉛として水銀含有量5%の汞化亜鉛を使用し、汞化亜鉛と電解液との重量比を1:0.25とした。また、金属網は洗浄せずにメッキ処理したものを使用した。それ以外は実施例1と同様にして図1のボタン型空気亜鉛電池を作成した。
以上の実施形態を以下の表1にまとめる。
【0023】
【表1】

Figure 0004225391
【0024】
上記各実施例および各比較例の電池について、放電特性と水素ガス発生量の試験を行った。放電特性の試験では、電池作成1週間後に行う初度放電と、6か月貯蔵後に行う貯蔵放電とを比較することによって劣化率を調べた。放電条件はどちらも20℃で250Ω連続放電を行い、作動電圧が0.9Vになるまでに得られる放電容量を放電特性とした。水素ガス発生量は、作成した電池を45℃の流動パラフィン中に貯蔵して、10日間に電池の空気孔から抜け出るガスを捕集して確認した。これらの結果を表2に示す。
【0025】
【表2】
Figure 0004225391
【0026】
表2から明らかなように、従来例である比較例7と比較例1,2とを比較すると、亜鉛粉と電解液の重量比が同じであっても、汞化率が低下するに従い水素ガスの発生量が増加し、放電特性の劣化も大きくなることが分かる。これらのことから、汞化亜鉛と電解液の重量比が同じ場合でも、汞化率が高ければ金属網からの鉄などの溶出による水素ガスの発生への影響は小さいが、汞化率が低下するに従いその影響は顕著になると考えられる。
【0027】
これに対し、実施例1では、亜鉛粉と電解液の重量比も汞化率も共に比較例1と同じであっても、金属網をメッキ前に酸洗浄することによって、水素ガスの発生量は比較例1よりもはるかに少なく、汞化率の高い従来例の発生量とほぼ同じになる。また、放電特性の劣化率もほぼ同じになる。
【0028】
一方、比較例7と比較例3,4とを比較すると、汞化率が従来どうり5%であっても、亜鉛粉に対する電解液の重量比を減少させると、水素ガスの発生量は増加し、放電特性の劣化も大きくなることが分かる。これから金属網を酸洗浄しない場合には、金属網から溶出する鉄などの影響が上記重量比の減少で顕著になったものと考えられる。なお、上記重量比が0.15の場合、初期放電での特性が理論容量に比較して極端に低くなっており、劣化率も極端に悪化しているが、この原因としては、水素ガス発生に加え、亜鉛粉近傍の電解液の減少で放電中の反応生成物の拡散が悪化して反応性が低下し、亜鉛の利用率が低下したことがその一因として考えられる。
【0029】
これに対し、実施例1〜7から明らかなように、亜鉛粉と電解液の重量比が1:0.28〜0.20の範囲であれば、汞化率が2%以下に低減しても、金属網を酸洗浄したことにより、水素ガスの発生量も放電特性の劣化も従来例(比較例7)と同程度となり、結果として高容量化ができることが分かる。また、従来は亜鉛粉と電解液の比は1:0.25までが限界であったのに対し、本発明では1:0.20までの範囲においても有効であることが分かる。
【0030】
また、電解液比が0.30の比較例5では水素ガスの発生量と放電特性の劣化率は従来例である比較例7と同等になっているが、理論容量から分かるように、電解液比を大きくすると電池の負極容器に入る亜鉛の絶対量が低下して、結果的には高容量化することができない。逆に電解液比が0.15%以下では負極容器に入る亜鉛の絶対量は多くなるが、比較例4にみられるように電解液が少なくなるに従い水素ガスの発生量は多くなり、劣化率も大きくなる。同時に反応生成物の拡散悪化するので反応性が低下し、亜鉛の利用率が低下する。
【0031】
【発明の効果】
以上説明したように、本発明のボタン型空気亜鉛電池では、水素ガスの発生量の増加や長期貯蔵における放電特性の劣化を伴うことなく、高容量化を達成することができる。
【図面の簡単な説明】
【図1】一般的なボタン型空気亜鉛電池の断面図。
【符号の説明】
1…正極缶、2…正極触媒層、2´…金属網、3…亜鉛粉および電解液を含有する負極ゲル、4…負極容器、5…隔離材、6…撥水層、7…空気拡散層、8…空気孔、9…シールテープ、10…絶縁ガスケット。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a button-type zinc-air battery, and more particularly to a button-type zinc-air battery that achieves high capacity and suppresses generation of hydrogen gas.
[0002]
[Prior art]
The air zinc battery uses oxygen in the atmosphere for the positive electrode, zinc for the negative electrode, and an alkaline aqueous solution for the electrolyte, and button-type batteries are mainly commercialized for hearing aids and pagers. These air zinc batteries include a catalyst layer for reducing oxygen as a positive electrode, and this catalyst layer has a metal network for collecting current. On the other hand, zinc halide powder containing mercury is used as the negative electrode.
[0003]
In recent years, in a zinc-air battery, it has been promoted to further increase the capacity of the air zinc battery and to reduce or eliminate the negative electrode from the viewpoint of environmental problems. In general, as a means for increasing the capacity of an air zinc battery, zinc, which is a negative electrode active material, is increased. For this reason, a method of reducing an electrolyte solution for zinc or reducing mercury in zinc is employed. .
[0004]
[Problems to be solved by the invention]
However, mercury is alloyed with zinc to increase the hydrogen overvoltage and suppress the generation of hydrogen gas, so hydrogen gas is likely to be generated by reducing the mercury in zinc. In addition, even when the electrolyte solution for zinc is reduced, free electrons on the negative electrode zinc are localized to easily form a local battery, and hydrogen gas is easily generated. Therefore, when the hatching rate of zinc is reduced and the electrolyte solution for zinc is further reduced, the hydrogen gas generated from zinc is greatly increased, and the discharge characteristics are deteriorated rapidly during long-term storage.
[0005]
The present invention has been made in response to the above problems. In the button type zinc-air battery, when the capacity is increased, even when the amount of mercury used in the negative electrode is reduced and the amount of the electrolyte is reduced, The object is to prevent the deterioration of discharge characteristics during long-term storage by suppressing the generation.
[0006]
[Means for Solving the Problems]
That is, the present invention is a button-type zinc-air battery using zinc powder for the negative electrode and a catalyst layer having a metal mesh for the positive electrode, and made of stainless steel plated with nickel after the metal mesh of the catalyst layer has been subjected to acid cleaning. And the negative electrode zinc powder is low-zinc-free zinc powder or non-zinc-free zinc powder having a mercury content of 2% or less, and the weight ratio of the zinc powder to the electrolyte is 1: 0.28 to 1: 0.20. It is characterized by being.
[0007]
Due to the structure of the metal mesh of the catalyst layer, impurities are likely to adhere to it, and even if nickel plating is applied to this, stainless steel may be exposed. The cause of hydrogen gas generation is that iron etc. is eluted from this exposed stainless steel. What has happened has been found by the inventors' research. Therefore, in the present invention, the metal mesh of the catalyst layer is acid-washed in advance before the nickel plating treatment, and the nickel plating is homogenized so that the stainless steel is not exposed, thereby generating hydrogen gas from the zinc powder. The amount could be suppressed. As a result, the amount of hydrogen gas generated from the zinc powder can be suppressed to the same level as before, even if the zinc powder is reduced or eliminated as described above and the weight ratio of the electrolyte to the zinc powder is reduced. . Therefore, according to the present invention, an increase in capacity can be achieved without increasing the amount of hydrogen gas generated or deteriorating discharge characteristics during long-term storage.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a cross-sectional view of a button type zinc-air battery (PR44 type, diameter 11 mm, total height 5.4 mm) according to an embodiment of the present invention. In FIG. 1, 1 is a positive electrode can, 2 is a positive electrode catalyst layer, 2 'is a metal net, 3 is a gel negative electrode containing zinc powder and an electrolyte, 4 is a negative electrode container, 5 is a separator, 6 is a water repellent layer, 7 is an air diffusion layer, 8 is an air hole, 9 is a sealing tape, 10 is an insulating gasket, the negative electrode container 4 is filled with the gel negative electrode, and the positive electrode side is sequentially separated from the negative electrode facing surface, the separator 5 and the catalyst. Layer 2, water repellent layer 6 and air diffusion layer 7 are laminated. The positive electrode can 1 is provided with an air hole 8 at the bottom so that oxygen in the atmosphere is supplied into the battery.
[0009]
Example 1
Zinc halide having a mercury content of 2% was used as the negative electrode zinc, and a gel negative electrode was prepared with a weight ratio of the zinc halide to the electrolyte (30% aqueous potassium hydroxide) of 1: 0.28. The wire mesh of the catalyst layer (mixed of 30% manganese dioxide, 50% activated carbon and 20% PTFE and made into a sheet) was acid-washed and then nickel-plated by a conventional method. Using these, the button-type zinc-air battery of FIG. 1 was prepared. The acid cleaning was performed by immersing the metal net in 4 mol / l hydrochloric acid for 10 seconds.
[0010]
(Example 2)
A zinc negative electrode having a mercury content of 2% was used as the negative electrode zinc, and the weight ratio of the zinc halide and the electrolyte was 1: 0.25 to obtain a gel negative electrode. The positive electrode catalyst layer prepared in the same manner as in Example 1 was used. Using these, the button-type zinc-air battery of FIG. 1 was prepared.
[0011]
(Example 3)
Zinc halide having a mercury content of 2% was used as the negative electrode zinc, and the weight ratio of zinc halide to the electrolytic solution was set to 1: 0.20. Otherwise, the button-type zinc-air battery of FIG. 1 was made in the same manner as in Example 1.
[0012]
(Example 4)
Zinc halide having a mercury content of 1% was used as the negative electrode zinc, and the weight ratio of zinc halide to the electrolytic solution was set to 1: 0.28. Otherwise, the button-type zinc-air battery of FIG. 1 was made in the same manner as in Example 1.
[0013]
(Example 5)
Zinc halide having a mercury content of 1% was used as the negative electrode zinc, and the weight ratio of zinc halide and electrolyte was 1: 0.20. Otherwise, the button-type zinc-air battery of FIG. 1 was made in the same manner as in Example 1.
[0014]
(Example 6)
Zinc non-zinc was used as the negative electrode zinc, and the weight ratio of zinc non-zinc and electrolyte was 1: 0.28. Otherwise, the button-type zinc-air battery of FIG. 1 was made in the same manner as in Example 1.
[0015]
(Example 7)
Zinc non-zinc was used as the negative electrode zinc, and the weight ratio of zinc non-zinc and electrolyte was 1: 0.20. Otherwise, the button-type zinc-air battery of FIG. 1 was made in the same manner as in Example 1.
[0016]
(Comparative Example 1)
Zinc halide having a mercury content of 2% was used as the negative electrode zinc, and the weight ratio of zinc halide to the electrolytic solution was set to 1: 0.25. Moreover, the metal net | network used what was plated without wash | cleaning. Otherwise, the button-type zinc-air battery of FIG. 1 was made in the same manner as in Example 1.
[0017]
(Comparative Example 2)
Zinc halide having a mercury content of 1% was used as the negative electrode zinc, and the weight ratio of zinc halide to the electrolytic solution was set to 1: 0.25. Moreover, the metal net | network used what was plated without wash | cleaning. Otherwise, the button-type zinc-air battery of FIG. 1 was made in the same manner as in Example 1.
[0018]
(Comparative Example 3)
Zinc halide having a mercury content of 5% was used as the negative electrode zinc, and the weight ratio of zinc halide and electrolyte was 1: 0.20. Moreover, the metal net | network used what was plated without wash | cleaning. Otherwise, the button-type zinc-air battery of FIG. 1 was made in the same manner as in Example 1.
[0019]
(Comparative Example 4)
Zinc halide having a mercury content of 5% was used as the negative electrode zinc, and the weight ratio of zinc halide to the electrolyte was 1: 0.15. Moreover, the metal net | network used what was plated without wash | cleaning. Otherwise, the button-type zinc-air battery of FIG. 1 was made in the same manner as in Example 1.
[0020]
(Comparative Example 5)
Zinc halide having a mercury content of 2% was used as the negative electrode zinc, and the weight ratio of zinc halide to the electrolytic solution was set to 1: 0.30. The metal net used was acid-washed and plated. Otherwise, the button-type zinc-air battery of FIG. 1 was made in the same manner as in Example 1.
[0021]
(Comparative Example 6)
Zinc halide having a mercury content of 2% was used as the negative electrode zinc, and the weight ratio of zinc halide and electrolyte was 1: 0.15. The metal net used was acid-washed and plated. Otherwise, the button-type zinc-air battery of FIG. 1 was made in the same manner as in Example 1.
[0022]
(Comparative example 7) ... Zinc halide having a mercury content of 5% was used as the negative electrode zinc of the conventional example, and the weight ratio of zinc halide to the electrolytic solution was set to 1: 0.25. Moreover, the metal net | network used what was plated without wash | cleaning. Otherwise, the button-type zinc-air battery of FIG. 1 was made in the same manner as in Example 1.
The above embodiments are summarized in Table 1 below.
[0023]
[Table 1]
Figure 0004225391
[0024]
The batteries of each of the above examples and comparative examples were tested for discharge characteristics and hydrogen gas generation amount. In the discharge characteristic test, the deterioration rate was examined by comparing the initial discharge performed one week after the battery was created with the storage discharge performed after 6 months storage. In both discharge conditions, 250Ω continuous discharge was performed at 20 ° C., and the discharge capacity obtained until the operating voltage reached 0.9 V was defined as discharge characteristics. The amount of hydrogen gas generated was confirmed by storing the produced battery in liquid paraffin at 45 ° C. and collecting the gas that escaped from the air hole of the battery for 10 days. These results are shown in Table 2.
[0025]
[Table 2]
Figure 0004225391
[0026]
As is apparent from Table 2, when Comparative Example 7 and Comparative Examples 1 and 2, which are conventional examples, are compared, even if the weight ratio of zinc powder and electrolytic solution is the same, hydrogen gas decreases as the hatching rate decreases. It can be seen that the amount of generation increases and the deterioration of the discharge characteristics also increases. Therefore, even if the weight ratio of zinc iodide and electrolyte is the same, if the hatching rate is high, the elution of iron from the metal net has little effect on the generation of hydrogen gas, but the hatching rate decreases. The effect is likely to become noticeable.
[0027]
On the other hand, in Example 1, even if both the weight ratio of zinc powder and the electrolyte and the hatching rate are the same as those in Comparative Example 1, the amount of hydrogen gas generated is obtained by acid cleaning the metal net before plating. Is much smaller than that of Comparative Example 1, and is almost the same as the amount of generation in the conventional example having a high hatching rate. Further, the deterioration rate of the discharge characteristics is almost the same.
[0028]
On the other hand, when Comparative Example 7 and Comparative Examples 3 and 4 are compared, even if the hatching rate is 5% as in the past, if the weight ratio of the electrolyte to zinc powder is decreased, the amount of hydrogen gas generated increases. In addition, it can be seen that the deterioration of the discharge characteristics increases. From this, it is considered that when the metal net is not acid-washed, the influence of iron or the like eluted from the metal net becomes remarkable due to the decrease in the weight ratio. When the weight ratio is 0.15, the characteristics at the initial discharge are extremely low compared to the theoretical capacity, and the deterioration rate is extremely deteriorated. In addition to this, the decrease in the electrolyte solution in the vicinity of the zinc powder deteriorates the diffusion of the reaction product during discharge, lowers the reactivity, and the utilization factor of zinc is considered to be a cause.
[0029]
On the other hand, as is clear from Examples 1 to 7, if the weight ratio of the zinc powder to the electrolytic solution is in the range of 1: 0.28 to 0.20, the hatching rate is reduced to 2% or less. In addition, it can be seen that the amount of hydrogen gas generated and the deterioration of the discharge characteristics are comparable to those of the conventional example (Comparative Example 7) by the acid cleaning of the metal net, and as a result, the capacity can be increased. Further, the ratio of the zinc powder to the electrolytic solution has hitherto been limited to 1: 0.25, but in the present invention, it can be seen that the ratio is also effective up to 1: 0.20.
[0030]
In Comparative Example 5 where the electrolyte ratio is 0.30, the amount of hydrogen gas generated and the deterioration rate of the discharge characteristics are the same as in Comparative Example 7 which is a conventional example. When the ratio is increased, the absolute amount of zinc entering the negative electrode container of the battery decreases, and as a result, the capacity cannot be increased. Conversely, when the electrolyte ratio is 0.15% or less, the absolute amount of zinc entering the negative electrode container increases, but as seen in Comparative Example 4, the amount of hydrogen gas generated increases as the electrolyte decreases, and the deterioration rate Also grows. At the same time, the diffusion of the reaction product deteriorates, so the reactivity is lowered and the utilization rate of zinc is lowered.
[0031]
【The invention's effect】
As described above, the button-type zinc-air battery of the present invention can achieve a high capacity without increasing the amount of hydrogen gas generated or deteriorating discharge characteristics during long-term storage.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a general button type zinc-air battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Positive electrode can, 2 ... Positive electrode catalyst layer, 2 '... Metal net | network, 3 ... Negative electrode gel containing zinc powder and electrolyte solution, 4 ... Negative electrode container, 5 ... Separating material, 6 ... Water-repellent layer, 7 ... Air diffusion Layers 8 ... Air holes 9 ... Seal tape 10 ... Insulating gaskets.

Claims (1)

負極に亜鉛粉を用い、正極に金属網を有する触媒層を用いたボタン型空気亜鉛電池おいて、触媒層の金属網が酸洗浄した後にニッケルメッキしたステンレス製のものであり、かつ負極亜鉛粉が水銀含有率2%以下の低汞化亜鉛粉または無汞化亜鉛粉であり、該亜鉛粉と電解液との重量比が1:0.28〜1:0.20であることを特徴とするボタン型空気亜鉛電池。In a button-type air zinc battery using a zinc powder as a negative electrode and a catalyst layer having a metal mesh as a positive electrode, the catalyst mesh is made of stainless steel plated with nickel after the metal mesh of the catalyst layer is acid-washed, and the negative electrode zinc powder Is a low hatched zinc powder or non-free hatched zinc powder with a mercury content of 2% or less, and the weight ratio of the zinc powder to the electrolyte is 1: 0.28 to 1: 0.20. Button type air zinc battery.
JP18953698A 1998-07-06 1998-07-06 Button type zinc-air battery Expired - Fee Related JP4225391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18953698A JP4225391B2 (en) 1998-07-06 1998-07-06 Button type zinc-air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18953698A JP4225391B2 (en) 1998-07-06 1998-07-06 Button type zinc-air battery

Publications (2)

Publication Number Publication Date
JP2000021459A JP2000021459A (en) 2000-01-21
JP4225391B2 true JP4225391B2 (en) 2009-02-18

Family

ID=16242959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18953698A Expired - Fee Related JP4225391B2 (en) 1998-07-06 1998-07-06 Button type zinc-air battery

Country Status (1)

Country Link
JP (1) JP4225391B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179430A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Zinc alloy powder for alkaline battery
US20070224495A1 (en) 2006-03-22 2007-09-27 Gibbons Daniel W Zinc/air cell
US20070224500A1 (en) 2006-03-22 2007-09-27 White Leo J Zinc/air cell
CN114709409B (en) * 2022-04-01 2024-07-05 三峡大学 Preparation method and application of zinc amalgam negative electrode of water-based zinc ion battery

Also Published As

Publication number Publication date
JP2000021459A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
JP3060145B2 (en) Mercury-free miniature zinc-air battery with indium-plated anode cup
JP3607612B2 (en) Galvanic battery and manufacturing method thereof
JP3215447B2 (en) Zinc alkaline battery
JP4225391B2 (en) Button type zinc-air battery
US6060197A (en) Zinc based electrochemical cell
JP4717222B2 (en) Alkaline battery
JP4851708B2 (en) Alkaline battery and manufacturing method thereof
JPH10189006A (en) Air cell
JP2008098075A (en) Air battery
KR102208834B1 (en) Magnesium air battery
JPH03504297A (en) Catalytic recombination of oxygen produced in chemical cells
JPH0317181B2 (en)
JPH0760685B2 (en) Zinc alkaline battery
JPH0622122B2 (en) Zinc alkaline battery
JPH0750612B2 (en) Zinc alkaline battery
JP3178160B2 (en) Method for producing negative electrode for button-type alkaline battery and button-type alkaline battery
JP2737233B2 (en) Zinc alkaline battery
JP2568624B2 (en) Cadmium negative electrode for alkaline storage battery and method for producing the same
JP3474721B2 (en) Non-melonized air battery
JP2737231B2 (en) Zinc alkaline battery
JPH0750611B2 (en) Zinc alkaline battery
JP2737230B2 (en) Zinc alkaline battery
JPH08279355A (en) Button type alkaline battery
JPH0622119B2 (en) Zinc alkaline battery
JPH0719600B2 (en) Zinc alkaline battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees