JP2011233564A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2011233564A
JP2011233564A JP2010099904A JP2010099904A JP2011233564A JP 2011233564 A JP2011233564 A JP 2011233564A JP 2010099904 A JP2010099904 A JP 2010099904A JP 2010099904 A JP2010099904 A JP 2010099904A JP 2011233564 A JP2011233564 A JP 2011233564A
Authority
JP
Japan
Prior art keywords
substrate
active material
material layer
carbon film
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010099904A
Other languages
Japanese (ja)
Inventor
Takahiro Matsunaga
高弘 松永
Yosuke Furuike
陽祐 古池
Takeshi Sha
剛 謝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2010099904A priority Critical patent/JP2011233564A/en
Publication of JP2011233564A publication Critical patent/JP2011233564A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery having reduced internal resistance.SOLUTION: A battery has a positive electrode 7, a negative electrode 8 opposing the positive electrode 7, and an electrolyte 9 which is in contact with the positive electrode 7 and the negative electrode 8. At least one of the positive electrode 7 and the negative electrode 8 is provided with a conductive base substrate 1 having conductivity, an active material layer 2 which is laminated on the conductive base substrate 1 and contains a carbon material as a base material, and a carbon coating 3 which is interposed between the conductive base substrate 1 and the active material layer 2 and is smaller in thickness than the conductive base substrate 1 and the active material layer 2.

Description

本発明は炭素材料を活物質として用いる電池に関する。電池はキャパシタなどの物理電池、一次電池や二次電池等の化学電池を含む。   The present invention relates to a battery using a carbon material as an active material. The battery includes a physical battery such as a capacitor, and a chemical battery such as a primary battery and a secondary battery.

特許文献1は、ポリスチレンスルホン酸を有する導電性高分子を含む非絶縁性バインダを活性炭粉末に添加し、内部抵抗を低下させる技術を開示している。特許文献2は、平均粒径が1マイクロメートル以下の第1活性炭と、平均粒径が1マイクロメートル以上の第2活性炭とを併用し、活性炭粒子間の接触頻度を高め、電極内部の抵抗を低下させる技術を開示している。   Patent Document 1 discloses a technique for reducing internal resistance by adding a non-insulating binder containing a conductive polymer having polystyrene sulfonic acid to activated carbon powder. Patent document 2 uses the 1st activated carbon with an average particle diameter of 1 micrometer or less and the 2nd activated carbon with an average particle diameter of 1 micrometer or more together, raises the contact frequency between activated carbon particles, and reduces resistance inside an electrode. Disclosed is a technique for reducing.

特開平8−107048号公報Japanese Patent Laid-Open No. 8-1007048 特開2009−130066号公報JP 2009-130066 A

上記した技術によれば、導電基体と活物質層との界面抵抗を低減させるには、必ずしも充分ではない。本発明は上記した実情に鑑みてなされたものであり、導電材料を基材とする導電基体と炭素材料を基材とする活物質層との界面抵抗を低減させることができ、電池の内部抵抗を低減させる電池を提供することを課題とする。   According to the technique described above, it is not always sufficient to reduce the interface resistance between the conductive substrate and the active material layer. The present invention has been made in view of the above circumstances, and can reduce the interfacial resistance between a conductive substrate based on a conductive material and an active material layer based on a carbon material. It is an object of the present invention to provide a battery that can reduce the battery.

本発明に係る電池は、正極と、正極に対向する負極と、正極および負極に接触する電解質とを具備しており、正極および負極のうちの少なくとも一方は、導電性をもつ導電基体と、導電基体に積層された炭素材料を基材とする活物質層と、導電基体と活物質層との間に介在すると共に導電基体および活物質層よりも厚みが薄いカーボン皮膜とを有する。   The battery according to the present invention includes a positive electrode, a negative electrode facing the positive electrode, and an electrolyte in contact with the positive electrode and the negative electrode, and at least one of the positive electrode and the negative electrode includes a conductive base having conductivity, a conductive It has an active material layer based on a carbon material laminated on a substrate, and a carbon film that is interposed between the conductive substrate and the active material layer and is thinner than the conductive substrate and the active material layer.

導電基体および活物質層よりも厚みが薄い導電性を有するカーボン皮膜が導電基体と活物質層との間に介在する。このため、導電基体と活物質層との界面抵抗を低減させることができる。ひいては電池の内部抵抗を低減させることができる。   A conductive carbon film having a smaller thickness than the conductive substrate and the active material layer is interposed between the conductive substrate and the active material layer. For this reason, the interface resistance between the conductive substrate and the active material layer can be reduced. As a result, the internal resistance of the battery can be reduced.

実施例1に係り、正極および負極を形成する電極の概念を断面にして示す断面図である。It is sectional drawing which concerns on Example 1 and shows the concept of the electrode which forms a positive electrode and a negative electrode in a cross section. 実施例2に係り、正極および負極を形成する電極の概念を断面にして示す断面図である。It is sectional drawing which concerns on Example 2 and shows the concept of the electrode which forms a positive electrode and a negative electrode in a cross section. 正極および負極を形成する電極の抵抗を測定する測定装置の概念を示す図である。It is a figure which shows the concept of the measuring apparatus which measures the resistance of the electrode which forms a positive electrode and a negative electrode. 適用例1に係り、キャパシタの断面図である。12 is a cross-sectional view of a capacitor according to Application Example 1. FIG. 適用例2に係り、キャパシタの断面図である。12 is a cross-sectional view of a capacitor according to Application Example 2. FIG.

電池は、正極と、正極に対向する負極と、正極および負極に接触する電解質とを有する。電池としては、キャパシタなどの物理的電池、一次電池や二次電池等の化学電池が挙げられる。電解質としては水系電解液、非水系電解液または固体ポリマーが挙げられる。非水系電解液の溶媒としては、非水系電解液の溶媒としては以下のものが好ましく例示される。これらの溶媒はそれぞれ単独で使用してもよく、2種以上混合して使用してもよい。プロピレンカーボネート、プロピレンカーボネート誘導体、エチレンカーボネート、エチレンカーボネート誘導体、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、1,3−ジオキソラン、ジメチルスルホキシド、スルホラン、ホルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、ジオキソラン、リン酸トリエステル、無水マレイン酸、無水コハク酸、無水フタル酸、1,3−プロパンスルトン、4,5−ジヒドロピラン誘導体、ニトロベンゼン、1,3−ジオキサン、1,4−ジオキサン、3−メチル−2−オキサゾリジノン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロフラン誘導体、シドノン化合物、アセトニトリル、ニトロメタン、アルコキシエタン、トルエン。   The battery includes a positive electrode, a negative electrode facing the positive electrode, and an electrolyte in contact with the positive electrode and the negative electrode. Examples of the battery include a physical battery such as a capacitor, and a chemical battery such as a primary battery and a secondary battery. Examples of the electrolyte include an aqueous electrolyte, a non-aqueous electrolyte, and a solid polymer. Preferred examples of the solvent for the non-aqueous electrolyte include the following as the solvent for the non-aqueous electrolyte. These solvents may be used alone or in combination of two or more. Propylene carbonate, propylene carbonate derivative, ethylene carbonate, ethylene carbonate derivative, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, 1,3-dioxolane, dimethyl sulfoxide, sulfolane, formamide, dimethylformamide, dimethylacetamide, Dioxolane, phosphoric acid triester, maleic anhydride, succinic anhydride, phthalic anhydride, 1,3-propane sultone, 4,5-dihydropyran derivative, nitrobenzene, 1,3-dioxane, 1,4-dioxane, 3- Methyl-2-oxazolidinone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydrofuran derivative, sydnone Things, acetonitrile, nitromethane, alkoxy ethane, toluene.

正極と負極との間に、正極および負極の短絡を抑えるセパレータが設けられていることが好ましい。セパレータは不織布、織布等で形成できるが、正極および負極の短絡を抑えるものであれば何でも良い。   It is preferable that the separator which suppresses the short circuit of a positive electrode and a negative electrode is provided between the positive electrode and the negative electrode. The separator can be formed of a nonwoven fabric, a woven fabric, or the like, but may be anything as long as it suppresses a short circuit between the positive electrode and the negative electrode.

正極および負極のうちの少なくとも一方は、導電性をもつ導電基体と、導電基体に積層された炭素材料を基材とする活物質層と、導電基体と活物質層との間に介在すると共に導電基体および活物質層よりも厚みが薄いカーボン皮膜とを有する。カーボン皮膜はカーボン原子で形成された皮膜を意味する。カーボン皮膜はCVD処理により形成できる。この場合、炭素源としては炭化水素系のガス、あるいは、メタノール、エタノール、ブタノール等のアルコールを採用できる。炭化水素系のガスとしては、メタンガス、エタンガス、アセチレンガス、プロパンガス、ブタンガスなどが例示される。導電基体の材質としては、チタン、チタン合金、銅、銅合金、鉄、鉄合金(ステンレス鋼を含む)、アルミニウム、アルミニウム合金が例示される。炭素源、基板、要請されるカーボン皮膜の性質等によっても相違するが、CVD(chemical vapor deposition)処理における基板の温度の下限値としては、400℃、500℃、600℃が挙げられる。CVD処理における基板の温度の上限値としては、600℃、700℃、800℃、1000℃が挙げられる。   At least one of the positive electrode and the negative electrode is interposed between the conductive base having conductivity, the active material layer based on the carbon material laminated on the conductive base, the conductive base and the active material layer, and conductive. A carbon film having a thickness smaller than that of the substrate and the active material layer. A carbon film means a film formed of carbon atoms. The carbon film can be formed by a CVD process. In this case, as the carbon source, hydrocarbon gas or alcohol such as methanol, ethanol or butanol can be employed. Examples of the hydrocarbon gas include methane gas, ethane gas, acetylene gas, propane gas, and butane gas. Examples of the material of the conductive substrate include titanium, titanium alloy, copper, copper alloy, iron, iron alloy (including stainless steel), aluminum, and aluminum alloy. The lower limit of the substrate temperature in the CVD (chemical vapor deposition) process includes 400 ° C., 500 ° C., and 600 ° C., although it varies depending on the carbon source, the substrate, and the required properties of the carbon film. Examples of the upper limit value of the substrate temperature in the CVD process include 600 ° C., 700 ° C., 800 ° C., and 1000 ° C.

また必要であれば、カーボン皮膜と導電基体との境界には、種触媒をもつ触媒層を設けることができる。この場合、カーボン皮膜の改質が図られる。種触媒としては遷移金属が例示される。特に、V〜VIII族の金属が例示される。カーボン皮膜の改質の程度などによっても相違するが、種触媒は鉄単体でも良いが、A−B系の合金が例示され、A−B系の鉄合金が例示される。ここで、Aは鉄、コバルト、ニッケルのうちの少なくとも1種であり、Bはチタン、バナジウム、ジルコニウム、ニオブ、ハフニウム、タンタルのうちの少なくとも1種が例示される。この場合、鉄−チタン系合金、鉄−バナジウム系合金のうちの少なくとも1種を含むことが好ましい。更に、コバルト−チタン系合金、コバルト−バナジウム系合金、ニッケル−チタン系合金、ニッケル−バナジウム系合金、鉄−ジルコニウム系合金、鉄−ニオブ系合金が挙げられる。鉄−チタン系合金の場合には、質量比でチタンが10%以上、20%以上、30%以上、残部が鉄の組成が例示される。鉄−バナジウム系合金の場合には、質量比でバナジウムが10%以上、20%以上、30%以上、残部が鉄の組成が例示される。   If necessary, a catalyst layer having a seed catalyst can be provided at the boundary between the carbon film and the conductive substrate. In this case, the carbon film is modified. A transition metal is illustrated as a seed catalyst. In particular, V-VIII group metals are exemplified. Although it differs depending on the degree of modification of the carbon film, the seed catalyst may be iron alone, but an AB-based alloy is exemplified, and an AB-based iron alloy is exemplified. Here, A is at least one of iron, cobalt, and nickel, and B is at least one of titanium, vanadium, zirconium, niobium, hafnium, and tantalum. In this case, it is preferable to include at least one of an iron-titanium alloy and an iron-vanadium alloy. Furthermore, a cobalt-titanium alloy, a cobalt-vanadium alloy, a nickel-titanium alloy, a nickel-vanadium alloy, an iron-zirconium alloy, and an iron-niobium alloy can be used. In the case of an iron-titanium alloy, the composition is such that titanium is 10% or more, 20% or more, 30% or more, and the balance is iron in terms of mass ratio. In the case of an iron-vanadium alloy, a composition in which vanadium is 10% or more, 20% or more, 30% or more and the balance is iron is exemplified by mass ratio.

活物質層は炭素材料を基材とする。炭素材料としては、活性炭、黒鉛のうちの少なくとも1種が挙げられる。活性炭としては、やしがら系活性炭、石油コークス系活性炭、生物系活性炭等が例示される。また活性炭の賦活処理の方法には、水蒸気賦活処理法、溶融KOH賦活処理法等の公知の賦活方法が挙げられる。活性炭としては粉末状活性炭、粒状活性炭でも良い。活性炭の平均粒径および比表面積は特に限定されるものではなく、必要に応じて適宜選択できる。活物質層には、活性炭や黒鉛等の炭素材料の他に、導電剤やバインダ等を必要に応じて配合することができる。導電剤としては、ケッチェンブラック、アセチレンブラック、ファーネスブラック等のカーボンブラック、天然黒鉛、人造黒鉛、金属ファイバー、酸化チタン、酸化ルテニウムが例示される。   The active material layer is based on a carbon material. Examples of the carbon material include at least one of activated carbon and graphite. Examples of the activated carbon include coconut shell activated carbon, petroleum coke activated carbon, biological activated carbon and the like. The activated carbon activation treatment method may be a known activation method such as a steam activation treatment method or a molten KOH activation treatment method. The activated carbon may be powdered activated carbon or granular activated carbon. The average particle diameter and specific surface area of the activated carbon are not particularly limited, and can be appropriately selected as necessary. In addition to carbon materials such as activated carbon and graphite, a conductive agent, a binder, and the like can be blended in the active material layer as necessary. Examples of the conductive agent include carbon black such as ketjen black, acetylene black, and furnace black, natural graphite, artificial graphite, metal fiber, titanium oxide, and ruthenium oxide.

従来では、金属導電基体の表面に炭素材料を基材とする活物質層を堆積させ、電極を形成している。しかし、通常、金属導電基体の表面に絶縁性の高い酸化皮膜が生成されており、更に堆積している活物質層と金属導電基体の表面とは接触のみによって導通を取っているため、活物質層と金属導電基体の表面との界面抵抗は非常に大きくなってしまい、電流が流れる時のIR損失の原因となってしまう。また、作動環境においては、金属導電基体がイオン化してしまう恐れがあり、その金属イオンが電解液及び電極に混入することにより、電池の性能劣化の原因となり得る。そこで、金属導電基体表面の酸化皮膜を取り除いた上、カーボン原子を析出させ、カーボン皮膜を形成させることにより、金属導電基体表面で酸化皮膜の生成を抑制し、且つ、活物質層との親和性が向上することにより界面抵抗を低減させるだけではなく、金属導電基体からの金属イオン溶出も抑えられ、電池の耐久性向上にも期待できる。カーボン皮膜は電気伝導性に優れ且つ作動環境において安定しており、また、万が一、酸化されてもカチオンになることがなく、電池の性能劣化に繋がる恐れを低減できる。   Conventionally, an active material layer based on a carbon material is deposited on the surface of a metal conductive substrate to form an electrode. However, since an oxide film with high insulating properties is usually formed on the surface of the metal conductive substrate, and the active material layer deposited and the surface of the metal conductive substrate are electrically connected only by contact, the active material The interface resistance between the layer and the surface of the metal conductive substrate becomes very large, which causes IR loss when a current flows. Further, in the operating environment, the metal conductive substrate may be ionized, and the metal ions may be mixed into the electrolytic solution and the electrode, thereby causing deterioration in battery performance. Therefore, by removing the oxide film on the surface of the metal conductive substrate, by depositing carbon atoms and forming a carbon film, the formation of the oxide film on the surface of the metal conductive substrate is suppressed, and the affinity with the active material layer As a result of the improvement, not only the interface resistance is reduced, but also the elution of metal ions from the metal conductive substrate is suppressed, and the durability of the battery can be expected to be improved. The carbon film is excellent in electrical conductivity and stable in the operating environment, and even if it is oxidized, it does not become a cation and can reduce the risk of battery performance deterioration.

(実施例1)
以下、本発明の実施例1について、概念図を示す図1を参照して説明する。本実施例によれば、導電基体を構成する基板1としてチタン板を用いた。基板1は、鏡面研磨されており、所定のサイズをもつ(0.5ミリメートル×10ミリメートル×10ミリメートル)。鉄合金系の種触媒(Fe−Ti合金,質量比でFeが80%,Ti20%)で形成された触媒層4を基板1の表面1aを含む全表面に設けた。この場合、脱水ヘキサン中に鉄合金(鉄チタン合金)の粒子を種触媒粒子(粒径:1〜6ナノメートル)として分散させたコーティング液を用意した。そして、可視光度計(WPA社製:CO7500)で波長680ナノメールの測定条件で、吸光度(Abs.)が0.3となるようにコーティング液の濃度を調製した。コーティング液における鉄チタン合金の粒子における合金比率としては、質量比で、鉄:チタン=80:20とした。このように種触媒粒子においては、鉄の質量%はチタンの質量%よりも高い。このコーティング液に基板1を所定時間(30分間)浸漬させた後、コーティング液に基板1を引き上げ、自然乾燥させた。これにより鉄チタン合金の薄膜で形成された触媒層4を種触媒として、基板1の表面1aを含む全表面に形成した。
Example 1
Embodiment 1 of the present invention will be described below with reference to FIG. 1 showing a conceptual diagram. According to this example, a titanium plate was used as the substrate 1 constituting the conductive substrate. The substrate 1 is mirror-polished and has a predetermined size (0.5 mm × 10 mm × 10 mm). A catalyst layer 4 formed of an iron alloy-based seed catalyst (Fe—Ti alloy, Fe is 80% by mass, and Ti is 20%) was provided on the entire surface including the surface 1 a of the substrate 1. In this case, a coating liquid was prepared in which iron alloy (iron-titanium alloy) particles were dispersed as seed catalyst particles (particle size: 1 to 6 nanometers) in dehydrated hexane. And the density | concentration of the coating liquid was prepared so that a light absorbency (Abs.) Might be 0.3 on the measurement conditions of wavelength 680 nanomail with the visible photometer (WPA company make: CO7500). The alloy ratio of the iron-titanium alloy particles in the coating solution was iron: titanium = 80: 20 by mass ratio. Thus, in the seed catalyst particles, the mass% of iron is higher than the mass% of titanium. After immersing the substrate 1 in this coating solution for a predetermined time (30 minutes), the substrate 1 was pulled up into the coating solution and allowed to dry naturally. Thus, the catalyst layer 4 formed of a thin film of iron-titanium alloy was used as a seed catalyst to form the entire surface including the surface 1a of the substrate 1.

その後、CVD成膜装置を用い、まず、反応容器内に基板1を保持した状態で、反応容器内を真空引きして反応容器内の圧力を4KPaに調整し、620℃において5分間保持した。その後、反応容器内の基板1を650℃に加熱した状態で、炭素源として炭化水素系のガスであるアセチレンガスを反応容器内に流し(単位時間あたりの流量:5リットル/min)、アセチレンガスの雰囲気において6分間、成膜処理した。これにより基板1の表面1aの触媒層4の上にカーボン皮膜3(厚み:2μm)を形成した。触媒層4は、カーボン皮膜3のカーボンを改質させる機能をもつと考えられる。   Thereafter, using the CVD film forming apparatus, first, with the substrate 1 held in the reaction vessel, the reaction vessel was evacuated to adjust the pressure in the reaction vessel to 4 KPa, and held at 620 ° C. for 5 minutes. Thereafter, with the substrate 1 in the reaction vessel heated to 650 ° C., acetylene gas, which is a hydrocarbon-based gas, is flowed into the reaction vessel as a carbon source (flow rate per unit time: 5 liter / min), and acetylene gas In this atmosphere, film formation was performed for 6 minutes. As a result, a carbon film 3 (thickness: 2 μm) was formed on the catalyst layer 4 on the surface 1 a of the substrate 1. The catalyst layer 4 is considered to have a function of modifying the carbon of the carbon film 3.

その後、多数のポアを有する活性炭の粒子(平均粒径:12マイクロメートル、比表面積:1731m/g,クレハ株式会社,A-BAC PW15 M アルミタイ)、バインダ(ポリフッ化ビニリデン)、導電剤(ケッチェンブラック)を混合し、更に溶媒(N-メチル-2-ピロリドン,NMP)と混合させてインクを形成した。配合割合としては、質量比で、活性炭:バインダ:導電剤=86:10:4)とした。次に基板1のうち触媒層4が設けられ表面1aにインクを塗布し、乾燥させて、炭素材料として機能する活性炭を基材とする活物質層2を基板1の表面に形成した電極5を得た。 Thereafter, activated carbon particles having a large number of pores (average particle size: 12 micrometers, specific surface area: 1731 m 2 / g, Kureha Co., Ltd., A-BAC PW15 M aluminum tie), binder (polyvinylidene fluoride), conductive agent ( Ketjen Black) was mixed and further mixed with a solvent (N-methyl-2-pyrrolidone, NMP) to form an ink. As a mixture ratio, the mass ratio was activated carbon: binder: conductive agent = 86: 10: 4). Next, an electrode 5 in which a catalyst layer 4 is provided in the substrate 1 and ink is applied to the surface 1a and dried to form an active material layer 2 based on activated carbon that functions as a carbon material on the surface of the substrate 1 is formed. Obtained.

図1に示すように、実施例1に係る電極5は電池(物理電池または化学電池)の正極および負極のうちの一方または双方を構成できるものである。電極5は、導電性をもつ導電基体として機能する基板1と、基板1の表面1aに積層された活性炭を基材とする活物質層2と、基板1と活物質層2との間に介在するカーボン皮膜3とを有する。カーボン皮膜3は、基板1と活物質層2との境界全体に形成されている。カーボン皮膜3と活物質層2との境界に、鉄合金の薄膜が触媒層4として設けられている。従って図1に示すように、基板1、触媒層4、カーボン皮膜3,活物質層2の順に積層されている。なお、カーボン皮膜3の厚みは基板1の厚み、活物質層2の厚みよりも薄い。ここで、基板1の厚みt1は0.5ミリメートル、活物質層2の厚みt2は0.1ミリメートル、カーボン皮膜3の厚みt3は2マイクロメートルであった。触媒層4の厚みは100ナノメートル以下と考えられる。この電極5は正極および負極のうちの一方または双方を形成することができる。   As shown in FIG. 1, the electrode 5 according to Example 1 can constitute one or both of a positive electrode and a negative electrode of a battery (physical battery or chemical battery). The electrode 5 is interposed between the substrate 1 functioning as a conductive base having conductivity, the active material layer 2 based on activated carbon laminated on the surface 1 a of the substrate 1, and the substrate 1 and the active material layer 2. And carbon film 3 to be used. The carbon film 3 is formed on the entire boundary between the substrate 1 and the active material layer 2. An iron alloy thin film is provided as a catalyst layer 4 at the boundary between the carbon film 3 and the active material layer 2. Accordingly, as shown in FIG. 1, the substrate 1, the catalyst layer 4, the carbon film 3, and the active material layer 2 are laminated in this order. The carbon film 3 is thinner than the substrate 1 and the active material layer 2. Here, the thickness t1 of the substrate 1 was 0.5 millimeters, the thickness t2 of the active material layer 2 was 0.1 millimeters, and the thickness t3 of the carbon coating 3 was 2 micrometers. The thickness of the catalyst layer 4 is considered to be 100 nanometers or less. The electrode 5 can form one or both of a positive electrode and a negative electrode.

図3に示すように、この電極5を厚み方向において第1抵抗測定治具61および第2抵抗測定治具62で挟み、荷重(10kgf/cm)を電極5の厚み方向にかけながら、電流(3アンペア)を電極5の厚み方向に流し、電圧を測定した。この場合、電流印加1分後の電圧を測定した。R=V/Iの式に基づいて、抵抗値を求めた。その結果を表1に示す。カーボン皮膜3が形成されている実施例1によれば、抵抗値は2.0mΩ・cm2とされており、極めて小さかった。これにより基板1の表面1aと活物質層2との界面抵抗が小さいものと考えられる。なお、第1抵抗測定治具61および第2抵抗測定治具62の表面は金メッキされている。 As shown in FIG. 3, the electrode 5 is sandwiched between the first resistance measurement jig 61 and the second resistance measurement jig 62 in the thickness direction, and a load (10 kgf / cm 2 ) is applied in the thickness direction of the electrode 5 while applying a current ( 3 amps) was passed in the thickness direction of the electrode 5 and the voltage was measured. In this case, the voltage after 1 minute of current application was measured. The resistance value was determined based on the equation R = V / I. The results are shown in Table 1. According to Example 1 in which the carbon film 3 was formed, the resistance value was 2.0 mΩ · cm 2 and was extremely small. Thereby, it is considered that the interface resistance between the surface 1a of the substrate 1 and the active material layer 2 is small. Note that the surfaces of the first resistance measuring jig 61 and the second resistance measuring jig 62 are gold-plated.

(実施例2)
実施例2は実施例1と基本的には同様の構成、同様の作用効果を有する。但し、基板1の表面には触媒層を設けなかった。本実施例によれば、実施例1と同様に、導電基体を構成する基板1としてチタン板を用いた。基板1は、鏡面研磨されており、所定のサイズをもつ(0.5ミリメートル×10ミリメートル×10ミリメートル)。基板1の表面1aには鉄系種触媒を設けなかった。そして実施例1と同様に、反応容器内に基板1を保持した状態で、反応容器内を真空引きして反応容器内の圧力を4KPaに調整し、620℃において5分間保持した。これにより基板1の表面1aに形成されていた酸化膜は除去される。
(Example 2)
The second embodiment basically has the same configuration and the same function and effect as the first embodiment. However, the catalyst layer was not provided on the surface of the substrate 1. According to this example, as in Example 1, a titanium plate was used as the substrate 1 constituting the conductive substrate. The substrate 1 is mirror-polished and has a predetermined size (0.5 mm × 10 mm × 10 mm). No iron-based seed catalyst was provided on the surface 1 a of the substrate 1. Then, in the same manner as in Example 1, with the substrate 1 held in the reaction vessel, the reaction vessel was evacuated to adjust the pressure in the reaction vessel to 4 KPa and held at 620 ° C. for 5 minutes. As a result, the oxide film formed on the surface 1a of the substrate 1 is removed.

その後、反応容器内の基板1を650℃に加熱した状態で、炭素源として炭化水素系のガスであるアセチレンガスを反応容器内に流し(単位時間あたりの流量:5リットル/min)、アセチレンガスの雰囲気において6分間、成膜処理した。これにより基板1の表面1aにカーボン皮膜3(厚み:2μm)を形成した。その後、実施例1と同じ条件で、活性炭粒子、バインダ、導電剤(ケッチェンブラック)を混合し、更に溶媒(NMP)と混合させインクを形成した。実施例1と同じ条件で、基板1の表面1aのカーボン皮膜3の上にインクを塗布し、乾燥させて活物質層2を形成し、電極5を得た。図2に示すように、実施例2に係る電極5は、電池(物理電池または化学電池)の正極および負極のうちの一方または双方を構成できるものである。電極5は、導電性をもつ導電基体としての基板1(チタン基板)と、基板1に積層された活性炭を基材とする活物質層2と、基板1と活物質層2との間に介在するカーボン皮膜3とを有する。カーボン皮膜3は基板1の表面1aと活物質層2との境界全体に形成されている。カーボン皮膜3と活物質層2との境界には、鉄合金の薄膜の触媒層が設けられていない。従って図2に示すように、基板1、カーボン皮膜3,活物質層2の順に積層されている。   Thereafter, with the substrate 1 in the reaction vessel heated to 650 ° C., acetylene gas, which is a hydrocarbon-based gas, is flowed into the reaction vessel as a carbon source (flow rate per unit time: 5 liter / min), and acetylene gas In this atmosphere, film formation was performed for 6 minutes. As a result, a carbon film 3 (thickness: 2 μm) was formed on the surface 1 a of the substrate 1. Thereafter, activated carbon particles, a binder, and a conductive agent (Ketjen Black) were mixed under the same conditions as in Example 1, and further mixed with a solvent (NMP) to form an ink. Under the same conditions as in Example 1, ink was applied onto the carbon film 3 on the surface 1a of the substrate 1 and dried to form the active material layer 2, whereby an electrode 5 was obtained. As shown in FIG. 2, the electrode 5 according to Example 2 can constitute one or both of a positive electrode and a negative electrode of a battery (physical battery or chemical battery). The electrode 5 is interposed between a substrate 1 (titanium substrate) as a conductive base having conductivity, an active material layer 2 based on activated carbon laminated on the substrate 1, and the substrate 1 and the active material layer 2. And carbon film 3 to be used. The carbon film 3 is formed on the entire boundary between the surface 1 a of the substrate 1 and the active material layer 2. At the boundary between the carbon film 3 and the active material layer 2, an iron alloy thin film catalyst layer is not provided. Therefore, as shown in FIG. 2, the substrate 1, the carbon film 3, and the active material layer 2 are laminated in this order.

なお、カーボン皮膜3の厚みは基板1の厚み、活物質層2の厚みよりも薄い。ここで、基板1の厚みt1は0.5ミリメートル、活物質層2の厚みt2は0.1ミリメートル、カーボン皮膜3の厚みt3は2マイクロメートルであった。この電極5は正極および負極のうちの一方または双方を形成することができる。そして、実施例1と同様な条件で、この電極5を第1抵抗測定治具61および第2抵抗測定治具62で挟み、電極5の厚み方向に荷重をかけながら、電極5の厚み方向に電流(3アンペア)を流し、電圧を測定した。R=V/Iの式に基づいて、電極5の厚み方向における抵抗値を求めた。その結果を表1に示す。カーボン皮膜3が形成されている実施例2によれば、抵抗値は2.3mΩ・cm2とされており、極めて小さかった。これにより基板1の表面1aと活物質層2との界面抵抗が小さいものと考えられる。 The carbon film 3 is thinner than the substrate 1 and the active material layer 2. Here, the thickness t1 of the substrate 1 was 0.5 millimeters, the thickness t2 of the active material layer 2 was 0.1 millimeters, and the thickness t3 of the carbon coating 3 was 2 micrometers. The electrode 5 can form one or both of a positive electrode and a negative electrode. Then, the electrode 5 is sandwiched between the first resistance measurement jig 61 and the second resistance measurement jig 62 under the same conditions as in the first embodiment, and a load is applied in the thickness direction of the electrode 5, while in the thickness direction of the electrode 5. A current (3 amperes) was passed and the voltage was measured. Based on the equation R = V / I, the resistance value in the thickness direction of the electrode 5 was determined. The results are shown in Table 1. According to Example 2 in which the carbon film 3 was formed, the resistance value was 2.3 mΩ · cm 2 and was extremely small. Thereby, it is considered that the interface resistance between the surface 1a of the substrate 1 and the active material layer 2 is small.

(比較例1)
比較例1は基板1と活物質層2が積層されている。比較例1は、基板1として実施例1と同様のチタン板を用いた。基板1の表面には鉄系種触媒の触媒層およびカーボン皮膜を設けなかった。そして実施例1と同様な条件で、活性炭粒子、バインダ、導電剤(ケッチェンブラック)を混合し、更に溶媒(NMP)と混合させインクを形成した。実施例1と同様な条件で、基板1の表面にインクを塗布し、乾燥させて活物質層2を形成し、比較例1に係る電極を得た。そして実施例1と同様な条件で、この電極を抵抗測定治具で挟み、荷重をかけながら、電流(3アンペア)を流し、電圧を測定した。R=V/Iの式に基づいて、抵抗値を求めた。その結果を表1に示す。活物質層2と基板1との界面にカーボン皮膜3が形成されていない比較例1によれば、抵抗値は331.16mΩ・cm2とされていた。これは、活物質層2と基板1との界面にカーボン皮膜3が形成されている実施例1,実施例2(2.0mΩ・cm2,2.3mΩ・cm2)に比較して200倍程度であり、かなり大きかった。比較例1では、活物質層2と基板1との界面にカーボン皮膜3が形成されていないため、基板1と活物質層2との間における界面抵抗が大きくなったものと推察される。
(Comparative Example 1)
In Comparative Example 1, a substrate 1 and an active material layer 2 are laminated. In Comparative Example 1, the same titanium plate as in Example 1 was used as the substrate 1. The surface of the substrate 1 was not provided with a catalyst layer of an iron-based seed catalyst and a carbon film. Then, under the same conditions as in Example 1, activated carbon particles, a binder, and a conductive agent (Ketjen Black) were mixed, and further mixed with a solvent (NMP) to form an ink. Under the same conditions as in Example 1, ink was applied to the surface of the substrate 1 and dried to form an active material layer 2, whereby an electrode according to Comparative Example 1 was obtained. Then, under the same conditions as in Example 1, this electrode was sandwiched between resistance measuring jigs, a current (3 amperes) was passed while applying a load, and the voltage was measured. The resistance value was determined based on the equation R = V / I. The results are shown in Table 1. According to Comparative Example 1 in which the carbon film 3 was not formed at the interface between the active material layer 2 and the substrate 1, the resistance value was 331.16 mΩ · cm 2 . This is 200 times that of Examples 1 and 2 (2.0 mΩ · cm 2 , 2.3 mΩ · cm 2 ) in which the carbon film 3 is formed at the interface between the active material layer 2 and the substrate 1. It was about and it was quite big. In Comparative Example 1, since the carbon film 3 is not formed at the interface between the active material layer 2 and the substrate 1, it is presumed that the interface resistance between the substrate 1 and the active material layer 2 has increased.

(比較例2)
比較例2は、基板1、触媒層4、活物質層2の順に積層されている。比較例2は、カーボン皮膜3を基板1に形成しなかった。すなわち、比較例2によれば、実施例1と同様に、基板1としてチタン基板を用いた。そして実施例1と同様な条件で、基板1の表面に鉄合金系の種触媒(Fe−Ti合金,質量比でFeが80%,Ti20%)を設けた。しかしカーボン皮膜3を基板1に形成しなかった。その後、実施例1と同様な条件で、活性炭粒子、バインダ、導電剤を混合し、更に溶媒(NMP)と混合させインクを形成した。配合割合は実施例1と同様にした。そして実施例1と同様な条件で、基板1のうち鉄系種触媒が設けられている表面にインクを塗布し、乾燥させて活物質層2を形成し、電極を得た。実施例1と同様な条件で、比較例2に係る電極を抵抗測定治具で挟み、荷重をかけながら、電流(3アンペア)を流し、電圧を測定した。R=V/Iの式に基づいて、抵抗値を求めた。その結果を表1に示す。活物質層2と基板1との界面にカーボン皮膜が形成されていない比較例2によれば、抵抗値は183.7mΩ・cm2とされており、活物質層2と基板1との界面にカーボン皮膜3が形成されている実施例1,実施例2(2.0mΩ・cm2,2.3mΩ・cm2)と比較してかなり大きかった。活物質層2と基板1との界面にカーボン皮膜3が形成されていないため、基板1と活物質層2との間における界面抵抗が大きいものと推察される。
(Comparative Example 2)
In Comparative Example 2, the substrate 1, the catalyst layer 4, and the active material layer 2 are laminated in this order. In Comparative Example 2, the carbon film 3 was not formed on the substrate 1. That is, according to Comparative Example 2, as in Example 1, a titanium substrate was used as the substrate 1. Then, under the same conditions as in Example 1, an iron alloy-based seed catalyst (Fe—Ti alloy, Fe is 80% by mass, Ti is 20%) was provided on the surface of the substrate 1. However, the carbon film 3 was not formed on the substrate 1. Thereafter, under the same conditions as in Example 1, activated carbon particles, a binder, and a conductive agent were mixed, and further mixed with a solvent (NMP) to form an ink. The blending ratio was the same as in Example 1. And ink was apply | coated to the surface in which the iron-type seed catalyst was provided among the board | substrates 1 on the conditions similar to Example 1, it was made to dry and the active material layer 2 was formed, and the electrode was obtained. Under the same conditions as in Example 1, the electrode according to Comparative Example 2 was sandwiched between resistance measurement jigs, and a current (3 amperes) was passed while applying a load, and the voltage was measured. The resistance value was determined based on the equation R = V / I. The results are shown in Table 1. According to Comparative Example 2 in which no carbon film is formed at the interface between the active material layer 2 and the substrate 1, the resistance value is 183.7 mΩ · cm 2, and at the interface between the active material layer 2 and the substrate 1. It was considerably larger than Examples 1 and 2 (2.0 mΩ · cm 2 , 2.3 mΩ · cm 2 ) on which the carbon film 3 was formed. Since the carbon film 3 is not formed at the interface between the active material layer 2 and the substrate 1, it is assumed that the interface resistance between the substrate 1 and the active material layer 2 is large.

Figure 2011233564
Figure 2011233564

表1から理解できるように、基板1と活物質層2との界面にカーボン皮膜3が積層されていると、電極5の厚み方向の抵抗が大きく低下することがわかる。基板1の表面1aとカーボン皮膜3との界面抵抗の低下が貢献しているものと考えられる。実施例1と実施例2とを比較すれば、基板1、カーボン皮膜3、活物質層2が積層されているときであっても、種触媒の触媒層4を基板1の表面1aとカーボン皮膜3との間に設けただけでも、抵抗値が13%程度((2.3−2.0)/2.3≒0.13)低下することがわかる。基板1の表面1aとカーボン皮膜3との界面抵抗の低下が貢献しているものと考えられる。   As can be seen from Table 1, when the carbon film 3 is laminated at the interface between the substrate 1 and the active material layer 2, it can be seen that the resistance in the thickness direction of the electrode 5 is greatly reduced. It is considered that the decrease in the interface resistance between the surface 1a of the substrate 1 and the carbon film 3 contributes. When Example 1 and Example 2 are compared, even when the substrate 1, the carbon film 3, and the active material layer 2 are laminated, the seed catalyst catalyst layer 4 is formed on the surface 1a of the substrate 1 and the carbon film. It can be seen that the resistance value is lowered by about 13% ((2.3-2.0) /2.3≈0.13) even if it is provided between the two. It is considered that the decrease in the interface resistance between the surface 1a of the substrate 1 and the carbon film 3 contributes.

(実施例3)
本実施例は実施例1と基本的には同様の構成および同様の作用効果を有するため、図1を準用できる。本発明者らが実施している他の試験例に基づけば、基板1の表面に鉄系の種触媒としてFe−V合金(質量比でFeが85%,V15%)の触媒層4を、CVD処理に先立って、設けることも有益であると考えられる。この場合、大気中において、基板1をディップコーターによりコーティング液に所定時間(例えば30秒間)浸漬する。その後、大気雰囲気において、常温下で、基板1をコーティング液から引き上げ、コーティング液が基板1の表面に付着した状態で、自然乾燥にて基板1のヘキサンを乾燥させる。これにより鉄−バナジウム合金の薄膜(厚み:例えば5〜100ナノメートル)を形成し、これにより触媒層4を形成することが好ましい。ここで、コーティング液は、ヘキサン中に鉄−バナジウム合金粒子を分散させて形成できる。鉄−バナジウム合金粒子については、質量比で鉄85%,バナジウム15%にでき、鉄の含有量はバナジウム含有量よりも多くすることが好ましい。コーティング液については、可視光度計(WPA社製:CO7500)にて波長680ナノメートルの測定条件で、吸光度が0.3となるように濃度調整することができる。その後、実施例1,2と同様に、基板1のうちの鉄系種触媒の薄膜で形成された触媒層4の上にカーボン皮膜3を形成することが好ましい。
(Example 3)
Since this embodiment basically has the same configuration and the same function and effect as those of the first embodiment, FIG. 1 can be applied mutatis mutandis. Based on another test example performed by the present inventors, a catalyst layer 4 of Fe-V alloy (Fe is 85% in mass ratio, V15%) as an iron-based seed catalyst on the surface of the substrate 1, Providing prior to the CVD process is also considered beneficial. In this case, the substrate 1 is immersed in a coating solution for a predetermined time (for example, 30 seconds) by a dip coater in the atmosphere. Thereafter, the substrate 1 is pulled up from the coating solution at room temperature in an air atmosphere, and the hexane of the substrate 1 is dried by natural drying in a state where the coating solution adheres to the surface of the substrate 1. Thus, it is preferable to form an iron-vanadium alloy thin film (thickness: for example, 5 to 100 nanometers) and thereby form the catalyst layer 4. Here, the coating liquid can be formed by dispersing iron-vanadium alloy particles in hexane. The iron-vanadium alloy particles can be made 85% iron and 15% vanadium by mass ratio, and the iron content is preferably larger than the vanadium content. About a coating liquid, a density | concentration can be adjusted so that a light absorbency may be 0.3 on the measurement conditions of wavelength 680 nanometer with a visible photometer (WPA company make: CO7500). Thereafter, as in Examples 1 and 2, it is preferable to form the carbon film 3 on the catalyst layer 4 formed of a thin film of the iron-based seed catalyst in the substrate 1.

本実施例に係る電極は、図1に示すように、導電性をもつ導電基体としての基板1と、基板1に積層された活性炭を基材とする活物質層2と、基板1と活物質層2との間に介在するカーボン皮膜3とを有する。カーボン皮膜3は基板1と活物質層2との境界全体に形成されている。カーボン皮膜3と活物質層2との境界に、鉄合金の薄膜で形成された触媒層4が設けられている。なお、触媒層4の厚みは100ナノメートル以下であることが好ましい。   As shown in FIG. 1, the electrode according to the present embodiment includes a substrate 1 as a conductive base having conductivity, an active material layer 2 based on activated carbon laminated on the substrate 1, a substrate 1 and an active material. And a carbon film 3 interposed between the layer 2 and the layer 2. The carbon film 3 is formed on the entire boundary between the substrate 1 and the active material layer 2. A catalyst layer 4 formed of an iron alloy thin film is provided at the boundary between the carbon film 3 and the active material layer 2. In addition, it is preferable that the thickness of the catalyst layer 4 is 100 nanometers or less.

(実施例4)
本実施例は実施例1と基本的には同様の構成および同様の作用効果を有するため、図1を準用できる。本発明者らが実施している他の試験例に基づけば、基板1の表面にスパッタリングで鉄単体の種触媒を形成することも有益と考えられる。そこで、アルゴンガスを用い、スパッタリング法により、鉄単体の薄膜で形成されている触媒層4を基板1の表面1aに形成する。その後実施例1と同様な条件で、CVD成膜装置を用い、反応容器内に保持されている基板1を650℃に加熱した状態で、炭素源としてアセチレンガスを反応容器内に流し、アセチレンガスの雰囲気において成膜処理する。これにより基板1の表面1aの触媒層4にカーボン皮膜3を形成する。更に、実施例1と同様な条件で、多数のポアを有する活性炭粒子、バインダ、導電剤を混合し、更に溶媒と混合させてインクを形成する。更に基板1のカーボン皮膜3の上にインクを塗布し、乾燥させて、活性炭を基材とする活物質層2を基板1の表面に形成した電極5を得る。
Example 4
Since this embodiment basically has the same configuration and the same function and effect as those of the first embodiment, FIG. 1 can be applied mutatis mutandis. Based on another test example conducted by the present inventors, it is considered beneficial to form a seed catalyst of simple iron on the surface of the substrate 1 by sputtering. Therefore, the catalyst layer 4 formed of a thin film of simple iron is formed on the surface 1a of the substrate 1 by sputtering using argon gas. Thereafter, using a CVD film forming apparatus under the same conditions as in Example 1, the substrate 1 held in the reaction vessel is heated to 650 ° C., and acetylene gas is allowed to flow into the reaction vessel as a carbon source, thereby acetylene gas. The film formation process is performed in the atmosphere. Thereby, the carbon film 3 is formed on the catalyst layer 4 on the surface 1 a of the substrate 1. Further, activated carbon particles having a large number of pores, a binder, and a conductive agent are mixed under the same conditions as in Example 1, and further mixed with a solvent to form an ink. Furthermore, ink is applied on the carbon film 3 of the substrate 1 and dried to obtain an electrode 5 in which an active material layer 2 based on activated carbon is formed on the surface of the substrate 1.

図1に示すように、本実施例に係る電極5は、導電性をもつ基板1と、基板1の表面1aに積層された活性炭を基材とする活物質層2と、基板1と活物質層2との間に介在するカーボン皮膜3とを有する。カーボン皮膜3と活物質層2との境界に、鉄合金の薄膜が触媒層4として設けられている。カーボン皮膜3の厚みは基板1の厚み、活物質層2の厚みよりも薄い。   As shown in FIG. 1, an electrode 5 according to this embodiment includes a conductive substrate 1, an active material layer 2 based on activated carbon laminated on a surface 1 a of the substrate 1, a substrate 1, and an active material. And a carbon film 3 interposed between the layer 2 and the layer 2. An iron alloy thin film is provided as a catalyst layer 4 at the boundary between the carbon film 3 and the active material layer 2. The thickness of the carbon film 3 is thinner than the thickness of the substrate 1 and the active material layer 2.

(実施例5)
本実施例は実施例1,2と基本的には同様の構成および同様の作用効果を有するため、図1,図2を準用できる。本発明者らが実施している他の試験例に基づけば、基板1としてチタン単体に代えて、ステンレス鋼(例えばSUS304系)を採用することもできる。従って、本実施例に係る電極は、図1,図2に示すように、導電性をもつ導電基体としての基板1と、基板1に積層された活性炭を基材とする活物質層2と、基板1と活物質層2との間に介在するカーボン皮膜3とを有する。カーボン皮膜3は基板1と活物質層2との境界全体に形成されている。
(Example 5)
Since the present embodiment basically has the same configuration and the same operation and effect as the first and second embodiments, FIGS. 1 and 2 can be applied mutatis mutandis. Based on another test example carried out by the present inventors, stainless steel (for example, SUS304 series) may be employed as the substrate 1 instead of titanium alone. Therefore, as shown in FIGS. 1 and 2, the electrode according to this example includes a substrate 1 as a conductive base having conductivity, an active material layer 2 based on activated carbon laminated on the substrate 1, and It has a carbon film 3 interposed between the substrate 1 and the active material layer 2. The carbon film 3 is formed on the entire boundary between the substrate 1 and the active material layer 2.

図1に示すように、カーボン皮膜3と活物質層2との境界に、鉄単体または鉄合金(Fe−Ti,Fe−V等)の薄膜が触媒層4として設けられていても良い。場合によっては、図2に示すように、カーボン皮膜3と活物質層2との境界に鉄合金の薄膜が触媒層4として設けられていなくても良い。   As shown in FIG. 1, a thin film of iron alone or an iron alloy (Fe—Ti, Fe—V, etc.) may be provided as a catalyst layer 4 at the boundary between the carbon film 3 and the active material layer 2. In some cases, as shown in FIG. 2, an iron alloy thin film may not be provided as a catalyst layer 4 at the boundary between the carbon film 3 and the active material layer 2.

(実施例6)
本実施例は実施例1,2と基本的には同様の構成および同様の作用効果を有するため、図1,図2を準用できる。本発明者らが実施している他の試験例を参照すれば、基板1としてチタン単体板に代えて、導電性が高い銅を採用することもできる。従って、本実施例に係る電極は、図1,図2に示すように、導電性をもつ基板1と、基板1の表面1aに積層された活性炭を基材とする活物質層2と、基板1と活物質層2との間に介在するカーボン皮膜3とを有する。カーボン皮膜3は基板1と活物質層2との境界全体に形成されている。図1に示すように、カーボン皮膜3と活物質層2との境界に、鉄単体または鉄合金(Fe−Ti,Fe−V等)鉄合金の薄膜が触媒層4として設けられていても良い。場合によっては、図2に示すように、カーボン皮膜3と活物質層2との境界に、鉄合金の薄膜が触媒層4として設けられていなくても良い。
(Example 6)
Since the present embodiment basically has the same configuration and the same operation and effect as the first and second embodiments, FIGS. 1 and 2 can be applied mutatis mutandis. Referring to another test example carried out by the present inventors, copper having high conductivity can be adopted as the substrate 1 instead of a single titanium plate. Accordingly, as shown in FIGS. 1 and 2, the electrode according to this example includes a conductive substrate 1, an active material layer 2 based on activated carbon laminated on the surface 1 a of the substrate 1, and a substrate 1 and an active material layer 2. The carbon film 3 is formed on the entire boundary between the substrate 1 and the active material layer 2. As shown in FIG. 1, a thin film of an iron simple substance or an iron alloy (Fe—Ti, Fe—V, etc.) iron alloy may be provided as a catalyst layer 4 at the boundary between the carbon film 3 and the active material layer 2. . In some cases, an iron alloy thin film may not be provided as a catalyst layer 4 at the boundary between the carbon film 3 and the active material layer 2 as shown in FIG.

(試験例)
所定の厚み(50μm)をもつ基板をチタン、ステンレス鋼(SUS304)、銅とした場合について抵抗値を実際に求めた。材質がチタン、ステンレス鋼等と異なっても、基板のサイズは同じとした。この試験例では、基板に触媒層、活物質層を形成しなかったものの、カーボン皮膜を形成するCVD処理を実行した。この場合、基板温度を750℃、500℃、410℃と変更させてCVD処理し、カーボン皮膜を基板の表面に形成した。この場合について、実施例1と同様な条件で抵抗値を測定した。測定結果を表2に示す。
(Test example)
The resistance value was actually obtained when the substrate having a predetermined thickness (50 μm) was titanium, stainless steel (SUS304), or copper. Even if the material is different from titanium, stainless steel, etc., the size of the substrate is the same. In this test example, although a catalyst layer and an active material layer were not formed on the substrate, a CVD process for forming a carbon film was performed. In this case, the substrate temperature was changed to 750 ° C., 500 ° C., and 410 ° C., and CVD treatment was performed to form a carbon film on the surface of the substrate. In this case, the resistance value was measured under the same conditions as in Example 1. The measurement results are shown in Table 2.

表2から理解できるように、基板のみを測定した場合に比較して、CVD処理を施してカーボン皮膜を基板に形成した場合には、CVD処理における基板温度が410℃と低温であったとしても、抵抗は低減されていた。カーボン皮膜が形成されたため界面抵抗が低減したためと推定される。基板1の材質がチタン、SUSである場合には、CVD処理における基板温度が410℃と低温であったとしても、基板のみの場合に比較して、抵抗は良好であった。CVD処理における基板温度が500℃、750℃と昇温させれば、抵抗は低めとなり、良好であった。従って、界面抵抗を低下させるためには、CVD処理における基板温度が500℃以上であることが好ましい。   As can be understood from Table 2, when the carbon film is formed on the substrate by performing the CVD process as compared with the case where only the substrate is measured, even if the substrate temperature in the CVD process is as low as 410 ° C. The resistance was reduced. It is estimated that the interface resistance was reduced because the carbon film was formed. When the material of the substrate 1 was titanium or SUS, the resistance was better than that of the substrate alone even when the substrate temperature in the CVD process was as low as 410 ° C. When the substrate temperature in the CVD process was raised to 500 ° C. and 750 ° C., the resistance was low and good. Therefore, in order to reduce the interface resistance, the substrate temperature in the CVD process is preferably 500 ° C. or higher.

Figure 2011233564
Figure 2011233564

(適用例1)
図4は適用例1の概念図を示す。図4に示すように、物理的電池として機能するキャパシタは、正極7と、正極7に対向する負極8と、正極7および負極8に接触する電解質9(電解液)と、正極7および負極8が短絡しないように仕切る電気絶縁性をもつセパレータ6とを有する。電解質9の漏れを防止するシール部材62が設けられている。正極7は、容器を兼用する導電基体100と、導電基体100に積層された活性炭を基材とする活物質層2と、導電基体100と活物質層2との間に介在すると共に導電基体100および活物質層2よりも厚みが薄いカーボン皮膜3とを有する。
(Application example 1)
FIG. 4 is a conceptual diagram of Application Example 1. As shown in FIG. 4, the capacitor that functions as a physical battery includes a positive electrode 7, a negative electrode 8 that faces the positive electrode 7, an electrolyte 9 (electrolytic solution) that contacts the positive electrode 7 and the negative electrode 8, and a positive electrode 7 and a negative electrode 8. And a separator 6 having an electrical insulating property for partitioning so as not to be short-circuited. A seal member 62 that prevents leakage of the electrolyte 9 is provided. The positive electrode 7 is interposed between the conductive substrate 100 also serving as a container, the active material layer 2 based on activated carbon laminated on the conductive substrate 100, and the conductive substrate 100 and the active material layer 2. And a carbon film 3 having a thickness smaller than that of the active material layer 2.

負極8は、容器を兼ねる導電基体101と、導電基体101に積層された活性炭を基材とする活物質層2と、導電基体101と活物質層2との間に介在すると共に導電基体101および活物質層2よりも厚みが薄いカーボン皮膜3とを有する。カーボン皮膜3は上記したCVD処理により形成されている。なお、カーボン皮膜3と導電基体100との間に触媒層4を必要に応じて設けることができる。   The negative electrode 8 is interposed between the conductive substrate 101 which also serves as a container, the active material layer 2 based on activated carbon laminated on the conductive substrate 101, the conductive substrate 101 and the active material layer 2, and the conductive substrate 101 and The carbon film 3 is thinner than the active material layer 2. The carbon film 3 is formed by the above-described CVD process. A catalyst layer 4 can be provided between the carbon film 3 and the conductive substrate 100 as necessary.

(適用例2)
図5は適用例2の概念図を示す。図5に示すように、物理的電池として機能するキャパシタは、正極7と、正極7に対向する負極8と、正極7および負極8に接触する電解質9(電解液)と、正極7および負極8が短絡しないように仕切るセパレータ6とを有する。正極7は、容器を兼ねる導電基体100と、導電基体100に積層された活性炭を基材とする活物質層2と、導電基体100と活物質層2との間に介在すると共に導電基体100および活物質層2よりも厚みが薄いカーボン皮膜3とを有する。負極8は、容器を兼ねる導電基体101と、導電基体101に積層された黒鉛を基材とする活物質層2Wと、導電基体101と活物質層2Wとの間に介在すると共に導電基体101および活物質層2Wよりも厚みが薄いカーボン皮膜3Wとを有する。カーボン皮膜3と導電基体100との間、あるいは、カーボン皮膜3Wと導電基体101との間に、触媒層4を必要に応じて設けることができる。カーボン皮膜3は上記したCVD処理により形成されている。なお、負極8の活物質層2Wを構成する黒鉛材料には、リチウムイオンおよび/または金属リチウムがドープされており、負極8の電位を低下させ、キャパシタの動作電圧を増加させている。従ってキャパシタはリチウムイオンキャパシタとされている。
(Application example 2)
FIG. 5 is a conceptual diagram of Application Example 2. As shown in FIG. 5, the capacitor that functions as a physical battery includes a positive electrode 7, a negative electrode 8 that faces the positive electrode 7, an electrolyte 9 (electrolytic solution) that contacts the positive electrode 7 and the negative electrode 8, and a positive electrode 7 and a negative electrode 8. And a separator 6 for partitioning so as not to be short-circuited. The positive electrode 7 is interposed between the conductive substrate 100 also serving as a container, the active material layer 2 based on activated carbon laminated on the conductive substrate 100, the conductive substrate 100 and the active material layer 2, and the conductive substrate 100 and The carbon film 3 is thinner than the active material layer 2. The negative electrode 8 is interposed between the conductive substrate 101 serving also as a container, the active material layer 2W based on graphite laminated on the conductive substrate 101, and the conductive substrate 101 and the active material layer 2W. A carbon film 3W having a thickness smaller than that of the active material layer 2W. The catalyst layer 4 can be provided between the carbon film 3 and the conductive substrate 100 or between the carbon film 3W and the conductive substrate 101 as necessary. The carbon film 3 is formed by the above-described CVD process. Note that the graphite material constituting the active material layer 2W of the negative electrode 8 is doped with lithium ions and / or metallic lithium, which lowers the potential of the negative electrode 8 and increases the operating voltage of the capacitor. Therefore, the capacitor is a lithium ion capacitor.

(界面抵抗の低減機構について)
界面抵抗が低減できる機構として、基板等の基体の表面に置ける酸化皮膜が取り除かれた上に、導電性に優れたカーボン皮膜が接合され、そのカーボン皮膜と活物質層とが接触することによると考えられる。カーボン皮膜として現段階では必ずしも明確ではないが、カーボンナノチューブ(CNT)またはグラファイトであると推定される。この場合には、CNT間には隙間があるが、仮にその隙間の基板等の基体が酸化されたとしても、基体−(触媒粒子)−CNT−活物質層と電流が流れるので、界面抵抗が低減されると考えられる。グラファイトが多孔質である場合にも同様である。多孔質の方が、むしろ、活物質層の接合強度を大きくでき、かつカーボン皮膜との接触面積も大きいため電気抵抗も小さくできると考えられる。なお、カーボン皮膜に求められる特性の一つとして、基体との接合強度(密着強度)がある。また電解液を使用するタイプの電池の場合には耐電解液性が求められる。ここでカーボン皮膜を形成するカーボンは基本的に耐薬品性に優れているため耐電解液性に優れている。
(About the interface resistance reduction mechanism)
As a mechanism that can reduce the interfacial resistance, the oxide film that can be placed on the surface of a substrate such as a substrate is removed, and then a carbon film with excellent conductivity is joined, and the carbon film and the active material layer are in contact with each other. Conceivable. Although it is not necessarily clear at this stage as a carbon film, it is presumed to be a carbon nanotube (CNT) or graphite. In this case, although there is a gap between the CNTs, even if a substrate such as a substrate in the gap is oxidized, a current flows through the substrate- (catalyst particles) -CNT-active material layer. It is thought to be reduced. The same applies when the graphite is porous. Rather, it is considered that the porous material can increase the bonding strength of the active material layer and reduce the electric resistance because the contact area with the carbon film is large. In addition, as one of the characteristics required for the carbon film, there is a bonding strength (adhesion strength) with the substrate. In the case of a battery using an electrolytic solution, resistance to the electrolytic solution is required. Here, the carbon that forms the carbon film is basically excellent in chemical resistance, and therefore is excellent in resistance to electrolyte.

(その他)カーボン皮膜の形成方法としては、熱CVD、プラズマCVDなどのCVD(化学蒸着)、真空蒸着、スパッタリング、イオンプレーティング、イオンビーム蒸着などのPVD(物理蒸着)などが挙げられる。電池はキャパシタなどの物理電池、一次電池や二次電池等の化学電池を含む。   (Others) Examples of the carbon film forming method include CVD (chemical vapor deposition) such as thermal CVD and plasma CVD, PVD (physical vapor deposition) such as vacuum deposition, sputtering, ion plating, and ion beam deposition. The battery includes a physical battery such as a capacitor, and a chemical battery such as a primary battery and a secondary battery.

以上、記載した内容から下記の技術思想も把握できる。
[付記項1] 正極と、前記正極に対向する負極と、前記正極および前記負極に接触する電解質とを具備する電池の製造方法において、前記正極および前記負極のうちの少なくとも一方は、導電性をもつ導電基体を準備する導電基体準備工程と、前記導電基体の一方面にCDV処理によりカーボン皮膜を形成するカーボン皮膜形成工程と、前記カーボン皮膜の上に炭素材料を基材とする活物質層を形成する活物質層形成工程により製造されることを特徴とする電池の製造方法。
[付記項2] 付記項1において、前記導電基体準備工程の前に、前記導電基体の少なくとも一方面に前記カーボン皮膜を形成するために種触媒を塗布する種触媒塗布工程が設けられていることを特徴とする電池の製造方法。塗布方法として公知の方法を採用できる。
From the above description, the following technical idea can also be grasped.
[Additional Item 1] In a method of manufacturing a battery comprising a positive electrode, a negative electrode facing the positive electrode, and the electrolyte in contact with the positive electrode and the negative electrode, at least one of the positive electrode and the negative electrode is electrically conductive. A conductive substrate preparation step for preparing a conductive substrate, a carbon film formation step for forming a carbon coating on one surface of the conductive substrate by CDV treatment, and an active material layer based on a carbon material on the carbon coating. A method for producing a battery, characterized by being produced by an active material layer forming step to be formed.
[Additional Item 2] In Additional Item 1, a seed catalyst application step of applying a seed catalyst to form the carbon film on at least one surface of the conductive substrate is provided before the conductive substrate preparation step. A battery manufacturing method characterized by the above. As a coating method, a known method can be adopted.

1は基板(導電基体)、2は活物質層、3はカーボン皮膜、4は触媒層、7は正極、8は負極、9は電解質、100は導電基体を示す。   1 is a substrate (conductive substrate), 2 is an active material layer, 3 is a carbon film, 4 is a catalyst layer, 7 is a positive electrode, 8 is a negative electrode, 9 is an electrolyte, and 100 is a conductive substrate.

Claims (4)

正極と、前記正極に対向する負極と、前記正極および前記負極に接触する電解質とを具備しており、前記正極および前記負極のうちの少なくとも一方は、導電性をもつ導電基体と、前記導電基体に積層された炭素材料を基材とする活物質層と、前記導電基体と前記活物質層との間に介在すると共に前記導電基体および前記活物質層よりも厚みが薄いカーボン皮膜とを有する電池。   A positive electrode; a negative electrode facing the positive electrode; and the positive electrode and an electrolyte in contact with the negative electrode, wherein at least one of the positive electrode and the negative electrode has conductivity. The conductive substrate A battery having an active material layer based on a carbon material laminated on the substrate, and a carbon film interposed between the conductive substrate and the active material layer and thinner than the conductive substrate and the active material layer . 請求項1において、前記導電基体は、チタン、チタン合金、銅、銅合金、鉄、鉄合金、アルミニウム、アルミニウム合金のうちの一種である電池。   2. The battery according to claim 1, wherein the conductive substrate is one of titanium, titanium alloy, copper, copper alloy, iron, iron alloy, aluminum, and aluminum alloy. 請求項1または2において、前記導電基体と前記カーボン皮膜との境界には、種触媒を有する触媒層が設けられている電池。   3. The battery according to claim 1, wherein a catalyst layer having a seed catalyst is provided at a boundary between the conductive substrate and the carbon film. 請求項1〜3のいずれかにおいて、前記カーボン皮膜は、CDV処理により形成されたCVDカーボン皮膜である電池。   4. The battery according to claim 1, wherein the carbon film is a CVD carbon film formed by a CDV process.
JP2010099904A 2010-04-23 2010-04-23 Battery Pending JP2011233564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010099904A JP2011233564A (en) 2010-04-23 2010-04-23 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099904A JP2011233564A (en) 2010-04-23 2010-04-23 Battery

Publications (1)

Publication Number Publication Date
JP2011233564A true JP2011233564A (en) 2011-11-17

Family

ID=45322638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099904A Pending JP2011233564A (en) 2010-04-23 2010-04-23 Battery

Country Status (1)

Country Link
JP (1) JP2011233564A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016534567A (en) * 2013-08-30 2016-11-04 コーニング インコーポレイテッド Low resistance ultracapacitor electrode and manufacturing method thereof
US20180277825A1 (en) * 2017-03-24 2018-09-27 Sanyo Electric Co., Ltd. Method for manufacturing electrode plate and method for manufacturing secondary battery
CN109417161A (en) * 2016-07-20 2019-03-01 Nec能源元器件株式会社 Lithium ion battery electrode and lithium ion battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164466A (en) * 1998-11-26 2000-06-16 Toyota Motor Corp Manufacture of electrode used for capacitor or cell
JP2003109582A (en) * 2001-09-27 2003-04-11 Hitachi Metals Ltd Laminated strip material, laminated strip material for battery using the same, and manufacturing method of the same
JP2006179431A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Current collector, compound current collector containing carbon nanofiber jointed to surface of the current collector, and manufacturing method of the same
JP2007516354A (en) * 2003-10-23 2007-06-21 メドトロニック・インコーポレーテッド Method for producing a carbon layer on titanium metal
JP2007180444A (en) * 2005-12-28 2007-07-12 Jsr Corp Electrochemical capacitor
JP2007184312A (en) * 2005-12-29 2007-07-19 Sony Corp Electrode and electric double layer capacitor
JP2008098590A (en) * 2006-10-16 2008-04-24 Nippon Zeon Co Ltd Electrode for electrochemical device and electrochemical device using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164466A (en) * 1998-11-26 2000-06-16 Toyota Motor Corp Manufacture of electrode used for capacitor or cell
JP2003109582A (en) * 2001-09-27 2003-04-11 Hitachi Metals Ltd Laminated strip material, laminated strip material for battery using the same, and manufacturing method of the same
JP2007516354A (en) * 2003-10-23 2007-06-21 メドトロニック・インコーポレーテッド Method for producing a carbon layer on titanium metal
JP2006179431A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Current collector, compound current collector containing carbon nanofiber jointed to surface of the current collector, and manufacturing method of the same
JP2007180444A (en) * 2005-12-28 2007-07-12 Jsr Corp Electrochemical capacitor
JP2007184312A (en) * 2005-12-29 2007-07-19 Sony Corp Electrode and electric double layer capacitor
JP2008098590A (en) * 2006-10-16 2008-04-24 Nippon Zeon Co Ltd Electrode for electrochemical device and electrochemical device using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016534567A (en) * 2013-08-30 2016-11-04 コーニング インコーポレイテッド Low resistance ultracapacitor electrode and manufacturing method thereof
US9941059B2 (en) 2013-08-30 2018-04-10 Corning Incorporated Low resistance ultracapacitor electrode and manufacturing method thereof
CN109417161A (en) * 2016-07-20 2019-03-01 Nec能源元器件株式会社 Lithium ion battery electrode and lithium ion battery
JPWO2018016528A1 (en) * 2016-07-20 2019-05-09 Necエナジーデバイス株式会社 Lithium-ion battery electrode and lithium-ion battery
EP3490037A4 (en) * 2016-07-20 2019-08-21 Envision AESC Energy Devices Ltd. Electrode for lithium ion batteries, and lithium ion battery
CN109417161B (en) * 2016-07-20 2022-01-14 远景Aesc日本有限公司 Electrode for lithium ion battery and lithium ion battery
US20180277825A1 (en) * 2017-03-24 2018-09-27 Sanyo Electric Co., Ltd. Method for manufacturing electrode plate and method for manufacturing secondary battery
US10741826B2 (en) * 2017-03-24 2020-08-11 Sanyo Electric Co., Ltd. Method for manufacturing electrode plate and method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
Sun et al. MXene‐bonded flexible hard carbon film as anode for stable Na/K‐ion storage
Geng et al. Freestanding metallic 1T MoS2 with dual ion diffusion paths as high rate anode for sodium‐ion batteries
Song et al. Vertically grown edge‐rich graphene nanosheets for spatial control of Li nucleation
Ye et al. Highly efficient materials assembly via electrophoretic deposition for electrochemical energy conversion and storage devices
Li et al. Graphene‐nanowall‐decorated carbon felt with excellent electrochemical activity toward VO2+/VO2+ couple for all vanadium redox flow battery
Kim et al. Carbon nanotubes (CNTs) as a buffer layer in silicon/CNTs composite electrodes for lithium secondary batteries
Saha et al. 3-D composite electrodes for high performance PEM fuel cells composed of Pt supported on nitrogen-doped carbon nanotubes grown on carbon paper
Huang et al. Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers
Chen et al. Direct growth of flexible carbon nanotube electrodes
Song et al. B4C as a stable non-carbon-based oxygen electrode material for lithium-oxygen batteries
CA2563932C (en) Fuel cell
JP4553823B2 (en) Fuel cell electrode, fuel cell membrane-electrode assembly, and fuel cell system
Sivaraman et al. A supercapacitor based on longitudinal unzipping of multi-walled carbon nanotubes for high temperature application
Hsieh et al. Bio-inspired, nitrogen doped CNT-graphene hybrid with amphiphilic properties as a porous current collector for lithium-ion batteries
WO2010050484A1 (en) Composite electrode for electricity storage device, method for producing same and electricity storage device
JP2012529749A (en) Liquid-based nanostructured carbon material (NCM) coating on bipolar plates for fuel cells
Jamaluddin et al. Fluorinated graphene as a dual-functional anode to achieve dendrite-free and high-performance lithium metal batteries
Liu et al. Wet-chemistry grafted active pyridinic nitrogen sites on holey graphene edges as high performance ORR electrocatalyst for Zn-Air batteries
Prosini et al. A lithium-ion battery based on LiFePO4 and silicon nanowires
JP2016190781A (en) Nanographene, nanographene-electrode active material composite particle, paste for lithium ion battery electrode, and lithium ion battery electrode
Ebenezer et al. Carbon nanotubes and nanohorn hybrid composite buckypaper as microporous layer for proton exchange membrane fuel cell
JP4919953B2 (en) Method, gas diffusion electrode, and electrode assembly for forming a noble metal coating on a gas diffusion medium
He et al. Vertically oriented graphene Nanosheets for electrochemical energy storage
Xu et al. Lithiophilic vanadium oxide coated three-dimensional carbon network design towards stable lithium metal anode
JP2011233564A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141106