JP2811645B2 - Manufacturing method of electrolytic capacitor - Google Patents

Manufacturing method of electrolytic capacitor

Info

Publication number
JP2811645B2
JP2811645B2 JP23220291A JP23220291A JP2811645B2 JP 2811645 B2 JP2811645 B2 JP 2811645B2 JP 23220291 A JP23220291 A JP 23220291A JP 23220291 A JP23220291 A JP 23220291A JP 2811645 B2 JP2811645 B2 JP 2811645B2
Authority
JP
Japan
Prior art keywords
organic semiconductor
capacitor element
electrolytic capacitor
case
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23220291A
Other languages
Japanese (ja)
Other versions
JPH0547605A (en
Inventor
信一 金子
Original Assignee
マルコン電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルコン電子株式会社 filed Critical マルコン電子株式会社
Priority to JP23220291A priority Critical patent/JP2811645B2/en
Publication of JPH0547605A publication Critical patent/JPH0547605A/en
Application granted granted Critical
Publication of JP2811645B2 publication Critical patent/JP2811645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、有機半導体材料を含浸
させてなる電解コンデンサの製造方法に係り、特に、有
機半導体材料の含浸方法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrolytic capacitor impregnated with an organic semiconductor material, and more particularly to an improvement in an organic semiconductor material impregnating method.

【0002】[0002]

【従来の技術】一般に、乾式箔形電解コンデンサにおい
ては、高純度アルミニウム箔からなる一対の陽極・陰極
箔に、同じくアルミニウムからなる一対の引き出し端子
を接続し、前記一対の陽極・陰極箔相互間にスペーサを
介在して巻回してなるコンデンサ素子を使用している。
このようなコンデンサ素子を使用してなる電解コンデン
サとして、例えば、コンデンサ素子に駆動用電解液を含
浸してケースに収納し、このケース開口部を密閉するな
どの外装を施してなる電解コンデンサが存在している。
2. Description of the Related Art In general, in a dry-type foil electrolytic capacitor, a pair of lead terminals also made of aluminum are connected to a pair of anode and cathode foils made of high-purity aluminum foil. And a capacitor element wound with a spacer interposed therebetween.
As an electrolytic capacitor using such a capacitor element, for example, there is an electrolytic capacitor in which a capacitor element is impregnated with a driving electrolyte and stored in a case, and the case opening is sealed or the like. doing.

【0003】しかしながら、上記駆動用電解液として
は、例えば、エチレングリコールなどの有機溶媒にアジ
ピン酸アンモニウムなどの有機カルボン酸塩を使用して
いるため、tanδ特性改善に限度があり、また、低温
で比抵抗が上がり、低温特性が極度に悪化してしまうた
め、広域温度範囲で使用するには信頼性に欠ける。従っ
て、駆動用電解液を使用してなる電解コンデンサにおい
ては、市場要求を満足することが不可能である。そのた
め、近年では、駆動用電解液に代えて、TCNQ錯体か
らなる有機半導体を用いた電解コンデンサが種々提案さ
れ、その一部は実用化されている。
However, since the driving electrolyte uses an organic carboxylate such as ammonium adipate in an organic solvent such as ethylene glycol, there is a limit in improving the tan δ characteristic. Since the specific resistance is increased and the low-temperature characteristics are extremely deteriorated, the reliability is poor when used in a wide temperature range. Therefore, it is impossible for an electrolytic capacitor using a driving electrolyte to satisfy market requirements. Therefore, in recent years, various electrolytic capacitors using an organic semiconductor comprising a TCNQ complex instead of the driving electrolyte have been proposed, and some of them have been put to practical use.

【0004】以上のように、コンデンサ素子にTCNQ
錯体からなる有機半導体を含浸化する方法としては、一
般に、溶液含浸法、分散含浸法、さらには真空蒸着法が
あるが、TCNQ錯体は、多種多様の条件で特性が変化
し、極めて扱い難い物質であるため、使用に当たっては
各種の工夫が講じられている。特に、固体電解質の条件
としては、コンデンサ特性としてのtanδ及び等価直
列抵抗に影響するそれ自体としての抵抗値が小さく、且
つ、広範囲の温度範囲においても、安定した比抵抗値が
あることが重要である。そして、コンデンサ素子に対す
るTCNQ錯体からなる有機半導体の含浸に際しては、
コンデンサ素子内部に一様に必要量浸透させることが要
求される。
As described above, the TCNQ is used for the capacitor element.
As a method for impregnating an organic semiconductor composed of a complex, there are generally a solution impregnation method, a dispersion impregnation method, and a vacuum evaporation method, but the TCNQ complex changes its properties under various conditions and is extremely difficult to handle. Therefore, various ideas have been devised for use. In particular, as the condition of the solid electrolyte, it is important that the resistance value itself affecting tan δ as a capacitor characteristic and the equivalent series resistance is small, and that there is a stable specific resistance value even in a wide temperature range. is there. When impregnating the capacitor element with the organic semiconductor comprising the TCNQ complex,
It is required that the required amount be uniformly penetrated into the capacitor element.

【0005】このようなコンデンサ素子へのTCNQ錯
体からなる有機半導体の含浸方法としては、特許公報や
技術文献によって従来提案されているように、加熱溶融
液化処理が有望視されている。この加熱溶融液化処理の
具体的な方法としては、一般的に、外装ケースに入れ、
加熱溶融させた所望のTCNQ錯体からなる有機半導体
液に、予め加熱してなるコンデンサ素子を収納し、この
素子を構成する絶縁紙の繊維と電極箔の微細なエッチン
グピットを介して含浸する方法が採用されている。この
場合、TCNQ錯体からなる有機半導体の加熱溶融処理
に当たっては、溶融、固化しても変化の少ない種類の有
機半導体を、コンデンサ素子を収納する円筒状ケースに
収納している。
As a method for impregnating such a capacitor element with an organic semiconductor comprising a TCNQ complex, a heat-melt liquefaction treatment is considered to be promising, as conventionally proposed in patent publications and technical documents. As a specific method of this heat-melt liquefaction treatment, generally, put in an outer case,
A method in which a preheated capacitor element is housed in an organic semiconductor liquid composed of a desired TCNQ complex that has been heated and melted, and the capacitor element is impregnated with fine insulating pits of insulating paper fibers and electrode foil constituting the element. Has been adopted. In this case, in the heating and melting treatment of the organic semiconductor comprising the TCNQ complex, a kind of organic semiconductor that does not change much even when it is melted and solidified is housed in a cylindrical case for housing the capacitor element.

【0006】[0006]

【発明が解決しようとする課題】ところで、有機半導体
は、粒子が細かく、カサ比重が小さいため、結果とし
て、ケースに必要な量の有機半導体が収納不可能とな
る。この問題に対し、従来採用されている方法として、
必要な量の有機半導体を半分に分け、一旦ケース内に収
納してから、ケース内径より若干小さい径を有する丸棒
で加圧し(突き固め)て粉末の密度を高め、さらに、残
りの半分を入れた後、再度丸棒で加圧するなどして加熱
溶融を行うという方法が存在する。
However, organic semiconductors have a small particle size and a low bulk specific gravity. As a result, a necessary amount of organic semiconductor cannot be stored in a case. To solve this problem, a method that has been conventionally adopted is
The required amount of organic semiconductor is divided into halves, once housed in a case, and then pressed (compacted) with a round bar having a diameter slightly smaller than the inner diameter of the case to increase the density of the powder. There is a method in which after being put in, the material is heated and melted again by pressing with a round bar or the like.

【0007】しかしながら、このような従来の製造方法
は作業性が悪く、有機半導体粉末の飛散による作業環境
の悪化なども問題になっている。また、このように丸棒
で加圧する方法を採用した場合には、丸棒による粉末の
加圧力のバラツキにより、加熱溶融時の粉末の熱伝導特
性にバラツキを生じるため、加熱溶融時間のバラツキを
生じる。この加熱溶融時間のバラツキによって、さら
に、コンデンサ素子への含浸率の不均一を生じ、且つ、
必要な含浸量が得られなくなるため、その結果として、
製造された電解コンデンサの静電容量や損失(tan
δ)などの諸特性にバラツキや低下が生じてしまう。ま
た、含浸工程として自動機械を採用した場合は、特に、
一定時間(サイクル)で動作しているので、溶融までの
時間にバラツキが生じると、含浸に大きく支障をきたす
ことになる。
However, such a conventional manufacturing method has poor workability, and there is a problem that the working environment is deteriorated due to scattering of the organic semiconductor powder. In addition, when the method of pressurizing with a round bar is employed as described above, variations in the pressure applied to the powder by the round bar cause variations in the heat conduction characteristics of the powder during heating and melting. Occurs. Due to the variation of the heating and melting time, further, the impregnation rate of the capacitor element becomes uneven, and
As the required impregnation cannot be obtained, as a result,
The capacitance and loss (tan) of the manufactured electrolytic capacitor
δ) and other characteristics are varied or deteriorated. In addition, when an automatic machine is used for the impregnation process,
Since the operation is performed for a fixed time (cycle), if the time until the melting varies, this greatly impairs the impregnation.

【0008】以上のように、従来の電解コンデンサの製
造方法は、作業性が悪い上、コンデンサ素子に対する有
機半導体の含浸性が不均一且つ不十分であり、その結
果、静電容量や損失などの諸特性にバラツキや低下を生
じるという欠点があった。
As described above, the conventional method for manufacturing an electrolytic capacitor has poor workability, and the impregnation of the capacitor element with the organic semiconductor is uneven and insufficient. There is a drawback that various characteristics are varied or deteriorated.

【0009】本発明は、このような従来技術の課題を解
決するために提案されたものであり、その目的は、有機
半導体の含浸工程を改善することにより、コンデンサ素
子への有機半導体の含浸性を高いレベルで均一化し、静
電容量や損失などの諸特性を高いレベルで均一化するこ
とが可能であり、しかも、作業性及び作業環境の良好
な、優れた電解コンデンサの製造方法を提供することで
ある。
The present invention has been proposed to solve such problems of the prior art, and an object of the present invention is to improve the impregnation process of an organic semiconductor into a capacitor element by improving an organic semiconductor impregnation process. The present invention provides a method of manufacturing an electrolytic capacitor which is capable of uniformizing various characteristics such as capacitance and loss at a high level, and which is excellent in workability and work environment, and excellent in workability and work environment. That is.

【0010】[0010]

【課題を解決するための手段】本発明による電解コンデ
ンサの製造方法は、弁作用金属からなる陽極箔と陰極箔
間にスペーサを介在して巻回してコンデンサ素子を形成
し、このコンデンサ素子をケース内に収納すると共に、
コンデンサ素子に有機半導体材料を含浸して電解コンデ
ンサを製造する方法において、有機半導体材料を20〜
70メッシュの平均粒径を有する顆粒状にしてケース内
に収納した後、加熱溶融してコンデンサ素子に含浸する
ことを特徴としている。この場合、有機半導体材料の大
きさは、より限定的には、30〜60メッシュの範囲で
あることが望ましい。
A method of manufacturing an electrolytic capacitor according to the present invention comprises forming a capacitor element by winding a capacitor element between an anode foil and a cathode foil made of a valve action metal with a spacer interposed therebetween. Inside and
In a method of manufacturing an electrolytic capacitor by impregnating a capacitor element with an organic semiconductor material, the organic semiconductor material may be used in an amount of 20 to
It is characterized in that it is made into granules having an average particle size of 70 mesh, stored in a case, heated and melted, and impregnated into a capacitor element. In this case, the size of the organic semiconductor material is more preferably in the range of 30 to 60 mesh.

【0011】[0011]

【作用】以上のような構成を有する本発明の作用は次の
通りである。すなわち、有機半導体を20〜70メッシ
ュの顆粒状にしてケース内に収納するため、粉末状の有
機半導体を使用した場合に比べて格段にカサ比重が大き
くなり、有機半導体を加圧する必要なしに、必要な量の
有機半導体をケース内に収納することができる。従っ
て、作業性が良好であると共に、粉末の飛散の問題もな
く、作業環境も良好である。
The operation of the present invention having the above configuration is as follows. That is, since the organic semiconductor is stored in a case in the form of granules of 20 to 70 mesh, the bulk specific gravity is significantly higher than in the case of using a powdery organic semiconductor, and there is no need to pressurize the organic semiconductor. A necessary amount of the organic semiconductor can be stored in the case. Therefore, the workability is good, and there is no problem of powder scattering, and the work environment is good.

【0012】そして、以上のように、有機半導体を加圧
する必要がないことにより、加圧力のバラツキに起因す
る熱伝導特性のバラツキを生じることがないため、収納
した有機半導体の熱伝導特性を均一化でき、加熱溶融時
間を均一化できる。この結果、コンデンサ素子への有機
半導体の含浸性を高いレベルで均一化できるため、完成
された電解コンデンサの静電容量や損失などの諸特性を
高いレベルで均一化できる。
As described above, since there is no need to pressurize the organic semiconductor, there is no variation in the heat conduction characteristics due to the variation in the pressing force. And the heating and melting time can be made uniform. As a result, the impregnation of the capacitor element with the organic semiconductor can be made uniform at a high level, so that various characteristics such as capacitance and loss of the completed electrolytic capacitor can be made uniform at a high level.

【0013】[0013]

【実施例】以下には、本発明による電解コンデンサの製
造方法の一実施例に関して、図1乃至図3を参照して具
体的に説明する。この場合、図1は、本発明の一実施例
によって製造した電解コンデンサを示す断面図、図2
は、同じ実施例において形成したコンデンサ素子の構造
を示す展開斜視図、図3は、同じ実施例における有機半
導体のケース内への収納工程(a)及び加熱溶融工程
(b)を示す模式的断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing an electrolytic capacitor according to the present invention will be described below in detail with reference to FIGS. In this case, FIG. 1 is a sectional view showing an electrolytic capacitor manufactured according to one embodiment of the present invention, and FIG.
FIG. 3 is an exploded perspective view showing the structure of the capacitor element formed in the same embodiment. FIG. 3 is a schematic cross-sectional view showing a step (a) of storing an organic semiconductor in a case and a step (b) of heating and melting in the same embodiment. FIG.

【0014】まず、図2に示すように、アルミニウム箔
表面をエッチング液で粗面化し、表面積を拡大した後、
陽極酸化皮膜を生成して陽極箔1を用意する。同様に、
アルミニウム箔表面をエッチング液で粗面化し、表面積
を拡大して陰極箔2を用意する。これらの陽極箔1、陰
極箔2間に、クラフト紙またはマニラ紙などからなるス
ペーサ3を介在すると共に、陽極箔1及び陰極箔2の任
意の箇所それぞれに陽極端子4及び陰極端子5を取着し
て巻回し、コンデンサ素子6を形成する。
First, as shown in FIG. 2, the surface of the aluminum foil is roughened with an etching solution to increase the surface area.
An anodic oxide film is formed to prepare an anode foil 1. Similarly,
The cathode foil 2 is prepared by roughening the surface of the aluminum foil with an etchant to increase the surface area. A spacer 3 made of kraft paper, manila paper, or the like is interposed between the anode foil 1 and the cathode foil 2, and the anode terminal 4 and the cathode terminal 5 are attached to arbitrary portions of the anode foil 1 and the cathode foil 2, respectively. To form a capacitor element 6.

【0015】次に、図3の(a)に示すように、例え
ば、アルミニウムなどからなる上部開口型のケース7内
に、TCNQ錯体からなる顆粒状の有機半導体8を必要
な一定量だけ収納する。この場合、有機半導体8の顆粒
の大きさは、30〜60メッシュの範囲とされている。
さらに、図3の(b)に示すように、顆粒状の有機半導
体8を加熱溶融し、溶融液状の有機半導体9とした後、
図1に示すように、コンデンサ素子6を予熱状態で収納
し、溶融液状の有機半導体9を、コンデンサ素子6に含
浸する。十分な含浸時間の後、有機半導体9を冷却固化
し固化状態の有機半導体10とする。最終的に、ケース
7の開口部を封口体11にて密封して電解コンデンサを
完成する。
Next, as shown in FIG. 3A, a predetermined amount of a granular organic semiconductor 8 made of a TCNQ complex is housed in an upper opening type case 7 made of, for example, aluminum or the like. . In this case, the size of the granules of the organic semiconductor 8 is in the range of 30 to 60 mesh.
Further, as shown in FIG. 3B, the granular organic semiconductor 8 is heated and melted to form a molten liquid organic semiconductor 9, and then,
As shown in FIG. 1, the capacitor element 6 is stored in a preheated state, and the organic semiconductor 9 in a molten liquid is impregnated in the capacitor element 6. After a sufficient impregnation time, the organic semiconductor 9 is cooled and solidified to obtain a solidified organic semiconductor 10. Finally, the opening of the case 7 is sealed with the sealing body 11 to complete the electrolytic capacitor.

【0016】以上の工程においては、顆粒状の有機半導
体8を使用しており、従来使用していた粉末状の有機半
導体に比べて、カサ比重が格段に大きいため、コンデン
サ素子6への含浸に必要な一定量を、ケース7内に十分
収納可能である。従って、従来のように、有機半導体を
加圧する必要がないため、作業性を格段に向上できると
共に、粉末の飛散の問題もなく、作業環境も良好であ
る。
In the above steps, the granular organic semiconductor 8 is used. Since the bulk specific gravity of the organic semiconductor 8 is much higher than that of the powdery organic semiconductor conventionally used, the impregnation of the capacitor element 6 is not performed. The required constant amount can be sufficiently stored in the case 7. Therefore, unlike the conventional case, it is not necessary to pressurize the organic semiconductor, so that the workability can be remarkably improved, and there is no problem of powder scattering, and the work environment is good.

【0017】そして、以上のように、有機半導体を加圧
する必要のない本実施例においては、加圧力のバラツキ
に起因する熱伝導特性のバラツキを生じることはなく、
収納した有機半導体の熱伝導特性を均一化でき、加熱溶
融時間を均一化できる。この結果、コンデンサ素子への
有機半導体の含浸性を、従来に比べて、高いレベルで均
一化できるため、以上の工程にて完成された本実施例の
電解コンデンサの静電容量や損失などの諸特性を、従来
技術にて完成された電解コンデンサに比べて、格段に高
いレベルで均一化できる。
As described above, in this embodiment in which it is not necessary to pressurize the organic semiconductor, there is no variation in the heat conduction characteristics due to the variation in the pressing force.
The heat conduction characteristics of the stored organic semiconductor can be made uniform, and the heating and melting time can be made uniform. As a result, the impregnation of the capacitor element with the organic semiconductor can be made uniform at a higher level than in the past, so that various factors such as capacitance and loss of the electrolytic capacitor of the present embodiment completed in the above steps are obtained. The characteristics can be made uniform at a much higher level than the electrolytic capacitor completed by the conventional technology.

【0018】続いて、実際に、前記の工程に基づいて、
本発明の製造方法により電解コンデンサ(本発明品A)
を製造すると共に、粉末状の有機半導体を使用して、従
来の製造方法により電解コンデンサ(従来品B)を製造
した。すなわち、本発明及び従来例共に、幅5mm、長
さ25mmの陽極箔と、幅5mm、長さ35mmの陰極
箔を使用し、これらの陽極箔・陰極箔間に、幅6mm、
厚さ50μmのマニラ紙をスペーサとして介在させ、巻
回してコンデンサ素子を形成した。
Subsequently, actually, based on the above-described steps,
Electrolytic capacitor according to the manufacturing method of the present invention (product A of the present invention)
And an electrolytic capacitor (conventional product B) was produced by a conventional production method using a powdery organic semiconductor. That is, both the present invention and the conventional example use an anode foil having a width of 5 mm and a length of 25 mm and a cathode foil having a width of 5 mm and a length of 35 mm, and a width of 6 mm between these anode foil and cathode foil.
A capacitor element was formed by winding manila paper having a thickness of 50 μm as a spacer and winding it.

【0019】次に、有機半導体材料として、本発明及び
従来例共に、N−メチル−3−nプロピルイミダゾルの
TCNQ錯体を用意した。この場合、本発明において
は、一旦圧延し、その後粉砕して30〜60メッシュの
顆粒状のTCNQ錯体を使用した。これに対し、従来例
においては、平均粒径100メッシュの粉末状のTCN
Q錯体を使用した。なお、これらの状態において、従来
例の粉末状のTCNQ錯体のカサ比重は、0.25g/
cm3 であったのに対し、本発明の顆粒状のTCNQ錯
体のカサ比重は、平均0.5g/cm3 と、従来例の倍
の値を示した。
Next, as the organic semiconductor material, a TCNQ complex of N-methyl-3-n-propylimidazole was prepared for both the present invention and the conventional example. In this case, in the present invention, a 30-mesh to 60-mesh granular TCNQ complex was used by rolling once and then pulverized. On the other hand, in the conventional example, a powdery TCN having an average particle size of 100 mesh was used.
The Q complex was used. In these conditions, the bulk specific gravity of the conventional powdery TCNQ complex was 0.25 g /
While was cm 3, and bulk density of the granular TCNQ complexes of the present invention, an average 0.5 g / cm 3, it exhibited a multiple of the conventional example.

【0020】そして、本発明及び従来例共に、直径5m
m、高さ10mmのアルミケースを用意し、コンデンサ
素子への含浸に必要な一定量(約90mg)のTCNQ
錯体をそれぞれ収納した。この場合、顆粒状のTCNQ
錯体を使用している本発明においては、カサ比重が大き
いことから、そのままの状態で必要な全量を収納可能で
あった。これに対し、従来例については、カサ比重が小
さく、全量を一度に収納することはできないため、約6
0mgのTCNQ錯体を一旦ケース内に収納し、ケース
内径より小さい丸棒で加圧した後、残りのTCNQ錯体
を追加収納した。この後、本発明及び従来例共にヒータ
上で加熱溶融し、予熱したコンデンサ素子を収納し、含
浸、冷却固化して、定格16V−10μFの電解コンデ
ンサを完成した。
In the present invention and the conventional example, the diameter is 5 m.
m, an aluminum case with a height of 10 mm is prepared, and a certain amount (about 90 mg) of TCNQ required for impregnation into the capacitor element
The complexes were each stored. In this case, the granular TCNQ
In the present invention using the complex, the bulk specific gravity was large, so that the entire necessary amount could be stored as it was. On the other hand, in the conventional example, since the bulk specific gravity is small and the whole amount cannot be stored at once, about 6
0 mg of the TCNQ complex was once stored in the case, pressurized with a round bar smaller than the inner diameter of the case, and then the remaining TCNQ complex was additionally stored. Thereafter, both of the present invention and the conventional example were heated and melted on a heater, the preheated capacitor element was stored, impregnated, and cooled and solidified to complete an electrolytic capacitor rated at 16 V-10 μF.

【0021】このようにして完成した本発明による電解
コンデンサ(本発明品A)と従来技術による電解コンデ
ンサ(比較品B)における静電容量分布、損失分布を調
査したところ、図4及び図5に示すような結果が得られ
た。図4及び図5から明らかなように、従来品Bに比べ
て、本発明品Aの静電容量特性及び損失特性は、共に高
いレベルで均一化されている。
The capacitance distribution and the loss distribution of the thus completed electrolytic capacitor according to the present invention (product A of the present invention) and the electrolytic capacitor according to the prior art (comparative product B) were investigated. FIG. 4 and FIG. The results shown were obtained. As is clear from FIGS. 4 and 5, both the capacitance characteristic and the loss characteristic of the product A of the present invention are made uniform at a higher level than the conventional product B.

【0022】なお、本発明は前記実施例に限定されるも
のではなく、例えば、有機半導体の種類は、N−メチル
−3−nプロピルイミダゾルのTCNQ錯体に限定され
るものではなく、N−nアミルイソキノリニウムTCN
Q錯体、N−nブチルイソキノリニウムTCNQ錯体、
またはその他の有機半導体を使用することも可能であ
り、その場合にも、前記実施例と同様の優れた作用効果
を得られるものである。また、本発明は、前記実施例の
寸法及び定格を有する電解コンデンサに限定されるもの
ではなく、多種多様な寸法及び定格を有する各種電解コ
ンデンサに適用可能であり、その場合にも、前記実施例
と同様の優れた作用効果を得られるものである。さら
に、本発明は、有機半導体材料の含浸工程において、有
機半導体材料を20〜70メッシュの粒径を有する顆粒
状にしてケースに収納することに特徴を有するものであ
るため、この特徴を有する製造方法である限り、他の各
種工程の具体的な構成は自由に選択可能であり、これら
の他の工程の構成に拘らず、前記実施例と同様の優れた
作用効果を得られるものである。
The present invention is not limited to the above-described embodiment. For example, the type of the organic semiconductor is not limited to the TCNQ complex of N-methyl-3-n-propylimidazole, n amyl isoquinolinium TCN
Q complex, Nnbutylisoquinolinium TCNQ complex,
Alternatively, other organic semiconductors can be used, and in this case, the same excellent operational effects as those of the above-described embodiment can be obtained. Further, the present invention is not limited to the electrolytic capacitors having the dimensions and ratings of the above-described embodiment, but is applicable to various electrolytic capacitors having various dimensions and ratings. The same excellent operational effects as those described above can be obtained. Further, the present invention is characterized in that the organic semiconductor material is stored in a case in the form of granules having a particle size of 20 to 70 mesh in the impregnation step of the organic semiconductor material. As long as the method is used, specific configurations of the other various steps can be freely selected, and the same excellent operational effects as those of the above embodiment can be obtained regardless of the configuration of the other steps.

【0023】[0023]

【発明の効果】以上述べたように、本発明においては、
有機半導体材料の含浸工程において、有機半導体材料を
20〜70メッシュの粒径を有する顆粒状にしてケース
に収納することにより、従来に比べて、コンデンサ素子
への有機半導体の含浸性を高いレベルで均一化し、静電
容量や損失などの諸特性を高いレベルで均一化すること
が可能であり、しかも、作業性及び作業環境の良好な、
優れた電解コンデンサの製造方法を提供することができ
る。
As described above, in the present invention,
In the step of impregnating the organic semiconductor material, the organic semiconductor material is stored in the case in the form of granules having a particle size of 20 to 70 mesh, so that the impregnation of the capacitor element with the organic semiconductor can be performed at a higher level than before. It is possible to equalize and uniformize various characteristics such as capacitance and loss at a high level.
An excellent method for manufacturing an electrolytic capacitor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う電解コンデンサの製造方法の一実
施例によって製造した電解コンデンサを示す断面図。
FIG. 1 is a cross-sectional view showing an electrolytic capacitor manufactured by one embodiment of a method for manufacturing an electrolytic capacitor according to the present invention.

【図2】図1の製造方法において形成したコンデンサ素
子の構造を示す展開斜視図。
FIG. 2 is an exploded perspective view showing the structure of the capacitor element formed in the manufacturing method of FIG.

【図3】図1の製造方法における有機半導体のケース内
への収納工程(a)及び加熱溶融工程(b)を示す模式
的断面図。
FIG. 3 is a schematic cross-sectional view showing a step (a) of storing an organic semiconductor in a case and a step (b) of heating and melting in the manufacturing method of FIG.

【図4】本発明の製造方法による電解コンデンサ(本発
明品A)と従来の製造方法による電解コンデンサ(従来
品B)における静電容量分布を示す特性図。
FIG. 4 is a characteristic diagram showing capacitance distributions of an electrolytic capacitor (product A of the present invention) according to a manufacturing method of the present invention and an electrolytic capacitor (conventional product B) of a conventional manufacturing method.

【図5】本発明の製造方法による電解コンデンサ(本発
明品A)と従来の製造方法による電解コンデンサ(従来
品B)における損失分布を示す特性図。
FIG. 5 is a characteristic diagram showing a loss distribution in an electrolytic capacitor (product A of the present invention) according to a manufacturing method of the present invention and an electrolytic capacitor (conventional product B) according to a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1…陽極箔 2…陰極箔 3…スペーサ 4…陽極端子 5…陰極端子 6…コンデンサ素子 7…ケース 8…顆粒状の有機半導体 9…溶融液状の有機半導体 10…固化状態の有機半導体 11…封口体 DESCRIPTION OF SYMBOLS 1 ... Anode foil 2 ... Cathode foil 3 ... Spacer 4 ... Anode terminal 6 ... Cathode terminal 6 ... Capacitor element 7 ... Case 8 ... Granular organic semiconductor 9 ... Molten liquid organic semiconductor 10 ... Solid state organic semiconductor 11 ... Sealing body

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 弁作用金属からなる陽極箔と陰極箔間に
スペーサを介在して巻回してコンデンサ素子を形成し、
このコンデンサ素子をケース内に収納すると共に、コン
デンサ素子に有機半導体材料を含浸して電解コンデンサ
を製造する方法において、 前記有機半導体材料を20〜70メッシュの平均粒径を
有する顆粒状にしてケース内に収納した後、加熱溶融し
てコンデンサ素子に含浸することを特徴とする電解コン
デンサの製造方法。
1. A capacitor element formed by winding a valve metal between an anode foil and a cathode foil with a spacer interposed therebetween to form a capacitor element.
A method for producing an electrolytic capacitor by accommodating the capacitor element in a case and impregnating the capacitor element with an organic semiconductor material, wherein the organic semiconductor material is formed into granules having an average particle diameter of 20 to 70 mesh. A method for producing an electrolytic capacitor, comprising: heating, melting, and impregnating a capacitor element.
JP23220291A 1991-08-19 1991-08-19 Manufacturing method of electrolytic capacitor Expired - Fee Related JP2811645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23220291A JP2811645B2 (en) 1991-08-19 1991-08-19 Manufacturing method of electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23220291A JP2811645B2 (en) 1991-08-19 1991-08-19 Manufacturing method of electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0547605A JPH0547605A (en) 1993-02-26
JP2811645B2 true JP2811645B2 (en) 1998-10-15

Family

ID=16935591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23220291A Expired - Fee Related JP2811645B2 (en) 1991-08-19 1991-08-19 Manufacturing method of electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2811645B2 (en)

Also Published As

Publication number Publication date
JPH0547605A (en) 1993-02-26

Similar Documents

Publication Publication Date Title
US6671167B2 (en) Solid electrolytic capacitor, and method for preparing the same
US7760487B2 (en) Doped ceramic powder for use in forming capacitor anodes
WO1998056021A1 (en) Solid electrolytic capacitor and process for producing the same
US3516150A (en) Method of manufacturing solid electrolytic capacitors
US8125769B2 (en) Solid electrolytic capacitor assembly with multiple cathode terminations
JP2811645B2 (en) Manufacturing method of electrolytic capacitor
US3260904A (en) Electrical capacitor having an oxide dielectric and a cooperating dielectric material
US4656560A (en) Organic semiconductor electrolyte capacitor and process for producing the same
JP5289669B2 (en) Method for producing fine powder of Nb compound, method for producing solid electrolytic capacitor using fine powder of Nb compound
JP3199096B2 (en) Solid electrolytic capacitors
JP3978544B2 (en) Solid electrolytic capacitor
JP4870868B2 (en) Electrolytic capacitor
JPH01205412A (en) Manufacture of solid electrolytic capacitor
US11763999B2 (en) Electrolytic capacitor and method for manufacturing same
JPH03231414A (en) Solid electrolytic capacitor
KR970004277B1 (en) Method of manufacturing solid electrolytic capacitor
JPH1187178A (en) Manufacture of solid electrolytic capacitor
JPH06181145A (en) Manufacture of electrolytic capacitor
JP3253126B2 (en) Solid electrolytic capacitors
JPH0547607A (en) Production of electrolytic capacitor
JPH062675U (en) Solid electrolytic capacitor
JPH03241726A (en) Electrolytic capacitor
JP2771767B2 (en) Method for manufacturing solid electrolytic capacitor
JP2002110465A (en) Solid-state electrolytic capacitor and method of manufacturing the same
JPH07115042A (en) Manufacture of electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080807

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080807

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090807

LAPS Cancellation because of no payment of annual fees