JP2002110465A - Solid-state electrolytic capacitor and method of manufacturing the same - Google Patents

Solid-state electrolytic capacitor and method of manufacturing the same

Info

Publication number
JP2002110465A
JP2002110465A JP2000302688A JP2000302688A JP2002110465A JP 2002110465 A JP2002110465 A JP 2002110465A JP 2000302688 A JP2000302688 A JP 2000302688A JP 2000302688 A JP2000302688 A JP 2000302688A JP 2002110465 A JP2002110465 A JP 2002110465A
Authority
JP
Japan
Prior art keywords
separator
electrolytic capacitor
capacitor
solid
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000302688A
Other languages
Japanese (ja)
Other versions
JP5030324B2 (en
Inventor
Akihiko Komatsu
昭彦 小松
Gakushi Tomono
学史 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rubycon Corp
Original Assignee
Rubycon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rubycon Corp filed Critical Rubycon Corp
Priority to JP2000302688A priority Critical patent/JP5030324B2/en
Publication of JP2002110465A publication Critical patent/JP2002110465A/en
Application granted granted Critical
Publication of JP5030324B2 publication Critical patent/JP5030324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state electrolytic capacitor having superior characteristics, which comprises a good dielectric film indispensable to obtain a good leakage current (LC) characteristic of the capacitor and a conductive high molecular electrolyte with which the capacitor is impregnated efficiently with reliability, and also to provide a method of manufacturing the same. SOLUTION: As for a separator which comprises a wound element, one which is formed of such a material whose surface characteristic can be converted from hydrophilic to hydrophobic depending on the capacitor manufacturing processes is used. The separator is controlled so as to have a hydrophilic surface when the dielectric film is formed and to have a hydrophobic surface at the time of polymerization or filling of the solid-state electrolyte. Preferably, the separator includes polyacrylamide or polyvinyl alcohol in the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解コンデン
サとその製造方法に関する。
The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、電子機器のデジタル化に伴って、
周波数特性の良好なコンデンサの要求が高まっている。
すなわち、低インピーダンスで且つ広い温度範囲で安定
した特性を示すコンデンサが要求されている。しかし、
一般の電解液を用いた電解コンデンサの場合、その抵抗
成分はイオン伝導に依存しているため、高周波数では容
量減少が著しく、また抵抗も大きいのでインピーダンス
を低くできないという問題がある。そこで、最近は電子
伝導体である導電性高分子を電解質に使用する固体電解
コンデンサが注目され、研究されている。
2. Description of the Related Art In recent years, with the digitization of electronic devices,
The demand for capacitors having good frequency characteristics is increasing.
That is, there is a demand for a capacitor having low impedance and exhibiting stable characteristics over a wide temperature range. But,
In the case of an electrolytic capacitor using a general electrolytic solution, since the resistance component depends on ion conduction, there is a problem that the capacity is significantly reduced at a high frequency and the impedance cannot be reduced because the resistance is large. Therefore, recently, a solid electrolytic capacitor using a conductive polymer, which is an electronic conductor, as an electrolyte has attracted attention and has been studied.

【0003】導電性高分子を使用した固体電解コンデン
サは、大きく分けて二つのタイプがある。一つは、陽極
体の表面に直に導電性高分子層を形成しその表面を導電
性ペーストでコーティングして陰極を接続するものであ
り、もう一つは、陽極、陰極、の二つの電極箔とその間
に位置するセパレータで構成された巻回素子の空隙に導
電性高分子を充填するものである。
A solid electrolytic capacitor using a conductive polymer is roughly classified into two types. One is to form a conductive polymer layer directly on the surface of the anode body, coat the surface with a conductive paste and connect the cathode, and the other is the two electrodes, anode and cathode. The conductive polymer is filled in the gap of the wound element composed of the foil and the separator located therebetween.

【0004】巻回素子に導電性高分子を充填する場合
は、モノマーを含浸した後に酸化剤を追含浸して化学的
に重合させて充填する方法と、モノマーと酸化剤の混合
溶液を速やかに巻回素子に含浸して重合させ充填する方
法が一般的である。巻回素子を使用する固体電解コンデ
ンサのセパレータとしては、セルロース製セパレータを
炭化させたもの、合成繊維、ガラス繊維等が知られてい
る。
[0004] When a conductive polymer is filled in a wound element, a method of impregnating with a monomer and then additionally impregnating with an oxidizing agent to chemically polymerize and fill the wound element, and a method of rapidly mixing a mixed solution of the monomer and the oxidizing agent are used. A method of impregnating the wound element, polymerizing and filling the wound element is general. Known separators of solid electrolytic capacitors using wound elements include carbonized cellulose separators, synthetic fibers, and glass fibers.

【0005】[0005]

【発明が解決しようとする課題】導電性高分子の原料と
なるモノマーは疎水性が強く、巻回素子にモノマーを十
分含浸させるためには、セパレータもモノマーと同様に
疎水性であることが必要であり重要な要件である。その
一方、陽極箔と陰極箔の間にセパレータを挟んで巻取っ
た巻回素子は、導電性高分子の重合工程すなわちモノマ
ーの含浸前に、素子を化成液と呼ばれる電解質溶液に浸
漬して所定の電圧を印加する化成処理を行う必要があ
る。これは、次の理由による。すなわち、陽極箔はその
表面に誘電体酸化皮膜を有する大きいシート状の材料を
裁断して、巻取り装置にかけられる。この巻取り工程
で、陽極箔と陰極箔、及びこれらの箔間にあるセパレー
タを巻取って、巻回素子が製造される。この一連の工程
のうち、裁断工程で、陽極箔は表面の誘電体皮膜のない
部分が露出される。また、巻取り工程では、巻取り時の
ストレスで誘電体皮膜に欠陥が生じる。このままの状態
で巻回素子に導電性高分子を充填すると、ショート状態
となり、最終製品はコンデンサとして機能しなくなる。
そこで、導電性高分子を重合し充填する前に、陽極箔の
誘電体皮膜を形成又は修復する必要がある。そのため
に、巻回素子を化成液に浸漬して化成処理を施す必要が
ある。この化成処理では、化成液が水溶液で構成されて
いるときが一番効率よく良質の誘電体皮膜を形成するこ
とができる。
The monomer used as the raw material of the conductive polymer has a strong hydrophobic property, and the separator must be hydrophobic like the monomer in order to sufficiently impregnate the monomer into the wound element. This is an important requirement. On the other hand, the wound element wound with a separator sandwiched between the anode foil and the cathode foil is immersed in an electrolyte solution called a chemical conversion solution before the step of polymerizing the conductive polymer, that is, before the impregnation of the monomer. It is necessary to perform a chemical conversion treatment for applying a voltage of This is for the following reason. That is, the anode foil is cut into a large sheet-like material having a dielectric oxide film on its surface, and is cut by a winding device. In this winding step, the wound element is manufactured by winding the anode foil, the cathode foil, and the separator between these foils. Of the series of steps, in the cutting step, a portion of the anode foil where no dielectric film is present is exposed. In the winding step, a defect occurs in the dielectric film due to stress at the time of winding. If the winding element is filled with a conductive polymer in this state, a short circuit occurs and the final product does not function as a capacitor.
Therefore, it is necessary to form or repair the dielectric film of the anode foil before polymerizing and filling the conductive polymer. For this purpose, it is necessary to perform a chemical conversion treatment by immersing the wound element in a chemical conversion liquid. In this chemical conversion treatment, a high quality dielectric film can be formed most efficiently when the chemical conversion solution is composed of an aqueous solution.

【0006】電解液を使用する通常の電解コンデンサの
場合、巻取り素子の化成処理は、巻取り素子に電解液を
含浸し容器に入れて封口した後、エージング処理(電解
液を化成液として高温下でコンデンサに所定の電圧を印
加する)を行うことで、簡単に行うことができる。とこ
ろが、固体電解コンデンサでは、アルミニウム電解コン
デンサのようなエージング工程では十分に誘電体皮膜を
形成及び修復できない。なぜなら、固体電解コンデンサ
の場合電解質が固体でありしかも疎水性であるため、従
来の電解液を使用した電解コンデンサのように電解液中
の水を使用して皮膜形成ができないことに加えて、外部
から皮膜修復に重要な水を供給することも難しいので、
誘電体となる良質な酸化皮膜を形成できないからであ
る。
In the case of a normal electrolytic capacitor using an electrolytic solution, the chemical conversion treatment of the winding element is performed by impregnating the winding element with the electrolytic solution, placing the container in a container, sealing the container, and then performing an aging treatment (using the electrolytic solution as a chemical conversion solution to a high temperature). (Applying a predetermined voltage to the capacitor underneath). However, in a solid electrolytic capacitor, a dielectric film cannot be sufficiently formed and repaired in an aging process such as an aluminum electrolytic capacitor. This is because, in the case of a solid electrolytic capacitor, since the electrolyte is solid and hydrophobic, a film cannot be formed using water in the electrolytic solution as in a conventional electrolytic capacitor using an electrolytic solution. It is difficult to supply water important for film restoration from
This is because a high-quality oxide film serving as a dielectric cannot be formed.

【0007】そこで、巻回素子を用いて固体電解コンデ
ンサを製造する場合、固体電解質を巻回素子に充填する
前に、巻取り時に生じた皮膜欠陥部や陽極箔裁断時に生
じた皮膜未形成の部分を陽極箔の化成皮膜(誘電体皮
膜)形成と同様の操作により、すなわち化成液と称する
電解質水溶液に巻回素子を浸漬し所定の電圧を印加し
て、誘電体となる酸化皮膜を形成しておくことが必要に
なる。
Therefore, in the case of manufacturing a solid electrolytic capacitor using the wound element, before filling the solid element with the solid electrolyte, a film defect portion generated at the time of winding and a film not formed at the time of cutting the anode foil are formed. The portion is immersed in an aqueous electrolyte solution called a chemical conversion solution by applying a predetermined voltage by applying the same operation as the formation of the chemical conversion film (dielectric film) of the anode foil to form an oxide film serving as a dielectric. It is necessary to keep.

【0008】電解液を使用する従来の電解コンデンサの
巻回素子で用いられるセルロース製のセパレータは、化
成液のような水系の電解液には非常によく馴染むが、導
電性高分子のモノマーの溶液で用いられる非水系の溶媒
にはほとんど濡れない。そのため、モノマーの拡散浸透
が不十分となり、思いどおりの固体電解質を得るのが困
難である。
The cellulose separator used in the winding element of a conventional electrolytic capacitor using an electrolytic solution is very well-suited to an aqueous electrolytic solution such as a chemical conversion solution, but is a solution of a conductive polymer monomer. Hardly wet with the non-aqueous solvent used in the above. For this reason, the diffusion and penetration of the monomer become insufficient, and it is difficult to obtain a solid electrolyte as desired.

【0009】このような不都合を解決したものとして、
炭化したセルロース製セパレータ(特開昭58−123
715号公報、特開平1−86514号公報、特開平1
1−345749号公報)が知られている。この炭化セ
ルロースセパレータは、モノマーの拡散浸透は良好であ
るが、セルロースの炭化時に加えられる熱で、リード線
のスズや鉛等のメッキが融解してしまうので、耐熱性に
優れてはいるが高価な金属、例えば銀のような材料のリ
ード線を採用しなければならなくなる。その上、炭化に
必要な高い温度で素子を処理すると、熱により陽極酸化
膜が破壊されるため、炭化後に更に化成処理を施さなけ
ればならない。
As a solution to such inconvenience,
Carbonized cellulose separator (JP-A-58-123)
715, JP-A-1-86514 and JP-A-1
No. 1-345749) is known. This carbonized cellulose separator has good diffusion and permeation of the monomer, but the heat applied during the carbonization of the cellulose melts the tin or lead plating on the lead wire, so it is excellent in heat resistance but expensive. A lead wire made of a material such as a suitable metal, for example, silver, must be employed. In addition, if the device is processed at a high temperature required for carbonization, the heat destroys the anodic oxide film, so that a further chemical conversion treatment must be performed after carbonization.

【0010】ガラス繊維製のセパレータを使用すること
(特開平2−186616号公報、特開平2−1866
17号公報)も注目されているが、ガラス繊維はコンデ
ンサのセパレータ材料としては脆弱であり、取り扱いが
難しいという問題をかかえている。
Use of a glass fiber separator (Japanese Patent Application Laid-Open Nos. 2-186616 and 2-1866)
No. 17) has also attracted attention, but glass fibers are fragile as a separator material for capacitors, and have the problem of being difficult to handle.

【0011】セパレータ材料がモノマーの重合に必要な
酸化剤と反応するのを防止するため合成繊維を主体とす
る不織布を使用すること(特開平10−340829号
公報)も知られており、この場合には巻回素子を80〜
100℃の水に浸漬してセパレータ中のバインダーの溶
解除去が行われているが、この水への浸漬では、巻取り
時に生じた皮膜欠陥部の修復も陽極箔裁断時に生じた皮
膜未形成部分における化成皮膜の形成も、行われること
はない。また、素子を巻取った後に化成処理工程を導入
しても、疎水性の特性を重視した合成繊維のセパレータ
は、水溶液である化成液との馴染みが悪く、化成液がコ
ンデンサ巻回素子の内部を含めて全体に浸透されないた
め、良質な誘電体皮膜の形成が困難である。
It is also known to use a nonwoven fabric mainly composed of synthetic fibers in order to prevent the separator material from reacting with an oxidizing agent necessary for the polymerization of the monomer (Japanese Patent Application Laid-Open No. Hei 10-340829). Has a winding element of 80 ~
The binder in the separator is dissolved and removed by immersion in water at 100 ° C. However, in this immersion, the film defective portion generated at the time of winding is also repaired, and the film-unformed portion generated at the time of cutting the anode foil is removed. No formation of a chemical conversion film is carried out. Also, even if a chemical conversion treatment step is introduced after winding the element, the synthetic fiber separator, which emphasizes hydrophobic properties, has poor compatibility with the chemical solution, which is an aqueous solution. Therefore, it is difficult to form a high-quality dielectric film because it does not penetrate into the whole, including.

【0012】固体電解コンデンサの製造に当たっては、
コンデンサの良好な漏れ電流(LC)特性を確保するた
めに良質の誘電体皮膜の形成が不可欠であり、また、コ
ンデンサ製造時に導電性高分子用のモノマーを巻回素子
中に高効率且つ確実に含浸させて重合させることが不可
欠である。ところが、巻回素子を使用し、この二つの条
件を両立し満足させて固体電解コンデンサを製造するこ
とは、これまで困難であった。
In manufacturing a solid electrolytic capacitor,
The formation of a high-quality dielectric film is indispensable to ensure a good leakage current (LC) characteristic of the capacitor, and the monomer for the conductive polymer is efficiently and reliably incorporated into the wound element during the production of the capacitor. It is essential to impregnate and polymerize. However, it has been difficult to manufacture a solid electrolytic capacitor using a wound element and satisfying and satisfying these two conditions.

【0013】そこで、本発明は、上記二つの条件をとも
に満足させることができる新しいセパレータを採用した
固体電解コンデンサと、その製造方法の提供を目的とす
るものである。
Accordingly, an object of the present invention is to provide a solid electrolytic capacitor employing a new separator capable of satisfying both of the above two conditions, and a method of manufacturing the same.

【0014】[0014]

【課題を解決するための手段】本発明の固体電解コンデ
ンサは、リード線を備えた陽極箔陰極箔それらの間
に挟み込まれているセパレータとともに巻回した素子に
固体電解質が充填されている固体電解コンデンサであっ
て、当該セパレータがコンデンサ製造過程に応じて、そ
の表面特性を親水性から疎水性に制御できる材料で構成
されていることを特徴とする。すなわちセパレータが、
その表面を誘電体皮膜形成過程では親水性とし、固定電
解質の充填過程では疎水性とすることができる特性を有
することを特徴とする。
Means for Solving the Problems A solid electrolytic capacitor of the present invention, the solid electrolyte is filled in the element wound with a separator which is sandwiched an anode foil and a cathode foil having a lead wire therebetween A solid electrolytic capacitor, wherein the separator is made of a material whose surface characteristics can be controlled from hydrophilic to hydrophobic according to the capacitor manufacturing process. That is, the separator is
The surface is characterized in that it can be made hydrophilic in the process of forming the dielectric film and hydrophobic in the process of filling the fixed electrolyte.

【0015】好ましくは、セパレータとして、コンデン
サ製造過程において、誘電体皮膜形成時にはその表面が
親水性であり、固体電解質の重合及び充填時には表面が
疎水性となる特性を有するものを使用する。そのような
特性を有するセパレータの一例として、ポリアクリルア
ミド(PAAm)又はポリビニルアルコール(PVA)
を表面に有するものを挙げることができる。ポリアクリ
ルアミドもポリビニルアルコールも熱処理を施すことで
親水性から疎水性に変えることができ、ポリビニルアル
コールの熱処理は、特に限定するわけではなく、ホルム
アルデヒドを含む雰囲気中で行うこともできる。
Preferably, a separator having a property that the surface is hydrophilic when a dielectric film is formed and the surface is hydrophobic when a solid electrolyte is polymerized and filled in a capacitor manufacturing process is used. As an example of a separator having such characteristics, polyacrylamide (PAAm) or polyvinyl alcohol (PVA)
Having on the surface. Both polyacrylamide and polyvinyl alcohol can be changed from hydrophilic to hydrophobic by heat treatment, and the heat treatment of polyvinyl alcohol is not particularly limited and can be performed in an atmosphere containing formaldehyde.

【0016】本発明の固体電解コンデンサの製造方法
は、リード線を備えた陽極箔と陰極箔をそれらの間に挟
み込まれているセパレータとともに巻回した素子に固体
電解質が充填されている固体電解コンデンサの製造方法
であって、親水性の表面特性を有するセパレータを用い
てコンデンサ巻回素子を作製し、この素子に熱処理を施
してセパレータの表面特性を疎水性にし、そして熱処理
後の素子を用いて固体電解質の重合及び充填工程を行う
ことを特徴とする。
A method for manufacturing a solid electrolytic capacitor according to the present invention is a solid electrolytic capacitor in which a solid electrolyte is filled in an element in which an anode foil and a cathode foil each having a lead wire are wound together with a separator sandwiched therebetween. The method of manufacturing, using a separator having a hydrophilic surface characteristics to produce a capacitor winding element, subjected to heat treatment to make the surface characteristics of the separator hydrophobic, and using the element after heat treatment It is characterized in that the solid electrolyte is polymerized and filled.

【0017】好ましくは、セパレータとして、上記のと
おり表面にポリアクリルアミド又はポリビニルアルコー
ルを有しているものを使用し、熱処理を130〜200
℃で10〜120分間行うことで表面特性を親水性から
疎水性に変える。ポリビニルアルコールの場合の熱処理
は、特に限定するわけではなく、ホルムアルデヒドを含
む雰囲気中で行うこともできる。
Preferably, a separator having polyacrylamide or polyvinyl alcohol on its surface as described above is used,
The surface properties are changed from hydrophilic to hydrophobic by performing the reaction at 10 ° C. for 10 to 120 minutes. The heat treatment in the case of polyvinyl alcohol is not particularly limited, and may be performed in an atmosphere containing formaldehyde.

【0018】[0018]

【発明の実施の形態】固体電解コンデンサの製造上重要
なポイントは、巻回素子のセパレータが溶液を吸い上げ
る力すなわち含浸能力にある。具体的には、以下の二つ
の条件が要求される。 (1)巻回素子のセパレータが水を溶媒とする化成液を
速やかに吸収して電圧が印加できる状態になり、そして
高効率で良好な陽極酸化皮膜(化成皮膜)を素子内部の
陽極箔に形成できること。 (2)非水系のモノマーと、水の存在しないこと、すな
わちいわゆる「ウォーターフリー」であることが要求さ
れる条件下で、巻回素子内部のセパレータにモノマーを
含浸させ、重合させて、導電率の高い導電性高分子を高
密度で充填できること。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An important point in the production of a solid electrolytic capacitor is the power of a separator of a wound element to suck up a solution, that is, the impregnating ability. Specifically, the following two conditions are required. (1) The separator of the wound element quickly becomes capable of absorbing a chemical conversion solution using water as a solvent to apply a voltage, and forms a highly efficient and good anodic oxide film (chemical conversion film) on the anode foil inside the element. What can be formed. (2) The separator inside the wound element is impregnated with the monomer and polymerized under the condition that the non-aqueous monomer and the absence of water, that is, the so-called “water-free” are required. High-density conductive polymer can be filled.

【0019】電解液を使用する通常の電解コンデンサの
巻回素子を、固体電解コンデンサに使用する場合、この
巻回素子は、陽極箔と陰極箔とセパレータで構成され
る。陽極、陰極の両方の電極箔は表面がエッチングさ
れ、非常に粗面化している(表面に微細な凸凹が存在す
る)ので、溶液等の含浸時には、その表面への物理的な
吸着と毛管現象による浸透、吸着が起きやすい。一方、
セパレータは、その表面を構成している材料に応じて、
種々の含浸液に対し様々な濡れ性(馴染み)を示すが、
水系の化成液と疎水系(非水系)のモノマー溶液の両方
の含浸を満足に行うこと、すなわち親水性と疎水性の両
方の能力を要求される。
When a winding element of an ordinary electrolytic capacitor using an electrolytic solution is used for a solid electrolytic capacitor, the winding element is composed of an anode foil, a cathode foil, and a separator. The surface of both the anode and cathode electrode foils is etched and very roughened (there are fine irregularities on the surface), so when impregnated with a solution, etc., physical adsorption on the surface and capillary action Penetration and adsorption are likely to occur. on the other hand,
The separator, depending on the material constituting its surface,
Shows various wettability (familiarity) with various impregnation liquids,
Satisfactory impregnation of both an aqueous chemical solution and a hydrophobic (non-aqueous) monomer solution is required, that is, both hydrophilic and hydrophobic capabilities are required.

【0020】本発明では、セパレータとして、その表面
特性を親水性から疎水性に制御できる材料で構成されて
いるものを使用する。具体的には、コンデンサ製造過程
において、誘電体皮膜形成時にはその表面が親水性であ
り、固体電解質の重合及び充填時には表面が疎水性とな
る特性を有するものを使用する。本発明で使用する巻回
素子は、セパレータが上記の如きあるものであることを
除き、電解液を使用する通常の電解コンデンサで用いら
れるのと同様のものでよい。
In the present invention, a separator composed of a material whose surface characteristics can be controlled from hydrophilic to hydrophobic is used. More specifically, in the capacitor manufacturing process, a capacitor whose surface is hydrophilic when a dielectric film is formed and whose surface is hydrophobic when a solid electrolyte is polymerized and filled is used. The wound element used in the present invention may be the same as that used in an ordinary electrolytic capacitor using an electrolytic solution, except that the separator is as described above.

【0021】陽極箔及び陰極箔をセパレータとともに巻
き取って作製した巻回素子は、陽極箔裁断時に生じたア
ルミニウム部と素子の巻取り時のストレスで生じた誘電
体皮膜の欠陥部を修復するために、化成液中に浸漬して
化成処理にかけられる。先に触れたように、電解液を使
用する電解コンデンサの場合、この化成処理は、巻回素
子に電解液を含浸し、これをケースに収容して封口した
後のエージング処理で、容易に行うことができる。とこ
ろが、固体電解コンデンサでは、このようなエージング
処理を適用することができない。と言うのは、導電性高
分子を電解質とする固体電解コンデンサの場合、導電性
高分子を形成するモノマーは疎水性であり水を含有して
いないので、電解液のように化成皮膜の形成あるいは修
復に必要となる水を効率的に供給できないからである。
The wound element manufactured by winding the anode foil and the cathode foil together with the separator is used to repair the aluminum portion generated at the time of cutting the anode foil and the defective portion of the dielectric film caused by the stress at the time of winding the element. Is then subjected to a chemical conversion treatment by immersion in a chemical conversion solution. As mentioned above, in the case of an electrolytic capacitor using an electrolytic solution, the chemical conversion treatment is easily performed by aging after impregnating the wound element with the electrolytic solution, storing the wound element in a case and sealing the case. be able to. However, such an aging process cannot be applied to a solid electrolytic capacitor. This is because, in the case of a solid electrolytic capacitor using a conductive polymer as an electrolyte, the monomer forming the conductive polymer is hydrophobic and does not contain water, so that a chemical conversion film is formed like an electrolytic solution or This is because water required for restoration cannot be supplied efficiently.

【0022】そこで、固体電解コンデンサを製造する場
合、固体電解質モノマーを巻回素子に充填する前に、化
成液と称する電解質水溶液に巻回素子を浸漬して素子中
のセパレータに化成液を含浸させた上で電圧を印加する
ことにより誘電体酸化皮膜を形成することが必要にな
る。このときに使用するのは水溶液であるから、巻回素
子中のセパレータに化成液を十分含浸させるためには、
セパレータ表面は親水性でなければならない。
Therefore, when a solid electrolytic capacitor is manufactured, before the solid electrolyte monomer is filled in the wound element, the wound element is immersed in an aqueous electrolyte solution called a chemical conversion solution to impregnate the separator in the element with the chemical liquid. Then, it is necessary to form a dielectric oxide film by applying a voltage. Since an aqueous solution is used at this time, in order to sufficiently impregnate the chemical conversion liquid into the separator in the wound element,
The separator surface must be hydrophilic.

【0023】化成処理を施した巻回素子のセパレータに
は、次に固体電解質を形成するモノマーを含む有機溶媒
溶液を含浸させる必要があり、このときにはセパレータ
表面は疎水性でなければならない。本発明においては、
化成液での処理時に親水性であったセパレータ表面を、
モノマー溶液の含浸前に疎水性に変えるようにする。
The separator of the wound element which has been subjected to the chemical conversion treatment needs to be impregnated with an organic solvent solution containing a monomer for forming a solid electrolyte. At this time, the surface of the separator must be hydrophobic. In the present invention,
The separator surface that was hydrophilic at the time of treatment with the chemical conversion solution,
Before the impregnation of the monomer solution, it should be made hydrophobic.

【0024】このように表面特性を親水性から疎水性に
制御できる材料で構成されたセパレータの例として、表
面にポリアクリルアミド(PAAm)又はポリビニルア
ルコール(PVA)を有するものを挙げることができ
る。ポリアクリルアミドは130〜200℃の温度で加
熱することで、親水性から疎水性に変えることができ
る。ポリビニルアルコールを親水性から疎水性に変える
場合にも、やはり130〜200℃の熱処理を施す。ま
た、ポリビニルアルコールは必要に応じてホルムアルデ
ヒドを含む雰囲気中で熱処理を行ってもよい。どちらの
材料を使用する場合にも、加熱温度が200℃を超える
と、コンデンサ素子(巻回素子)のリード線の構成金属
のスズや鉛等の融解が起きるので好ましくない。また、
加熱時間は、一般に10〜120分程度でよく、使用す
る加熱温度とコンデンサ素子の大きさによって異なる
が、例えば200℃での熱処理の場合、直径3mm、5
mm、及び10mmの素子について、それぞれ10分、
60分、及び120分程度の加熱処理が好適である。
As an example of such a separator made of a material whose surface characteristics can be controlled from hydrophilic to hydrophobic, those having polyacrylamide (PAAm) or polyvinyl alcohol (PVA) on the surface can be mentioned. Polyacrylamide can be changed from hydrophilic to hydrophobic by heating at a temperature of 130 to 200 ° C. Also in the case where polyvinyl alcohol is changed from hydrophilic to hydrophobic, a heat treatment at 130 to 200 ° C. is performed. The polyvinyl alcohol may be subjected to a heat treatment in an atmosphere containing formaldehyde as needed. Regardless of which material is used, if the heating temperature exceeds 200 ° C., melting of tin, lead, etc., which are constituent metals of the lead wires of the capacitor element (winding element), is not preferable. Also,
The heating time may be generally about 10 to 120 minutes, and varies depending on the heating temperature to be used and the size of the capacitor element.
mm and 10 mm elements for 10 minutes each.
Heat treatment for about 60 minutes and about 120 minutes is preferable.

【0025】本発明におけるセパレータとしては、電解
液を使用する通常の電解コンデンサで使用されるマニラ
麻等のセルロース製のセパレータの表面に、上述のポリ
アクリルアミドあるいはポリビニルアルコールのように
親水性から疎水性に変えることができる材料を付着させ
たものを、好ましく使用することができる。もちろん、
セルロース製に限らず、表面にポリアクリルアミド等を
有しセパレータとして使用可能な材料であれば、どのよ
うなものを使用しても差し支えない。
As the separator in the present invention, the surface of a cellulose separator such as Manila hemp used in an ordinary electrolytic capacitor using an electrolytic solution is changed from hydrophilic to hydrophobic like the above-mentioned polyacrylamide or polyvinyl alcohol. A material to which a changeable material is attached can be preferably used. of course,
The material is not limited to cellulose, and any material having a polyacrylamide or the like on the surface and usable as a separator may be used.

【0026】セパレータ表面を疎水性にしたならば、高
分子電解質のモノマーを含む溶液を巻回素子のセパレー
タに含浸させ、重合させて高分子電解質を生成させる。
本発明では、どのような高分子電解質を用いてもよく、
一例として、基本骨格となるモノマーを酸化剤で活性化
し重合させること(酸化重合)で高分子量体を生成する
ものを挙げることができる。このような導電性高分子の
重合方法は、(1)モノマーと酸化剤をおのおの別々に
順次巻回素子に含浸してから重合を行う方法(例えば、
モノマーの含浸と溶媒の乾燥に引き続き、酸化剤の含
浸、加温放置(重合)という一連の工程を経るもの)、
及び(2)低温でモノマーと酸化剤を混合した混合液を
巻回素子に含浸し、加温して重合させるもの、の二つに
大別される。このような酸化重合で生成される導電性高
分子の代表例としては、複素環化合物であるピロールや
その誘導体、チオフェンやその誘導体類などの重合体を
挙げることができる。
After the surface of the separator is made hydrophobic, a solution containing a monomer of the polymer electrolyte is impregnated into the separator of the spirally wound element and polymerized to form a polymer electrolyte.
In the present invention, any polymer electrolyte may be used,
As an example, there can be cited one that produces a high molecular weight substance by activating and polymerizing a monomer serving as a basic skeleton with an oxidizing agent (oxidative polymerization). Such a method of polymerizing a conductive polymer includes (1) a method in which a monomer and an oxidizing agent are each separately and sequentially impregnated into a wound element and then polymerized (for example,
A series of steps of impregnation of the monomer and drying of the solvent, followed by impregnation of the oxidizing agent, and heating (polymerization))
And (2) a method in which a wound element is impregnated with a mixture of a monomer and an oxidizing agent at a low temperature, and is heated and polymerized. Representative examples of the conductive polymer generated by such oxidative polymerization include polymers such as pyrrole, which is a heterocyclic compound, a derivative thereof, and thiophene, and derivatives thereof.

【0027】[0027]

【実施例】次に、実施例により本発明を更に説明する
が、本発明がこれらの実施例に限定されるものでないこ
とは言うまでもない。
EXAMPLES Next, the present invention will be further described with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.

【0028】(実施例1)アルミニウム電極箔と、表面
にポリアクリルアミドを付着させたセパレータを使用し
て、通常のアルミニウム電解コンデンサの製造に用いる
のと同様の巻回素子(10WV‐47μFのφ6mmコ
ンデンサ用のもの)を作製した。この巻回素子を10w
t%アジピン酸アンモニウム水溶液に浸漬し、80℃及
び印加電圧20Vの条件で10分間の化成処理を施し、
水で洗浄後、乾燥させた。
Example 1 A wound element (10 WV-47 μF φ6 mm capacitor) similar to that used in the manufacture of a normal aluminum electrolytic capacitor using an aluminum electrode foil and a separator having polyacrylamide adhered to the surface. One). This winding element is 10w
immersed in an aqueous solution of t% ammonium adipate, subjected to a chemical conversion treatment at 80 ° C. and an applied voltage of 20 V for 10 minutes,
After washing with water, it was dried.

【0029】続いて、巻回素子に空気中190℃で1時
間の熱処理を施してから、3,4‐エチレンジオキシチ
オフェン(モノマー)とパラトルエンスルホン酸鉄(I
II)(酸化剤)をイソプロピルアルコール希釈剤中に
含む溶液(モノマー:酸化剤:希釈剤質量比=1:4:
4)を含浸させ、60℃で2時間放置して、モノマーを
重合させそして巻回素子に固体電解質を充填した。次い
で、この巻回素子をアルミニウム製のケースに収容し、
弾性封口体で封口してから、105℃で2時間定格電圧
を印加してエージングを行い、固体電解コンデンサを作
製した。
Subsequently, the wound element was subjected to a heat treatment in air at 190 ° C. for 1 hour, and then 3,4-ethylenedioxythiophene (monomer) and iron p-toluenesulfonate (I
II) Solution containing (oxidizing agent) in isopropyl alcohol diluent (mass ratio of monomer: oxidizing agent: diluent = 1: 4:
4) and allowed to stand at 60 ° C. for 2 hours to polymerize the monomer and fill the wound element with the solid electrolyte. Next, this winding element is housed in an aluminum case,
After sealing with an elastic sealing body, aging was performed by applying a rated voltage at 105 ° C. for 2 hours to produce a solid electrolytic capacitor.

【0030】(実施例2)ポリアクリルアミドに代えて
重合度1700のポリビニルアルコールを使用したこ
と、そして化成処理後の巻回素子の熱処理をホルムアル
デヒド蒸気中において190℃で1時間行ったことを除
き、実施例1と同様に固体電解コンデンサを作製した。
(Example 2) Except that polyvinyl alcohol having a polymerization degree of 1700 was used instead of polyacrylamide, and that the wound element after the chemical conversion treatment was heat-treated at 190 ° C. for 1 hour in formaldehyde vapor. A solid electrolytic capacitor was manufactured in the same manner as in Example 1.

【0031】(比較例1)ポリアクリルアミドでコーテ
ィングしていないセルロース繊維製セパレータを使用
し、化成処理後の熱処理を行わずにモノマー溶液を含浸
したことを除き、実施例1と同様に固体電解コンデンサ
を作製した。
Comparative Example 1 A solid electrolytic capacitor was produced in the same manner as in Example 1, except that a separator made of cellulose fiber not coated with polyacrylamide was used, and the monomer solution was impregnated without performing a heat treatment after the chemical conversion treatment. Was prepared.

【0032】(比較例2)ポリアクリルアミドでコーテ
ィングしていないセルロース繊維製セパレータを250
℃で20分間加熱することで炭化させたものを使用し、
そして化成処理後の熱処理を行わずにモノマー溶液を含
浸したことを除き、実施例1と同様に固体電解コンデン
サを作製した。
(Comparative Example 2) A cellulose fiber separator not coated with polyacrylamide was used for 250
Use what was carbonized by heating at ℃ 20 minutes,
Then, a solid electrolytic capacitor was produced in the same manner as in Example 1, except that the monomer solution was impregnated without performing the heat treatment after the chemical conversion treatment.

【0033】(比較例3)ポリアクリルアミドでコーテ
ィングしていないポリエステル繊維製セパレータを使用
し、化成処理後の熱処理を行わずにモノマー溶液を含浸
したことを除き、実施例1と同様に固体電解コンデンサ
を作製した。
Comparative Example 3 A solid electrolytic capacitor was manufactured in the same manner as in Example 1 except that a polyester fiber separator not coated with polyacrylamide was used, and the monomer solution was impregnated without performing a heat treatment after the chemical conversion treatment. Was prepared.

【0034】各例で得られた固体電解コンデンサの初期
特性として、120Hzでの容量、漏れ電流(LC)
量、及び100kHzでの等価直列抵抗(ESR)を測
定し、表1に示す結果を得た。
The initial characteristics of the solid electrolytic capacitor obtained in each example include a capacity at 120 Hz and a leakage current (LC).
The amount and the equivalent series resistance (ESR) at 100 kHz were measured, and the results shown in Table 1 were obtained.

【0035】[0035]

【表1】 [Table 1]

【0036】この結果から明らかなとおり、実施例1、
2の固体電解コンデンサはいずれの特性とも良好であっ
たのに対し、比較例1〜3のものはいずれかの特性が不
足することが示された。
As is clear from the results, Example 1,
It was shown that the solid electrolytic capacitor of No. 2 was good in any of the characteristics, whereas those of Comparative Examples 1 to 3 were inadequate in any of the characteristics.

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
コンデンサ巻回素子のセパレータの最初は親水性の表面
が、化成処理時の水系化成液の十分な吸収と酸化皮膜の
効率的な形成を可能とし、且つその後の熱処理によって
疎水化した表面が、導電性高分子用モノマーを含む有機
溶剤溶液の十分な吸収を可能とし、それにより重合で生
成した導電性高分子の充填を容易にする。こうして、本
発明は巻回素子を使用して製造される特性の優れた固体
電解コンデンサの提供を可能にする。
As described above, according to the present invention,
At first, the hydrophilic surface of the separator of the capacitor winding element allows sufficient absorption of the aqueous chemical conversion solution during the chemical conversion treatment and efficient formation of the oxide film, and the surface that has been rendered hydrophobic by the subsequent heat treatment becomes conductive. The organic solvent solution containing the monomer for a conductive polymer can be sufficiently absorbed, thereby facilitating the filling of the conductive polymer generated by polymerization. Thus, the present invention makes it possible to provide a solid electrolytic capacitor having excellent characteristics manufactured using a wound element.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リード線を備えた陽極箔と陰極箔をそれ
らの間に挟み込まれているセパレータとともに巻回した
素子に固体電解質が充填されている固体電解コンデンサ
であって、当該セパレータがコンデンサ製造過程に応じ
て、その表面特性を親水性から疎水性に制御できる材料
で構成されていることを特徴とする固体電解コンデン
サ。
1. A solid electrolytic capacitor in which a solid electrolyte is filled in an element in which an anode foil and a cathode foil provided with a lead wire are wound together with a separator sandwiched between the anode foil and the cathode foil. A solid electrolytic capacitor comprising a material whose surface characteristics can be controlled from hydrophilic to hydrophobic depending on the process.
【請求項2】 前記セパレータがコンデンサ製造過程に
おいて、誘電体皮膜形成時にはその表面が親水性であ
り、固体電解質の重合及び充填時には表面が疎水性とな
る特性を有するものである、請求項1記載の固体電解コ
ンデンサ。
2. The separator according to claim 1, wherein the surface of the separator is hydrophilic when a dielectric film is formed and the surface is hydrophobic when a solid electrolyte is polymerized and filled in a capacitor manufacturing process. Solid electrolytic capacitors.
【請求項3】 リード線を備えた陽極箔及び陰極箔とそ
れらの間に挟み込まれているセパレータを巻回した素子
に固体電解質が充填されている固体電解コンデンサであ
って、当該セパレータがポリアクリルアミド又はポリビ
ニルアルコールを表面に有することを特徴とする固体電
解コンデンサ。
3. A solid electrolytic capacitor in which an element obtained by winding an anode foil and a cathode foil provided with a lead wire and a separator sandwiched therebetween is filled with a solid electrolyte, wherein the separator is made of polyacrylamide. Alternatively, a solid electrolytic capacitor having polyvinyl alcohol on its surface.
【請求項4】 リード線を備えた陽極箔と陰極箔をそれ
らの間に挟み込まれているセパレータとともに巻回した
素子に固体電解質が充填されている固体電解コンデンサ
の製造方法であって、親水性の表面特性を有するセパレ
ータを用いてコンデンサ巻回素子を作製し、この素子に
熱処理を施してセパレータの表面特性を疎水性にし、そ
して熱処理後の素子を用いて固体電解質の重合及び充填
工程を行うことを特徴とする固体電解コンデンサの製造
方法。
4. A method for manufacturing a solid electrolytic capacitor in which a solid electrolyte is filled in an element in which an anode foil and a cathode foil provided with a lead wire are wound together with a separator sandwiched between the anode foil and the cathode foil. A capacitor wound element is manufactured using a separator having the surface characteristics described above, heat treatment is performed on the element to make the surface characteristics of the separator hydrophobic, and the solid electrolyte is polymerized and filled using the element after the heat treatment. A method for manufacturing a solid electrolytic capacitor, comprising:
【請求項5】 前記セパレータが表面にポリアクリルア
ミド又はポリビニルアルコールを有している、請求項4
記載の固体電解質の製造方法。
5. The separator according to claim 4, wherein said separator has polyacrylamide or polyvinyl alcohol on its surface.
A method for producing the solid electrolyte according to the above.
【請求項6】 前記熱処理を130〜200℃で10〜
120分間行う、請求項4又は5記載の固体電解質の製
造方法。
6. The heat treatment is performed at 130 to 200 ° C. for 10 to 10.
The method for producing a solid electrolyte according to claim 4, wherein the method is performed for 120 minutes.
JP2000302688A 2000-10-02 2000-10-02 Manufacturing method of solid electrolytic capacitor Expired - Lifetime JP5030324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000302688A JP5030324B2 (en) 2000-10-02 2000-10-02 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000302688A JP5030324B2 (en) 2000-10-02 2000-10-02 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2002110465A true JP2002110465A (en) 2002-04-12
JP5030324B2 JP5030324B2 (en) 2012-09-19

Family

ID=18783999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000302688A Expired - Lifetime JP5030324B2 (en) 2000-10-02 2000-10-02 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5030324B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007235105A (en) * 2006-02-06 2007-09-13 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JP2008098494A (en) * 2006-10-13 2008-04-24 Matsushita Electric Ind Co Ltd Aluminum electrolytic capacitor
JP2008294231A (en) * 2007-05-24 2008-12-04 Nichicon Corp Solid-state electrolytic capacitor and manufacturing method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031518A (en) * 1989-05-29 1991-01-08 Nippon Chemicon Corp Solid electrolytic capacitor
JPH0395911A (en) * 1989-09-08 1991-04-22 Nippon Chemicon Corp Solid electrolytic capacitor
JPH0435013A (en) * 1990-05-31 1992-02-05 Sanyo Electric Co Ltd Organic semiconductor solid electrolytic capacitor
JPH0536575A (en) * 1991-07-31 1993-02-12 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacture
JPH08273984A (en) * 1995-03-30 1996-10-18 Nippon Koudoshi Kogyo Kk Electrolytic capacitor
JP2000173862A (en) * 1998-12-01 2000-06-23 Rubycon Corp Electrolytic capacitor separator and electrolytic capacitor provided therewith
JP2000228331A (en) * 1999-02-04 2000-08-15 Sanyo Electric Co Ltd Manufacture of electrolytic capacitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031518A (en) * 1989-05-29 1991-01-08 Nippon Chemicon Corp Solid electrolytic capacitor
JPH0395911A (en) * 1989-09-08 1991-04-22 Nippon Chemicon Corp Solid electrolytic capacitor
JPH0435013A (en) * 1990-05-31 1992-02-05 Sanyo Electric Co Ltd Organic semiconductor solid electrolytic capacitor
JPH0536575A (en) * 1991-07-31 1993-02-12 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacture
JPH08273984A (en) * 1995-03-30 1996-10-18 Nippon Koudoshi Kogyo Kk Electrolytic capacitor
JP2000173862A (en) * 1998-12-01 2000-06-23 Rubycon Corp Electrolytic capacitor separator and electrolytic capacitor provided therewith
JP2000228331A (en) * 1999-02-04 2000-08-15 Sanyo Electric Co Ltd Manufacture of electrolytic capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007235105A (en) * 2006-02-06 2007-09-13 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JP4704366B2 (en) * 2006-02-06 2011-06-15 パナソニック株式会社 Electrolytic capacitor
JP2008098494A (en) * 2006-10-13 2008-04-24 Matsushita Electric Ind Co Ltd Aluminum electrolytic capacitor
JP2008294231A (en) * 2007-05-24 2008-12-04 Nichicon Corp Solid-state electrolytic capacitor and manufacturing method therefor

Also Published As

Publication number Publication date
JP5030324B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
US5914852A (en) Solid electrolyte capacitor and its manufacture
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
WO1998056021A1 (en) Solid electrolytic capacitor and process for producing the same
JP2009266926A (en) Solid-state electrolytic capacitor and method of manufacturing the same
US6878483B2 (en) Separator for solid electrolyte condenser and solid electrolyte condenser using the same
CA1086839A (en) Method of making porous polymer containing separators for electrolytic electrical devices
JP3319501B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3965871B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5030324B2 (en) Manufacturing method of solid electrolytic capacitor
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP2000082638A (en) Solid electrolytic capacitor and its manufacture
JP3978544B2 (en) Solid electrolytic capacitor
JP2001332451A (en) Winding-type electrolytic capacitor
JP3991557B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3606137B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4269351B2 (en) Manufacturing method of solid electrolytic capacitor
JP5117655B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001110681A (en) Solid electrolytic capacitor and method for manufacturing the same
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
JPH1187178A (en) Manufacture of solid electrolytic capacitor
JP4646462B2 (en) Electrolytic capacitor
JP2001237145A (en) Manufacturing method of solid-state electrolytic capacitor
JPH11274007A (en) Solid electrolytic capacitor and manufacture thereof
JP4642257B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110113

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250