JP2795562B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JP2795562B2
JP2795562B2 JP3230419A JP23041991A JP2795562B2 JP 2795562 B2 JP2795562 B2 JP 2795562B2 JP 3230419 A JP3230419 A JP 3230419A JP 23041991 A JP23041991 A JP 23041991A JP 2795562 B2 JP2795562 B2 JP 2795562B2
Authority
JP
Japan
Prior art keywords
temperature
dielectric
resonance frequency
ceramic composition
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3230419A
Other languages
Japanese (ja)
Other versions
JPH0574225A (en
Inventor
竜也 井上
博司 加賀田
純一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3230419A priority Critical patent/JP2795562B2/en
Priority to US07/941,961 priority patent/US5350639A/en
Publication of JPH0574225A publication Critical patent/JPH0574225A/en
Application granted granted Critical
Publication of JP2795562B2 publication Critical patent/JP2795562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、低温焼成が可能であ
り、かつ大きな比誘電率を持ち、マイクロ波域での無負
荷Qが大きく、共振周波数の温度変化率が小さい誘電体
磁器組成物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition which can be fired at a low temperature, has a large relative dielectric constant, has a large unloaded Q in a microwave region, and has a small temperature change rate of a resonance frequency. It is.

【0002】[0002]

【従来の技術】近年、マイクロ波帯域の電波を利用した
自動車電話、可搬型電話などの移動体通信機、あるいは
衛星放送などの進展にともない機器の小型化が要求され
ている。このためには、機器を構成する個々の部品が小
型化される必要があり、その手段の一つに、帯域通過フ
ィルターとして誘電体材料を使ったフィルター(当業界
では一般的にLCフィルターと呼んでいる。)が提案さ
れている。
2. Description of the Related Art In recent years, there has been a demand for miniaturization of mobile communication devices such as automobile telephones and portable telephones utilizing radio waves in the microwave band, and devices with the development of satellite broadcasting. For this purpose, individual components that make up the equipment must be miniaturized. One of the means is to use a filter using a dielectric material as a band-pass filter (this industry).
Then, it is generally called an LC filter. ) Has been proposed.

【0003】小型のLCフィルターを作製するには、高
い誘電率を有する材料が必要である。また、それ以外に
もマイクロ波域での無負荷Qが大きいこと、誘電率の温
度変化率が小さいこと、使用する導体材料の選択や同時
焼成のために焼成温度が低いことが必要である。一方、
導体の電導率は小さいことが求められているため、Cu
やAgを使用することが望ましい。CuとAgを比較す
ると、電導率は僅かにAgの方が高いが、Agは水分の
存在下でマイグレーションを起こし、信頼性の点で問題
がある。従って、導電材料としてはCuが使用できるこ
とが望ましい。Cuを使用するためには、Cuが酸化し
ない雰囲気で焼成した場合にも、誘電体の誘電特性が劣
化しないことが必要である。
In order to manufacture a small LC filter, a material having a high dielectric constant is required. In addition, it is necessary that the unloaded Q in the microwave region is large, the temperature change rate of the dielectric constant is small, and the firing temperature is low for selection of the conductor material to be used and simultaneous firing. on the other hand,
Since the conductivity of the conductor is required to be small, Cu
It is desirable to use Ag or Ag. When Cu and Ag are compared, the conductivity is slightly higher in Ag, but Ag causes migration in the presence of moisture, which is problematic in terms of reliability. Therefore, it is desirable that Cu can be used as the conductive material. In order to use Cu, it is necessary that the dielectric properties of the dielectric do not deteriorate even when firing in an atmosphere in which Cu is not oxidized.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来、
マイクロ波域で利用されてきたBa(Mg1/3
2/3 )O3、Ba(Zn1/3 Ta1/3 )O3等の誘電体
材料は、焼成温度が1300℃以上と高く、CuやAg
を電極として使用できず、逆に基板などで利用されてい
る焼成温度の低い材料は誘電率が10以下と小さく小型
のLCフィルター材料としては利用することが困難であ
る。
However, conventionally,
Ba (Mg 1/3 T) used in the microwave region
Dielectric materials such as a 2/3 ) O 3 and Ba (Zn 1/3 Ta 1/3 ) O 3 have firing temperatures as high as 1300 ° C. or higher, and Cu and Ag.
Cannot be used as an electrode, and conversely, a material having a low firing temperature used for a substrate or the like has a small dielectric constant of 10 or less and is difficult to use as a small LC filter material.

【0005】本発明は、前記従来技術の課題を解決する
ため、低温焼成ができ、かつ大きな比誘電率を持ち、マ
イクロ波域での無負荷Qが大きく、共振周波数の温度変
化率の小さい誘電体磁器組成物を提供することを目的と
する。
In order to solve the above-mentioned problems of the prior art, the present invention provides a dielectric material which can be fired at a low temperature, has a large relative dielectric constant, has a large unloaded Q in the microwave region, and has a small temperature change rate of the resonance frequency. It is an object to provide a body porcelain composition.

【0006】[0006]

【課題を解決するための手段】この目的を達成するた
め、本発明の第1発明の誘電体磁器組成物は、主成分
が、一般式(Bi23X(Nb251-Xで表わされる
磁器組成物において、Xが0.48≦X≦0.51の範
囲内であり、かつ副成分として、少なくともV成分を含
み、その量をBiとNbの合計の原子数に対するVの原
子数の比[V/(Bi+Nb)]で表わして、0<V/
(Bi+Nb)≦0.02の範囲内であることを特徴と
する。
In order to achieve this object, the dielectric ceramic composition of the first invention of the present invention has a main component represented by the general formula (Bi 2 O 3 ) X (Nb 2 O 5 ) 1 In the porcelain composition represented by -X , X is in the range of 0.48 ≦ X ≦ 0.51 and contains at least a V component as a subcomponent, and its amount is based on the total number of atoms of Bi and Nb. Field of V
Expressed as a ratio [V / (Bi + Nb)] of child numbers , 0 <V /
(Bi + Nb) ≦ 0.02.

【0007】また本発明の第2発明の誘電体磁器組成物
は、前記の誘電体磁器組成物に、さらに第3成分として
Cuを含み、その量をBiとNbの合計の原子数に対す
るCuの原子数の比[Cu/(Bi+Nb)]で表わし
て、0<Cu/(Bi+Nb)≦0.01の範囲内であ
ることを特徴とする。
[0007] The dielectric ceramic composition of the second invention of the present invention further comprises Cu as a third component in the above-mentioned dielectric ceramic composition, and its amount is based on the total number of atoms of Bi and Nb.
It is characterized by being in the range of 0 <Cu / (Bi + Nb) ≦ 0.01, expressed as a ratio of the number of Cu atoms [Cu / (Bi + Nb)].

【0008】[0008]

【作用】前記本発明の第1発明の構成によれば、一般式
が(Bi2 3 X (Nb2 5 1-X で表わされる磁
器組成物に、V(バナジウム)を加えることにより、低
温焼成ができ、かつ比誘電率が大きく、共振周波数の温
度変化率が小さく、無負荷Qの大きい特性を持つ誘電体
磁器組成物を得ることができる。
According to the first aspect of the present invention, the general formula
Is (BiTwoOThree)X(NbTwoO Five)1-XMagnet represented by
By adding V (vanadium) to the vessel composition,
It can be fired at high temperature and has a large relative dielectric constant.
Dielectric material with low rate of change and large no-load Q
A porcelain composition can be obtained.

【0009】さらに、本発明の第2発明の構成によれ
ば、Cu(銅)を加えることにより、低温焼成ができ、
かつより比誘電率が大きく、共振周波数の温度変化率が
小さく、無負荷Qの大きい特性を持ち、さらに優れた誘
電体磁器組成物を得ることができる。
Further, according to the structure of the second aspect of the present invention, low-temperature sintering can be performed by adding Cu (copper),
Further, a dielectric ceramic composition having a larger relative dielectric constant, a smaller rate of change in resonance frequency with temperature, a large unloaded Q, and a more excellent dielectric ceramic composition can be obtained.

【0010】[0010]

【実施例】以下実施例を用いて本発明をさらに具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0011】実施例1 出発原料として高純度なBi2 3 、Nb2 5 、V2
5 を用いた。これらを純度補正を行なった上で所定量
を秤量し、安定化ジルコニア製玉石を用い純水を溶媒と
してボールミルで17時間混合した。これを吸引ろ過し
て水分の大半を分離した後乾燥し、アルミナるつぼ中に
入れ700〜800℃で2時間仮焼した。次に仮焼物を
アルミナ乳鉢で粗砕し、さらに安定化ジルコニア製玉石
を用い純水を溶媒としてボールミルで17時間粉砕し、
吸引ろ過して水分の大半を分離した後乾燥した。これを
アルミナ乳鉢で粉砕し、その中へバインダーとしてポリ
ビニルアルコール6wt%水溶液を粉体量の6wt%加え、
32メッシュふるいを通して造粉し、成形圧力200kg
/cm2 で、直径13mm高さ約5mmの円柱状に成形した。
成形物を空気中で600℃まで昇温し2時間保持するこ
とによりポリビニルアルコール分をバーンアウトし、冷
却後これをマグネシア磁器容器に移し、同質の蓋をし、
所定の温度まで毎時400℃で昇温し、2時間保持後毎
時400℃で降温した。
Example 1 High-purity Bi 2 O 3 , Nb 2 O 5 , V 2
The O 5 was used. These were corrected for purity, weighed in a predetermined amount, and mixed with a ball mill for 17 hours using stabilized zirconia balls and pure water as a solvent. This was suction-filtered to separate most of the water, dried and placed in an alumina crucible and calcined at 700 to 800 ° C for 2 hours. Next, the calcined material was coarsely crushed in an alumina mortar, and further crushed in a ball mill for 17 hours using stabilized zirconia cobblestone with pure water as a solvent,
After suction filtration, most of the water was separated and dried. This is pulverized in an alumina mortar, and a 6 wt% aqueous solution of polyvinyl alcohol as a binder is added thereto in an amount of 6 wt% of the powder amount,
Powdered through a 32 mesh sieve, molding pressure 200kg
/ Cm 2 and formed into a column having a diameter of 13 mm and a height of about 5 mm.
The molded product was heated to 600 ° C. in the air and held for 2 hours to burn out the polyvinyl alcohol, and after cooling, transferred to a magnesia porcelain container, covered with a homogeneous lid,
The temperature was raised to a predetermined temperature at 400 ° C./hour, and after holding for 2 hours, the temperature was lowered at 400 ° C./hour.

【0012】得られた焼結体を誘電体共振法による測定
から共振周波数と無負荷Qを求め、焼結体の寸法と共振
周波数より比誘電率を算出した。共振周波数は4〜5G
Hzであった。また、本発明の実施例における誘電体磁
器組成物の温度特性は、図1に示すような上に凸型とな
るので、その温度変化率は−25℃〜85℃の温度範囲
の共振周波数を測定し、20℃を基準として、20℃よ
り高温側をτfH、低温側をτfLと表わした。
From the obtained sintered body, the resonance frequency and the no-load Q were obtained from the measurement by the dielectric resonance method, and the relative permittivity was calculated from the dimensions of the sintered body and the resonance frequency. Resonant frequency is 4-5G
Hz. Further, the temperature characteristics of the dielectric ceramic composition in the example of the present invention are upwardly convex as shown in FIG. 1, so that the temperature change rate is the resonance frequency in the temperature range of −25 ° C. to 85 ° C. The temperature was measured and, with reference to 20 ° C., the temperature higher than 20 ° C. was expressed as τfH, and the temperature lower than 20 ° C. was expressed as τfL.

【0013】表1に本実施例の組成範囲及び周辺組成の
成分、焼成温度、焼成雰囲気、比誘電率、Q、共振周波
数の温度変化率τfH、τfLを示す。同表において、Xは
前記一般式における係数を示す。また、同表の試料N
o.の欄に*印をつけたものは比較例である。
Table 1 shows the composition range and peripheral composition components, firing temperature, firing atmosphere, relative dielectric constant, Q, and temperature change rates τfH and τfL of the resonance frequency of this embodiment. In the table, X represents a coefficient in the general formula. The sample N in the table
o. Those marked with * in the column are comparative examples.

【0014】[0014]

【表1】 [Table 1]

【0015】表1から明らかな通り、試料No.1〜
5,7〜8,10〜15はいずれも本発明の第1発明の
範囲であったので、焼成温度が850℃〜1000℃、
比誘導電率が40以上、マイクロ波域での無負荷Q値が
500以上であり、また共振周波数の温度変化率が−6
0〜70ppm/℃の小さい誘電体磁器組成物とするこ
とができた。
As is clear from Table 1, the sample No. 1 to
5, 7 to 8, 10 to 15 were all within the scope of the first invention of the present invention, so that the firing temperature was 850 ° C. to 1000 ° C.
The specific induction power is 40 or more, the no-load Q value in the microwave region is 500 or more, and the temperature change rate of the resonance frequency is -6.
A dielectric ceramic composition as small as 0 to 70 ppm / ° C. was obtained.

【0016】これに対して比較例は、試料No.17を除
き、Q値が500以下であり、マイクロ波誘電体として
望ましくないものであった。また、バナジウムを添加し
ない場合(試料No.17)は、焼成温度が1000℃以
上であり、比誘導電率が40以下となり、焼結性が非常
に悪く、もろいセラミックになり実用的ではなかった。
On the other hand, in the comparative example, except for the sample No. 17, the Q value was 500 or less, which was not desirable as a microwave dielectric. When vanadium was not added (Sample No. 17), the firing temperature was 1000 ° C. or more, the specific induction power was 40 or less, the sinterability was extremely poor, and the ceramic was not practical because it was fragile. .

【0017】実施例2 出発原料として高純度なBi2 3 、Nb2 5 、V2
5 に加えてCuOを用いた以外は実施例1と同様に誘
電体磁器組成物を焼成した。
Example 2 Bi 2 O 3 , Nb 2 O 5 , V 2 of high purity as starting materials
The dielectric ceramic composition was fired in the same manner as in Example 1 except that CuO was used in addition to O 5 .

【0018】得られた焼結体を誘電体共振法による測定
から共振周波数と無負荷Qを求め、焼結体の寸法と共振
周波数より比誘電率を算出した。共振周波数は4〜5G
Hzであった。また、実施例における本発明の誘電体磁
器組成物の温度特性は、図1に示すような上に凸型とな
るので、その温度変化率は−25℃〜85℃の温度範囲
の共振周波数を測定し、20℃を基準として、20℃よ
り高温側をτfH、低温側をτfLと表わした。
From the obtained sintered body, the resonance frequency and the no-load Q were obtained from the measurement by the dielectric resonance method, and the relative dielectric constant was calculated from the dimensions of the sintered body and the resonance frequency. Resonant frequency is 4-5G
Hz. Further, the temperature characteristics of the dielectric ceramic composition of the present invention in the examples are upwardly convex as shown in FIG. 1, so that the temperature change rate is the resonance frequency in the temperature range of −25 ° C. to 85 ° C. The temperature was measured and, with reference to 20 ° C., the temperature higher than 20 ° C. was expressed as τfH, and the temperature lower than 20 ° C. was expressed as τfL.

【0019】表2に本実施例の組成範囲及び周辺組成の
成分、焼成温度、焼成雰囲気、比誘電率、Q、共振周波
数の温度変化率τfH、τfLを示す。
Table 2 shows the composition range of this embodiment and the components of the peripheral composition, firing temperature, firing atmosphere, relative dielectric constant, Q, and temperature change rates τfH and τfL of the resonance frequency.

【0020】[0020]

【表2】 [Table 2]

【0021】表2から明らかな通り、試料No.18〜
28はいずれも本発明の第2発明の範囲であったので、
マイクロ波域での無負荷Q値が500以上であり、また
共振周波数の温度変化率の小さい誘電体磁器組成物とす
ることができた。
As is clear from Table 2, the sample No. 18 ~
28 were all within the scope of the second invention of the present invention,
It was possible to obtain a dielectric ceramic composition having a no-load Q value in a microwave region of 500 or more and having a small temperature change rate of the resonance frequency.

【0022】以上説明した通り、本発明の第1〜2発明
の実施例によれば、本発明の誘電体磁器組成物は、焼成
温度が850℃〜1000℃で、比誘電率が40以上、
マイクロ波域での無負荷Qが500以上、共振周波数の
温度変化率が−60〜70ppm/℃の特性が得られ
た。また、窒素中での焼成が可能であるので、電極とし
てCuを用いたマイクロ波電子デバイスを得ることも可
能であり、工業的価値は大である。
As described above, according to the first and second embodiments of the present invention, the dielectric ceramic composition of the present invention has a firing temperature of 850 ° C. to 1000 ° C., a relative dielectric constant of 40 or more,
The characteristics that the no-load Q in the microwave region is 500 or more and the temperature change rate of the resonance frequency is −60 to 70 ppm / ° C. are obtained. Further, since firing in nitrogen is possible, it is also possible to obtain a microwave electronic device using Cu as an electrode, which has great industrial value.

【0023】[0023]

【発明の効果】以上説明した通り、本発明の第1発明の
構成によれば、一般式が(Bi2 3 X (Nb
2 5 1-X で表わされる磁器組成物に、Vを加えるこ
とにより、低温焼成ができ、かつ比誘電率が大きく、共
振周波数の温度変化率が小さく、無負荷Qの大きい特性
を持つ誘電体磁器組成物を得ることができる。
As described above, according to the structure of the first aspect of the present invention, the general formula is represented by (Bi 2 O 3 ) X (Nb
By adding V to the porcelain composition represented by 2 O 5 ) 1-X , it can be fired at a low temperature, has a large relative dielectric constant, a small temperature change rate of a resonance frequency, and has a large unloaded Q property. A dielectric porcelain composition can be obtained.

【0024】更に、本発明の第2発明の構成によれば、
Cuを加えることで、低温焼成ができ、かつより比誘電
率が大きく、共振周波数の温度変化率が小さく、無負荷
Qの大きい特性を持ち、さらに優れた誘電体磁器組成物
を得ることができる。
Further, according to the configuration of the second invention of the present invention,
By adding Cu, low-temperature sintering can be performed, and a dielectric ceramic composition having a larger relative dielectric constant, a smaller rate of change in resonance frequency with temperature, a large unloaded Q, and a more excellent dielectric ceramic composition can be obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における誘電体磁器組成物が示
す共振周波数の温度変化率を示す図である。
FIG. 1 is a diagram showing a temperature change rate of a resonance frequency of a dielectric ceramic composition in an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 MATER.SCI.MONOGR. (1987),38A (HIGH TECH CERAM.,PT.A),P.289 −P.297 (58)調査した分野(Int.Cl.6,DB名) H01B 3/12 H01P 7/10 C04B 35/00 CA(STN) EPAT(QUESTEL)──────────────────────────────────────────────────続 き Continued on the front page (56) References MATER. SCI. MONOGR. (1987), 38A (HIGH TECH CERAM., PT.A), P.A. 289-P. 297 (58) Fields investigated (Int. Cl. 6 , DB name) H01B 3/12 H01P 7/10 C04B 35/00 CA (STN) EPAT (QUESTEL)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主成分が、一般式(Bi23X(Nb2
51-Xで表わされる磁器組成物において、Xが0.4
8≦X≦0.51の範囲内であり、かつ副成分として、
少なくともV成分を含み、その量をBiとNbの合計の
原子数に対するVの原子数の比[V/(Bi+Nb)]
で表わして、0<V/(Bi+Nb)≦0.02の範囲
内であることを特徴とする誘電体磁器組成物。
The main component is represented by the general formula (Bi 2 O 3 ) X (Nb 2
O 5 ) In the porcelain composition represented by 1-X , X is 0.4
8 ≦ X ≦ 0.51 and as an accessory component,
It contains at least the V component and its amount is the sum of Bi and Nb.
Ratio of the number of V atoms to the number of atoms [V / (Bi + Nb)]
A dielectric ceramic composition characterized by the following formula: 0 <V / (Bi + Nb) ≦ 0.02.
【請求項2】 請求項1の誘電体磁器組成物に、副成分
としてCuを含み、その量をBiとNbの合計の原子数
に対するCuの原子数の比[Cu/(Bi+Nb)]で
表わして、0<Cu/(Bi+Nb)≦0.01の範囲
内であることを特徴とする誘電体磁器組成物。
2. The dielectric porcelain composition according to claim 1, further comprising Cu as a sub-component, the amount of which is the total number of atoms of Bi and Nb.
A dielectric ceramic composition characterized by being in the range of 0 <Cu / (Bi + Nb) ≦ 0.01, represented by the ratio of the number of atoms of Cu to [Cu / (Bi + Nb)].
JP3230419A 1991-09-10 1991-09-10 Dielectric porcelain composition Expired - Fee Related JP2795562B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3230419A JP2795562B2 (en) 1991-09-10 1991-09-10 Dielectric porcelain composition
US07/941,961 US5350639A (en) 1991-09-10 1992-09-08 Dielectric ceramic for use in microwave device, a microwave dielectric ceramic resonator dielectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3230419A JP2795562B2 (en) 1991-09-10 1991-09-10 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH0574225A JPH0574225A (en) 1993-03-26
JP2795562B2 true JP2795562B2 (en) 1998-09-10

Family

ID=16907597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3230419A Expired - Fee Related JP2795562B2 (en) 1991-09-10 1991-09-10 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP2795562B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051050A (en) * 2005-08-16 2007-03-01 Korea Inst Of Science & Technology Process of preparing low-temperature sintered microwave dielectric ceramic and low-temperature sintered microwave dielectric ceramic obtained by the same
CN100358837C (en) * 2005-11-10 2008-01-02 西安交通大学 Low temp, sintered bismuth base microwave medium ceramic material and preparation process thereof
KR101994734B1 (en) * 2014-04-02 2019-07-01 삼성전기주식회사 Multilayered electronic component and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATER.SCI.MONOGR.(1987),38A (HIGH TECH CERAM.,PT.A),P.289−P.297

Also Published As

Publication number Publication date
JPH0574225A (en) 1993-03-26

Similar Documents

Publication Publication Date Title
CN103435342B (en) Titanate microwave dielectric ceramic Ba2Ti5Zn(1-x)MgxO13 and preparation method thereof
JP2795562B2 (en) Dielectric porcelain composition
JPS6217069A (en) Dielectric ceramic material
JP2009023895A (en) Ceramic substrate and its producing method
JPH1072258A (en) Dielectric ceramic composition
JPH05225826A (en) Dielectric porcelain composition and lamination type microwave device
JP4839496B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3446249B2 (en) High frequency dielectric ceramic composition
JP2800496B2 (en) Dielectric porcelain composition and microwave electronic device
JP2005514298A (en) Dielectric porcelain composition for microwave
JP2003146748A (en) Dielectric ceramic composition
JPH0680467A (en) Dielectric ceramic composition
JP2579139B2 (en) High frequency dielectric composition
JP3598886B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP2798106B2 (en) Dielectric porcelain composition, method for producing laminate using the dielectric porcelain composition, and laminate of dielectric porcelain composition
JP3588210B2 (en) Dielectric porcelain composition
KR100823217B1 (en) Dielectric porcelain composition and method for production thereof
JP3376933B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3215029B2 (en) Dielectric porcelain composition
JP2725372B2 (en) Dielectric porcelain composition
JP3575336B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3318396B2 (en) High frequency dielectric ceramic composition
JP3683645B2 (en) High frequency dielectric ceramic composition
JP3085618B2 (en) Dielectric porcelain composition
JP3474606B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees