JP2794610B2 - Method for producing large-diameter polyethersulfone hollow fiber membrane - Google Patents

Method for producing large-diameter polyethersulfone hollow fiber membrane

Info

Publication number
JP2794610B2
JP2794610B2 JP2168000A JP16800090A JP2794610B2 JP 2794610 B2 JP2794610 B2 JP 2794610B2 JP 2168000 A JP2168000 A JP 2168000A JP 16800090 A JP16800090 A JP 16800090A JP 2794610 B2 JP2794610 B2 JP 2794610B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
weight
diameter
dope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2168000A
Other languages
Japanese (ja)
Other versions
JPH0457915A (en
Inventor
清 石井
耕一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAISERU KAGAKU KOGYO KK
Original Assignee
DAISERU KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAISERU KAGAKU KOGYO KK filed Critical DAISERU KAGAKU KOGYO KK
Priority to JP2168000A priority Critical patent/JP2794610B2/en
Publication of JPH0457915A publication Critical patent/JPH0457915A/en
Application granted granted Critical
Publication of JP2794610B2 publication Critical patent/JP2794610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ポリエーテルスルホン中空糸膜の製造法に
関するものである。さらに詳細には分画分子量と透過流
束が高く、機械的強度にも優れた太径ポリエーテルスル
ホン中空糸膜の製造法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a polyethersulfone hollow fiber membrane. More specifically, the present invention relates to a method for producing a large-diameter polyethersulfone hollow fiber membrane having a high molecular weight cut-off and a high permeation flux and excellent mechanical strength.

[従来の技術] エンジニアリングプラスチックスの一つであるポリエ
ーテルスルホンは、熱的、機械的特性に優れており、ま
た酸、アルカリ等に対する耐薬品性も兼ね備えていると
ころから、成形品あるいはフィルムとして電子工業用部
品に広く使用されている。
[Prior art] Polyethersulfone, one of engineering plastics, has excellent thermal and mechanical properties and also has chemical resistance to acids, alkalis, etc. Widely used in electronic industrial parts.

また、ポリエーテルスルホンは中空糸への紡糸が容易
であるため、気体、液体分離用の中空糸膜として使用す
ることができる。特に高温領域や強酸あるいは強アルカ
リ性条件下での使用が要求される限外濾過膜や精密濾過
膜として極めて有用である。
Also, since polyether sulfone can be easily spun into hollow fibers, it can be used as a hollow fiber membrane for separating gas and liquid. Particularly, it is extremely useful as an ultrafiltration membrane or a microfiltration membrane which is required to be used in a high temperature region or under a strong acid or strong alkaline condition.

ポリエーテルスルホン中空糸膜のいわゆる相変換法に
よる製造方法は以下の様である。
A method for producing a polyethersulfone hollow fiber membrane by a so-called phase conversion method is as follows.

紡糸原液(以下ドープと言う)はポリエーテルスルホ
ンを良溶剤又は良溶剤と混和する非溶剤との混合溶媒に
10〜30重量%溶解して調製する。このドープを二重同心
ノズルの外周オリフィスから押し出し、同時に中心オリ
フィスから気体、またはポリエーテルスルホンに対して
非溶剤の性質をもつ液体を押し出して、このドープを中
空円筒状に成形し、直接或は一定の気相空間を距てて凝
固液内に進入させ、ドープを固相に変態させて中空糸膜
を得る。
The spinning solution (hereinafter referred to as dope) is a mixture of polyethersulfone with a good solvent or a non-solvent mixed with a good solvent.
It is prepared by dissolving 10 to 30% by weight. The dope is extruded from the outer concentric orifice of the double concentric nozzle, and at the same time, a gas or a liquid having a non-solvent property to polyethersulfone is extruded from the central orifice, and the dope is formed into a hollow cylindrical shape, directly or A certain gas-phase space is distanced to enter the coagulation solution, and the dope is transformed into a solid phase to obtain a hollow fiber membrane.

凝固液はポリエーテルスルホンに対して非溶剤の性質
をもち、ドープ溶媒と相互に混和する液体であるが、主
として経済的な理由から、水または水溶液が多く使用さ
れる。
The coagulation liquid has a non-solvent property with respect to polyether sulfone and is a liquid that is mutually miscible with the dope solvent. However, water or an aqueous solution is often used mainly for economic reasons.

産業プロセスでの分離精製対象の拡大に伴って、透過
流束の一層の向上と共に、分画分子量が10万以上の膜の
開発も要求される様になってきた。
With the expansion of separation and purification targets in industrial processes, the development of a membrane having a molecular weight cut off of 100,000 or more has been required along with a further improvement in permeation flux.

透過流束の増大と分画分子量の高分子量化を実現する
には、ドープ中のポリマー濃度を低下させることが特に
有効である。しかし、ドープの粘度低下による紡糸安定
性の低下と製品の膜厚当りの強度低下をもたらすため、
限度がある。そこで、ドープのポリマー濃度を下げる他
にドープの溶媒組成(溶剤と非溶剤の種類及び混合比)
を変えることによって水透過流束を大きくする工夫が従
来より行われ、種々の方法が公表されてきている。それ
らのうちではポリスルホン系ドープに添加する非溶剤と
して多価アルコールを添加する方法が特に優れており、
添加量はドープが紡糸温度において透明の均一溶液を保
つ限度内で大きくすることが有効であることが従来より
知られている。
In order to increase the permeation flux and increase the molecular weight of the fraction, it is particularly effective to lower the polymer concentration in the dope. However, in order to cause a decrease in spinning stability and a decrease in strength per film thickness of the product due to a decrease in the viscosity of the dope,
There is a limit. Therefore, in addition to lowering the polymer concentration of the dope, the solvent composition of the dope (the type of solvent and non-solvent and the mixing ratio)
In order to increase the water permeation flux by changing the value, various methods have been disclosed, and various methods have been disclosed. Among them, the method of adding a polyhydric alcohol as a non-solvent to be added to the polysulfone-based dope is particularly excellent,
It has been conventionally known that it is effective to increase the addition amount within a limit that the dope maintains a transparent uniform solution at the spinning temperature.

更に膜処理対象の拡大は、中空糸膜内径の太径化も要
求する様になり、高透過流束或いは高透過流束かつ高分
画分子量で、しかも、太径の中空糸膜製造技術が研究さ
れてきている。
Furthermore, the expansion of the membrane processing target also requires an increase in the inner diameter of the hollow fiber membrane, and a technique for producing a hollow fiber membrane having a high permeation flux or a high permeation flux and a high molecular weight cut-off, and a large diameter is required. Has been studied.

中空糸膜を安定して紡糸するためにはドープの粘度が
或る程度以上高いことが必要であり、望ましい粘度は径
が太くなる程高くなる傾向が認められる。ドープの粘度
はポリマー濃度に最も大きく依存するが、高透過流束或
いは高分画分子量の要請も同時に充たすためには上述の
様にドープ中のポリマー濃度を可能な限り低く抑えるこ
とが必要である。このディレンマはポリマーの溶媒(溶
剤、非溶剤混合系)自身の粘度を高くするか、及び/ま
たは溶剤の性質をポリマーを溶解した溶液の粘度が高く
なる様にすることによって解決することができる。この
様な観点からもポリスルホン系ドープの添加非溶剤とし
て多価アルコールが特に優れている。
In order to spin the hollow fiber membrane stably, it is necessary that the viscosity of the dope is higher than a certain level, and the desirable viscosity tends to increase as the diameter increases. Although the viscosity of the dope depends largely on the polymer concentration, it is necessary to keep the polymer concentration in the dope as low as possible as described above in order to simultaneously satisfy the demand for a high permeation flux or a high molecular weight cut-off. . This dilemma can be solved by increasing the viscosity of the solvent (mixture of solvent and non-solvent) of the polymer itself and / or by increasing the viscosity of the solvent in which the solution of the polymer is dissolved. From such a viewpoint, polyhydric alcohol is particularly excellent as a non-solvent to be added to the polysulfone-based dope.

ポリスルホン系中空糸膜製膜に関する従来技術を上記
の観点から評価して、ドープ中ポリマー濃度が15重量%
以上、かつ、添加非溶剤が多価アルコールでその濃度が
20重量%以上のドープから紡糸するものを選び出すと、
高透過流束の例として特公昭63−56802号公報には繰り
返し単位が で表現されるポリスルホン(以下PSFと言う)=20重量
%、ポリエチレングリコール(以下PEGと言う)600=36
重量%、N,N−ジメチルホルムアミド(以下DMFと言う)
=44重量%のドープから紡糸して、水透過流束=1000
/m2・h・atm及び1350/m2・h・atmの中空糸限外濾過
膜(以下中空糸UF膜と言う)を得た実施例と比較例が記
載されている。また、特開平1−94902号公報にはPSF=
20重量%、PEG600=36重量%、N,N−ジメチルアセトア
ミド(以下DMAcと言う)=44重量%のドープから水透過
流束=840/m2・h・atmの中空糸UF膜を得た実施例が
記載されている。特開昭62−201602号公報にはPSF=17
重量%、テトラエチレングリコール(以下TEGと言う)
=25重量%、N−メチルピロリドン(以下NMPと言う)
=58重量%のドープから水透過流束=970/m2・h・at
mの中空糸UF膜を得た実施例が記載されている。特開昭6
1−200805号公報には繰り返し単位が で表現されるポリエーテルスルホン(以下PESと言う)
=25重量%、PEG400=25重量%、ジメチルスルホキシド
(以下DMSOと言う)50重量%のドープから水透過流束=
390/m2・h・atmの中空糸UF膜を得た実施例が記載さ
れている。特開昭59−228017号公報にはPSF=17重量
%、ジエチレングリコール(以下DEGと言う)=25重量
%、NMP=58重量%のドープから水透過流束=1370/m2
・h・atmの中空糸UF膜を得た実施例が記載されてい
る。
The prior art for polysulfone-based hollow fiber membrane production was evaluated from the above viewpoint, and the polymer concentration in the dope was 15% by weight.
Above, and the added non-solvent is polyhydric alcohol and its concentration is
If you select a spinning dope from 20% by weight or more,
As an example of high flux, Japanese Patent Publication No. Sho 63-56802 discloses a repeating unit. Polysulfone (hereinafter referred to as PSF) = 20% by weight, polyethylene glycol (hereinafter referred to as PEG) 600 = 36
Wt%, N, N-dimethylformamide (hereinafter referred to as DMF)
= 44 wt% dope, water permeation flux = 1000
Examples and comparative examples in which hollow fiber ultrafiltration membranes (hereinafter referred to as hollow fiber UF membranes) of / m 2 · h · atm and 1350 / m 2 · h · atm are described. Also, JP-A-1-94902 discloses that PSF =
A hollow fiber UF membrane having a water permeation flux of 840 / m 2 · h · atm was obtained from a dope of 20 wt%, PEG 600 = 36 wt%, and N, N-dimethylacetamide (hereinafter referred to as DMAc) = 44 wt%. Examples have been described. JP-A-62-201602 discloses PSF = 17.
Wt%, tetraethylene glycol (hereinafter referred to as TEG)
= 25% by weight, N-methylpyrrolidone (hereinafter referred to as NMP)
= 58% by weight dope to water flux = 970 / m 2 .h.at
An example in which a hollow fiber UF membrane of m was obtained was described. JP 6
The publication No. 1-200805 has a repeating unit Polyethersulfone represented by (PES)
= 25 wt%, PEG400 = 25 wt%, dimethyl sulfoxide (hereinafter referred to as DMSO) 50 wt% dope to water permeation flux =
An example in which a hollow fiber UF membrane of 390 / m 2 · h · atm was obtained is described. JP-A-59-228017 discloses that a dope of PSF = 17% by weight, diethylene glycol (hereinafter referred to as DEG) = 25% by weight and NMP = 58% by weight has a water permeation flux of 1370 / m 2.
An example in which a hollow fiber UF membrane of h · atm was obtained is described.

[発明が解決しようとする課題] しかしながら、いづれの例においても、得られたポリ
スルホン中空糸UF膜は水透過流束が高いとは言っても14
00/m2・h・atm以下である。
[Problems to be Solved by the Invention] However, in any of the examples, the obtained polysulfone hollow fiber UF membrane has a high water permeation flux even though it has a high water permeation flux.
00 / m 2 · h · atm or less.

膜分離技術の用途を従来から行われてきた比較的高価
な溶質、例えば電着塗料や酸素等の回収や精製等の用途
からより広範な産業プロセスや排水処理にまで拡大する
には未だ不充分である。また、中空糸内径も0.6mmを超
える例は記載されておらず、高粘度流体の懸濁液への用
途拡大に制約を受ける。
Insufficient to extend the application of membrane separation technology from the conventional use of relatively expensive solutes, such as electrodeposition paints and oxygen, etc., to the broader industrial processes and wastewater treatment It is. In addition, there is no description of an example in which the inner diameter of the hollow fiber exceeds 0.6 mm, and there is a limitation in expanding the use of a high-viscosity fluid to a suspension.

[課題を解決するための手段] 内径0.7mm以上の太径中空糸UF膜の水透過流束の一層
の向上及び分画分子量の高分子量化には、ドープ組成の
工夫に加えて凝固液の工夫も必要である。中空糸膜の内
表面に分離機能層を形成させる場合、紡糸時に二重同心
ノズルの中心オリフィスから吐出する内部凝固液の凝固
価が高い(凝固力が弱い)程、水透過流束は一般に多く
なることが知られている。内部凝固液は水、或いは非溶
剤及び/又は溶剤の水溶液が多く用いられているが、水
溶液では水の含量が少ない程水透過流束は一般に多くな
る。しかしながら、内部凝固液の凝固力を弱くするに従
って、紡糸安定性が低下し、その度合は中空糸径が大き
くなる程大きくなる。このため内部凝固液の凝固力を弱
くしていくと紡糸条件に制約を受ける様になり、ひいて
は、好ましい非対称膜構造を形成できなくなり、更には
内表面の膜構造が崩壊するという問題がある。
[Means for Solving the Problems] In order to further improve the water permeation flux and increase the molecular weight of the fractionated molecular weight of the hollow UF membrane having a large diameter of 0.7 mm or more, in addition to contriving the dope composition, the coagulation liquid Ingenuity is also needed. When a separation function layer is formed on the inner surface of a hollow fiber membrane, the higher the coagulation value (weaker coagulation force) of the internal coagulation liquid discharged from the center orifice of the double concentric nozzle during spinning, the higher the water permeation flux is generally. Is known to be. As the internal coagulation liquid, water or an aqueous solution of a non-solvent and / or a solvent is often used. In an aqueous solution, the lower the water content, the higher the water permeation flux generally. However, as the coagulation force of the internal coagulation liquid is weakened, the spinning stability decreases, and the degree increases as the hollow fiber diameter increases. For this reason, if the coagulation force of the internal coagulation liquid is weakened, the spinning conditions are restricted, and as a result, a preferable asymmetric membrane structure cannot be formed, and further, there is a problem that the membrane structure on the inner surface collapses.

本発明者はこの様な問題を解決して、中空糸膜内径0.
7mm以上、引張破断強度25kg/cm2以上、水透過流束1500
/m2・h・atm(25℃)以上のポリエーテルスルホン中
空糸膜を得るために、ドープ組成と内部凝固液との関係
について鋭意研究した。その結果、下記の方法を見出す
ことによって目的とする高透過流束、高分画分子量の太
径ポリエーテルスルホン中空糸膜を得、本発明に到っ
た。
The present inventor has solved such a problem, and has a hollow fiber membrane inner diameter of 0.
7 mm or more, tensile strength at break 25 kg / cm 2 or more, water permeation flux 1500
In order to obtain a polyethersulfone hollow fiber membrane of not less than / m 2 · h · atm (25 ° C.), the relationship between the dope composition and the internal coagulation liquid was studied diligently. As a result, the following method was found to obtain a large-diameter polyethersulfone hollow fiber membrane having a desired high permeation flux and a high molecular weight cut-off, leading to the present invention.

すなわち素材ポリマーの繰り返し単位が からなり、内径が0.7mm以上の太径中空糸膜の製造方法
であって、紡糸原液が15〜20重量%の前記繰り返し単位
からなるポリエーテルスルホンと、40重量%以上の炭素
数5以上でかつ常温で液体のエーテルアルコール、多価
アルコール及びそれらの誘導体から選ばれる少くとも一
種の該ポリマーの非溶剤とを含有し、25℃で80ポアズ以
上の粘度を有し、内部凝固液が5〜20重量%の水と、炭
素数6以下のエーテルアルコールと、炭素数6以下の多
価アルコールまたはその誘導体との少くとも3成分混合
系からなる均一溶液であることを特徴とする太径ポリエ
ーテルスルホン中空糸膜の製造方法である。
That is, the repeating unit of the material polymer is A method for producing a large-diameter hollow fiber membrane having an inner diameter of 0.7 mm or more, comprising: a spinning solution having 15 to 20% by weight of a polyether sulfone comprising the repeating unit; and 40% by weight or more having 5 or more carbon atoms. And containing at least one non-solvent of the polymer selected from ether alcohol, polyhydric alcohol and derivatives thereof which are liquid at room temperature, has a viscosity of 80 poise or more at 25 ° C., and the internal coagulating liquid has a viscosity of 5 to 5 poise. A large-diameter polyether which is a homogeneous solution comprising at least a three-component mixture of 20% by weight of water, an ether alcohol having 6 or less carbon atoms, and a polyhydric alcohol having 6 or less carbon atoms or a derivative thereof. This is a method for producing a sulfone hollow fiber membrane.

ドープ組成と内部凝固液組成をこの様な範囲に選定す
ることによって、水透過流速1800/m2・h・atm以上の
高透過流束で内径0.7mm以上の太径の中空糸UF膜を安定
に製造することができる様になった。
By selecting the dope composition and the internal coagulating liquid composition to such range, a stable hollow fiber UF membrane or larger diameter inner diameter 0.7mm water permeation rate 1800 / m 2 · h · atm or more high flux It can now be manufactured.

ドープ中のポリエーテルスルホンの濃度は15〜20重量
%が好ましく、該ポリエーテルスルホンの濃度が20重量
%を超えると、得られる中空糸膜の透水速度が低下する
ため好ましくない。一方、濃度が15重量%未満になる
と、得られる中空糸膜の機械的強度が低下するため好ま
しくない。
The concentration of the polyethersulfone in the dope is preferably 15 to 20% by weight. If the concentration of the polyethersulfone exceeds 20% by weight, the water permeation rate of the obtained hollow fiber membrane is undesirably reduced. On the other hand, when the concentration is less than 15% by weight, the mechanical strength of the obtained hollow fiber membrane decreases, which is not preferable.

PESの良溶剤としてはD6SO、2−ピロリドン(以下2
−PNと言う)及びこれらの混合物が好ましいが、DMF、D
MAc、NMP等の水と自由に混合する極性有機溶剤を使用す
ることもできる。
D6SO, 2-pyrrolidone (hereinafter referred to as 2)
-PN) and mixtures thereof are preferred, but DMF, D
A polar organic solvent, such as MAc or NMP, which can be freely mixed with water can also be used.

ドープに添加する非溶剤としては炭素数5以上のエー
テルアルコール、常温で液体の多価アルコール及びその
誘導体が好ましく、テトラヒドロフルフリルアルコー
ル、トリエチレングリコール、テトラエチレングリコー
ル、PEG、ジプロピレングリコール、トリプロピレング
リコール、ジエチレングリコールモノメチルエーテル等
の単独またはこれらの混合物を使用する。
As the non-solvent to be added to the dope, ether alcohols having 5 or more carbon atoms, polyhydric alcohols which are liquid at room temperature and derivatives thereof are preferable, and tetrahydrofurfuryl alcohol, triethylene glycol, tetraethylene glycol, PEG, dipropylene glycol, and tripropylene Glycol, diethylene glycol monomethyl ether or the like alone or a mixture thereof is used.

PEGは分子量が大きい程、ドープの増粘効果も大きい
が、紡糸したドープの凝固速度が低くなり、生成する膜
構造を乱す作用が強くなる。このためPEG300以上の単独
使用は好ましくない。
As the molecular weight of PEG increases, the effect of increasing the viscosity of the dope increases, but the solidification rate of the spun dope decreases, and the effect of disturbing the resulting film structure increases. Therefore, it is not preferable to use PEG 300 or more alone.

PEGは一般にPESの非溶剤とされているが、実際には分
子量300以上のPEGはPESの良溶剤であり(特開平2−105
854号公報参照)これが上述の現象の主原因と考えられ
る。
PEG is generally regarded as a non-solvent for PES, but PEG having a molecular weight of 300 or more is actually a good solvent for PES (JP-A-2-105).
This is considered to be the main cause of the above phenomenon.

なお、上記の添加非溶剤に炭素数を限定しない多価ア
ルコール及びその誘導体、例えばエチレングリコール、
ジエチレングリコール、グリセリン及びこれらのモノエ
ーテルまたはモノエステル等を少量加えることもでき
る。
In addition, polyhydric alcohols and derivatives thereof that do not limit the number of carbon atoms to the added non-solvent, for example, ethylene glycol,
Diethylene glycol, glycerin and their monoethers or monoesters may be added in small amounts.

非溶剤の添加量については、内部凝固液組成や紡糸条
件との関係で定まる第1の閾値以上を添加することによ
って中空糸内径0.7mm以上、水透過流速1800/m2・h・
atm以上の中空糸膜を安定して紡糸するのに好ましい80
ポアズ以上の高いドープ粘度を実現することができる。
更に、第1の閾値よりも高い第2の閾値以上を添加する
ことによって膜断面に相当直径20μm以上のマクロボイ
ドを持たない非対称多孔質構造を形成することができ
る。
About the addition amount of the non-solvent, the inner diameter of the hollow fiber is 0.7 mm or more, and the water permeation flow rate is 1800 / m 2 · h ·
80 for stable spinning of hollow fiber membranes of atm or more
High dope viscosity equal to or higher than poise can be realized.
Further, by adding a second threshold value or more higher than the first threshold value, it is possible to form an asymmetric porous structure having no macrovoids having an equivalent diameter of 20 μm or more in the film cross section.

非溶剤の好ましい添加量の範囲は内部凝固液組成や紡
糸条件によって異るが、ドープ全量の35重量%以上更に
は40重量%以上が好ましい。しかし、ドープが紡糸温度
で透明均一溶液であることを維持できなくなる程の多量
を添加することは好ましくない。
The preferred range of the amount of the non-solvent varies depending on the composition of the internal coagulating liquid and the spinning conditions, but is preferably 35% by weight or more, more preferably 40% by weight or more of the total amount of the dope. However, it is not preferable to add such a large amount that the dope cannot be maintained as a transparent homogeneous solution at the spinning temperature.

内部凝固液としては5〜20重量%の水と、炭素数6以
下のエーテルアルコール、例えばテトラヒドロフルフリ
ルアルコール、エチレングリコールモノアルキルエーテ
ルやジエチレングリコールモノメチルエーテル等と、炭
素数6以下の常温で液体の多価アルコールやその誘導
体、例えばエチレングリコール、ジエチレングリコール
やトリエチレングリコール等との混合物を使用できる
が、いずれの混合物の場合も水酸基に対するエーテル基
の比率が2未満の範囲、特に0.5〜1.5の範囲にあること
が好ましい。
Examples of the internal coagulating liquid include 5 to 20% by weight of water, an ether alcohol having 6 or less carbon atoms such as tetrahydrofurfuryl alcohol, ethylene glycol monoalkyl ether, diethylene glycol monomethyl ether, etc. Mixtures with polyhydric alcohols and derivatives thereof, such as ethylene glycol, diethylene glycol and triethylene glycol, can be used, but in any case the ratio of ether groups to hydroxyl groups is in the range of less than 2, especially in the range of 0.5 to 1.5. Is preferred.

0.5以下では水透過流束が1800/m2・h・atmを下廻
る場合があり、1.5以上では中空糸内表面の分離機能層
の構造が破壊される場合がある。
If it is less than 0.5, the water permeation flux may be lower than 1800 / m 2 · h · atm, and if it is more than 1.5, the structure of the separation functional layer on the inner surface of the hollow fiber may be broken.

炭素数8以上のPEGは炭素数6以下のPEGを含む多価ア
ルコールに比し、中空糸内表面の分離機能層を粗雑化乃
至破壊する危険が大きく、好ましくない。なお、上記多
価アルコール及びその誘導体の一部を、ドープに使用し
ている良溶剤で置換することは可能である。
PEG having 8 or more carbon atoms is not preferable because it has a greater risk of coarsening or breaking the separation functional layer on the inner surface of the hollow fiber than polyhydric alcohol containing PEG having 6 or less carbon atoms. In addition, it is possible to substitute a part of the polyhydric alcohol and its derivative with a good solvent used for dope.

[実施例] 以下、実施例により本発明をさらに詳細に説明する
が、本発明はこれらの実施例に何等限定されるものでは
ない。
[Examples] Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例1 PES(ICI社製、商品名Victrex 5200P)18重量部を42
重量部のDMSO(和光純薬製、試薬)と40重量部のPEG200
(和光純薬製、試薬)からなる混合溶媒に60℃で溶解し
て、透明均一で粘度86ポアズ(25℃)のドープを調製し
た。
Example 1 18 parts by weight of PES (trade name: Victrex 5200P, manufactured by ICI) was added to 42 parts by weight.
Parts by weight of DMSO (Wako Pure Chemicals, reagent) and 40 parts by weight of PEG200
The mixture was dissolved at 60 ° C. in a mixed solvent composed of (reagents, manufactured by Wako Pure Chemical Industries, Ltd.) to prepare a transparent and uniform dope having a viscosity of 86 poise (25 ° C.).

このドープをエチレングリコールモノメチルエーテル
(和光純薬製、試薬)60wt%、トリエチレングリコール
(和光純薬製、試薬)30wt%、水10wt%からなり、エー
テル基と水酸基の比率が1.0の内部凝固液と共に、チュ
ーブ・イン・オリフィス型の同心二重ノズルから押し出
し、ノズルから10cm離れた70℃の水中に浸漬して、内径
約0.8mm、外径約1.3mmの中空糸膜を得た。
This dope is composed of 60 wt% of ethylene glycol monomethyl ether (manufactured by Wako Pure Chemical, reagent), 30 wt% of triethylene glycol (manufactured by Wako Pure Chemical), 10 wt% of water, and an internal coagulating liquid having a ratio of ether group to hydroxyl group of 1.0. At the same time, the hollow fiber membrane was extruded from a tube-in-orifice type concentric double nozzle and immersed in 70 ° C. water 10 cm away from the nozzle to obtain a hollow fiber membrane having an inner diameter of about 0.8 mm and an outer diameter of about 1.3 mm.

得られた中空糸膜は純水透過流束2230/m2・h・atm
(25℃)、牛血清アルブミン(分子量6.5万、以下BSAと
言う)透過率約100%、牛血清γ−グロブリン(分子量1
5万、以下BγGと言う)透過率44%と高水透過流束、
高分画分子量であった。溶質透過率は、溶質濃度0.01wt
%の燐酸緩衝溶液を中空糸内腔に平均膜面剪断速度3×
103sec-1以上、平均隔膜差圧0.8atmの条件で供給し、得
られた透過液中の溶質濃度を供給液中の平均濃度に対す
る百分率で表わした。
The obtained hollow fiber membrane has a pure water permeation flux of 2230 / m 2 .h.atm.
(25 ° C.), bovine serum albumin (molecular weight: 65,000, hereinafter referred to as BSA) transmittance of about 100%, bovine serum γ-globulin (molecular weight: 1
50,000, hereinafter referred to as BγG) 44% transmittance and high water flux
The molecular weight was high. Solute permeability is 0.01 wt.
% Phosphate buffer solution into the hollow fiber lumen at an average membrane shear rate of 3 ×
The solution was supplied under the conditions of 10 3 sec −1 or more and an average diaphragm pressure difference of 0.8 atm, and the solute concentration in the obtained permeate was expressed as a percentage of the average concentration in the feed solution.

また、この中空糸膜の引張破断強度は36kg/cm2、破断
伸度30%、破裂圧力17kg/cm2と機械強度も優れていた。
得られた中空糸の内表面を走査型電子顕微鏡(SEM)で
倍率1万倍で観察した結果を第1図に示した。
The hollow fiber membrane had excellent tensile strength at break of 36 kg / cm 2 , elongation at break of 30%, and burst pressure of 17 kg / cm 2 .
The result of observing the inner surface of the obtained hollow fiber with a scanning electron microscope (SEM) at a magnification of 10,000 times is shown in FIG.

比較例1 18重量部のPESを60重量部のDMSOと22重量部のPEG200
からなる混合溶媒に60℃で溶解して、25℃における粘度
が41ポアズの透明均一なドープを調製した。
Comparative Example 1 18 parts by weight of PES were combined with 60 parts by weight of DMSO and 22 parts by weight of PEG200.
Was dissolved at 60 ° C. in a mixed solvent of to prepare a transparent and uniform dope having a viscosity of 41 poise at 25 ° C.

このドープを紡糸原液として使用した他は実施例1と
同等にして内径0.8mm、外径1.3mmの中空糸膜を紡糸した
ところ、ノズルから押し出した中空糸膜は凝固浴(70℃
の水)中で揺れて進路が安定せず、時々糸切れを起した
ため、中空糸膜を安定して製造することができなかっ
た。
A hollow fiber membrane having an inner diameter of 0.8 mm and an outer diameter of 1.3 mm was spun in the same manner as in Example 1 except that this dope was used as a spinning solution, and the hollow fiber membrane extruded from the nozzle was coagulated in a coagulation bath (70 ° C.).
(Water), the course was not stable and the thread was sometimes broken, so that the hollow fiber membrane could not be manufactured stably.

参考のため、この組み合わせで内径0.5mm、外径0.8mm
の中空糸膜を紡糸したところ、揺れは小さくなり、糸切
れは起らなかった。得られた内径0.5mm中空糸膜の純水
透過流束は1930/m2・h・atmと大きかったが、第2図
に示すように中空糸内表面を走査型電子顕微鏡(SEM)
で倍率1万倍で観察したところ、孔径0.5μm以下の孔
が多数不均一に散在して、膜表面は荒れていた。
For reference, inside diameter 0.5mm, outside diameter 0.8mm in this combination
When the hollow fiber membrane was spun, the shaking became small and no yarn breakage occurred. The pure water permeation flux of the obtained hollow fiber membrane having an inner diameter of 0.5 mm was as large as 1930 / m 2 · h · atm, but as shown in FIG. 2, the inner surface of the hollow fiber was scanned with a scanning electron microscope (SEM).
Observation at a magnification of 10,000 times showed that a large number of pores having a pore diameter of 0.5 μm or less were scattered unevenly, and the film surface was rough.

比較例2 90wt%のPEG200水溶液(水酸基に対するエーテル基の
比率が1.5)を内部凝固液に使用した他は実施例1と同
等にして内径0.8mm、外径1.3mmの中空糸膜を紡糸したと
ころ、ノズルから押し出した中空糸膜は凝固浴中で揺れ
て、稍不安定ではあったが、糸切れは起さなかった。
Comparative Example 2 A hollow fiber membrane having an inner diameter of 0.8 mm and an outer diameter of 1.3 mm was spun in the same manner as in Example 1 except that a 90 wt% PEG200 aqueous solution (the ratio of ether groups to hydroxyl groups was 1.5) was used as the internal coagulating liquid. The hollow fiber membrane extruded from the nozzle fluctuated in the coagulation bath and was slightly unstable, but did not break.

得られた中空糸膜の純水透過流束は1970/m2・h・a
tmと大きかったが、第3図に示すように中空糸内表面を
走査型電子顕微鏡(SEM)で倍率1万倍で観察したとこ
ろ、孔径0.3μm以下の穴が多数散在していた。
The pure water permeation flux of the obtained hollow fiber membrane is 1970 / m 2 · h · a
Although it was as large as tm, as shown in FIG. 3, when the inner surface of the hollow fiber was observed with a scanning electron microscope (SEM) at a magnification of 10,000 times, many holes having a hole diameter of 0.3 μm or less were scattered.

比較例3 90wt%のジエチレングリコールモノメチルエーテル
(水酸基に対するエーテル基の比率が2.0)水溶液を内
部凝固液に使用した他は実施例1と同等にして内径0.8m
m、外径1.3mmの中空糸膜を紡糸したところ、ノズルから
押し出した中空糸膜は凝固浴中で揺れて、稍不安定では
あったが、糸切れは起さなかった。
Comparative Example 3 An inner diameter of 0.8 m was made in the same manner as in Example 1 except that a 90 wt% aqueous solution of diethylene glycol monomethyl ether (the ratio of ether groups to hydroxyl groups was 2.0) was used as the internal coagulating liquid.
When a hollow fiber membrane having an outer diameter of 1.3 mm and a diameter of 1.3 mm was spun, the hollow fiber membrane extruded from the nozzle fluctuated in the coagulation bath and was slightly unstable, but did not break.

得られた中空糸膜の純水透過流束は2170/m2・h・a
tmと大きかったが、中空糸内表面を走査型電子顕微鏡
(SEM)で倍率1万倍で観察したところ、第4図に示す
様に孔径0.5μm以下の崩れかけた多孔質構造であっ
た。
The pure water permeation flux of the obtained hollow fiber membrane is 2170 / m 2 · h · a
Although it was as large as tm, the inner surface of the hollow fiber was observed with a scanning electron microscope (SEM) at a magnification of 10,000 times, and as shown in FIG. 4, it had a collapsed porous structure with a pore diameter of 0.5 μm or less.

実施例3〜5 内部凝固液として表1に示す3種を調製した。Examples 3 to 5 Three types shown in Table 1 were prepared as internal coagulating liquids.

これらを内部凝固液に使用した他は実施例1と同等に
して内径0.8mm、外径1.3mmの中空糸膜を紡糸した。
A hollow fiber membrane having an inner diameter of 0.8 mm and an outer diameter of 1.3 mm was spun in the same manner as in Example 1 except that these were used as the internal coagulating liquid.

得られた中空糸膜の膜性能を評価した結果、表1に示
す様にすべて高性能であった。
As a result of evaluating the membrane performance of the obtained hollow fiber membrane, all were high performance as shown in Table 1.

実施例6〜9 18重量部のPESを37重量部のDMSOと45重量部のPEG200
の混合溶液に60℃で溶解して粘度105ポアズの透明均一
ドープを調製した。
Examples 6-9 18 parts by weight of PES were combined with 37 parts by weight of DMSO and 45 parts by weight of PEG200.
Was dissolved at 60 ° C. in a mixed solution of the above to prepare a transparent uniform dope having a viscosity of 105 poise.

内部凝固液として、表2に示す4種を調製した。 Four types shown in Table 2 were prepared as internal coagulating liquids.

これらのドープ及び内部凝固液を使用した以外は実施
例1と同等にして内径0.8mm、外径1.3mmの中空糸膜を紡
糸した。
A hollow fiber membrane having an inner diameter of 0.8 mm and an outer diameter of 1.3 mm was spun in the same manner as in Example 1 except that these dopes and the internal coagulation liquid were used.

得られた中空糸膜の膜性能を評価した結果、表2に示
す様にすべて高性能であった。
As a result of evaluating the membrane performance of the obtained hollow fiber membrane, all were high performance as shown in Table 2.

実施例2 18重量部のPESを40重量部のDMSO、40重量部のPEG200
及び2重量部のグリセリンからなる混合溶媒に69℃で溶
解して粘度110ポアズの透明均一なドープを調製した。
Example 2 18 parts by weight of PES were replaced by 40 parts by weight of DMSO, 40 parts by weight of PEG200
And a mixed solvent consisting of 2 parts by weight of glycerin was dissolved at 69 ° C. to prepare a transparent and uniform dope having a viscosity of 110 poise.

このドープを紡糸原液として使用した他は実施例1と
同等にして内径1.0mm、外径1.5mmの中空糸膜を紡糸し
た。
A hollow fiber membrane having an inner diameter of 1.0 mm and an outer diameter of 1.5 mm was spun in the same manner as in Example 1 except that this dope was used as a spinning solution.

得られた中空糸膜は純水透過流束2160/m2・h・at
m、BSA透過率100%、BγG透過率0%と高性能であっ
た。
The obtained hollow fiber membrane has a pure water permeation flux of 2160 / m 2
m, BSA transmittance 100%, BγG transmittance 0%, and high performance.

[発明の効果] 本発明によれば繰返単位が からなるポリエーテルスルホンを膜素材として、中空糸
内径が0.7mm以上の太径で、水透過流束が1800/m2・h
・atm以上、分画分子量7万以上の、熱的、機械的特性
に優れた高透過流束、高分画分子量の中空糸UF膜を安定
して製造することが出来る。
[Effect of the Invention] According to the present invention, the repeating unit is Polyethersulfone consisting of a membrane material with a hollow fiber inner diameter of 0.7 mm or more and a water permeation flux of 1800 / m 2 · h
-It is possible to stably produce a hollow fiber UF membrane having a high permeation flux and a high molecular weight cut-off having an atm of at least or more and a molecular weight cut-off of 70,000 or more and excellent in thermal and mechanical properties.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例1、第2図は比較例1、第3図は比較例
2、第4図は比較例3でそれぞれ得られた繊維状の中空
糸内表面の形状を示す倍率1万倍の走査型電子顕微鏡写
真である。
1 is Example 1, FIG. 2 is Comparative Example 1, FIG. 3 is Comparative Example 2, and FIG. 4 is a magnification of 10,000 showing the shape of the inner surface of the fibrous hollow fiber obtained in Comparative Example 3, respectively. It is a scanning electron microscope photograph of the magnification.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】素材ポリマーの繰り返し単位が からなり、内径が0.7mm以上の太径中空糸膜の製造方法
であって、紡糸原液が15〜20重量%の前記繰り返し単位
からなるポリエーテルスルホンと、40重量%以上の炭素
数5以上でかつ常温で液体のエーテルアルコール、多価
アルコール及びそれらの誘導体から選ばれる少くとも一
種の該ポリマーの非溶剤とを含有し、25℃で80ポアズ以
上の粘度を有し、内部凝固液が5〜20重量%の水と、炭
素数6以下のエーテルアルコールと、炭素数6以下の多
価アルコールまたはその誘導体との少くとも3成分混合
系からなる均一溶液であることを特徴とする太径ポリエ
ーテルスルホン中空糸膜の製造方法。
(1) The repeating unit of the material polymer is A method for producing a large-diameter hollow fiber membrane having an inner diameter of 0.7 mm or more, comprising: a spinning solution having 15 to 20% by weight of a polyether sulfone comprising the repeating unit; and 40% by weight or more having 5 or more carbon atoms. And containing at least one non-solvent of the polymer selected from ether alcohol, polyhydric alcohol and derivatives thereof which are liquid at room temperature, has a viscosity of 80 poise or more at 25 ° C., and the internal coagulating liquid has a viscosity of 5 to 5 poise. A large-diameter polyether which is a homogeneous solution comprising at least a three-component mixture of 20% by weight of water, an ether alcohol having 6 or less carbon atoms, and a polyhydric alcohol having 6 or less carbon atoms or a derivative thereof. A method for producing a sulfone hollow fiber membrane.
【請求項2】純水透過流束が、1800/m2・h・atm以上
である請求項1記載の太径ポリエーテルスルホン中空糸
膜の製造方法。
2. The method for producing a large-diameter polyethersulfone hollow fiber membrane according to claim 1, wherein the pure water permeation flux is 1800 / m 2 .h.atm or more.
JP2168000A 1990-06-26 1990-06-26 Method for producing large-diameter polyethersulfone hollow fiber membrane Expired - Fee Related JP2794610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2168000A JP2794610B2 (en) 1990-06-26 1990-06-26 Method for producing large-diameter polyethersulfone hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2168000A JP2794610B2 (en) 1990-06-26 1990-06-26 Method for producing large-diameter polyethersulfone hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPH0457915A JPH0457915A (en) 1992-02-25
JP2794610B2 true JP2794610B2 (en) 1998-09-10

Family

ID=15859946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2168000A Expired - Fee Related JP2794610B2 (en) 1990-06-26 1990-06-26 Method for producing large-diameter polyethersulfone hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2794610B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2589446B2 (en) * 1993-06-18 1997-03-12 株式会社ニフコ shower head
JP2006212622A (en) * 2005-01-04 2006-08-17 Mitsubishi Rayon Co Ltd Method for deciding rupture resistant membrane thickness of hollow fiber membrane and method for manufacturing hollow fiber membrane
DK2024068T3 (en) * 2006-05-06 2012-03-26 Membrana Gmbh ultrafiltration membrane
JP6533064B2 (en) * 2015-01-30 2019-06-19 ダイセン・メンブレン・システムズ株式会社 Hollow fiber type semipermeable membrane and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228017A (en) * 1983-06-07 1984-12-21 Nitto Electric Ind Co Ltd Preparation of hollow yarn membrane of aromatic polysulfone
JPS61200806A (en) * 1985-03-01 1986-09-05 Teijin Ltd Polyether sulfone porous hollow yarn membrane and its production
JP2703266B2 (en) * 1987-06-12 1998-01-26 株式会社クラレ Polysulfone hollow fiber membrane and method for producing the same
JPH02164424A (en) * 1988-12-20 1990-06-25 Asahi Chem Ind Co Ltd Manufacture of hollow fiber membrane of synthetic polymer

Also Published As

Publication number Publication date
JPH0457915A (en) 1992-02-25

Similar Documents

Publication Publication Date Title
US7267872B2 (en) Braid-reinforced hollow fiber membrane
US4481260A (en) Aromatic polysulfone type resin hollow fiber membrane and process for producing the same
CN111549448B (en) Performance enhancing additives for fiber formation and polysulfone fibers
CN106731897B (en) High-pollution-resistance polyvinylidene fluoride hollow fiber ultrafiltration membrane, and preparation method and device thereof
JP2006088148A (en) Hollow fiber membrane having excellent water permeability
US5833896A (en) Method of making a hollow fibre membrane
KR101269574B1 (en) Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof
US6017474A (en) Highly permeable polyethersulfone hollow fiber membranes for gas separation
JP2794610B2 (en) Method for producing large-diameter polyethersulfone hollow fiber membrane
JPH0569571B2 (en)
US20010047959A1 (en) Polyacrylonitrile-based filtration membrane in a hollow fiber state
JPS62117812A (en) Hollow fiber and its production
KR100321459B1 (en) Polyacrylonitrile-Based Filtration Membrane in a Hollow Fiber State
EP0824960A1 (en) Hollow-fiber membrane of polysulfone polymer and process for the production thereof
KR101331066B1 (en) Polyethersulfone hollow fiber membrane and method of manufacturing the same
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
JP2868558B2 (en) Manufacturing method of high-strength, high-flux polysulfone hollow fiber membrane
KR102306426B1 (en) Composite porous membrane of acetylated alkyl cellulose and polyolefinketone
KR100200041B1 (en) Sponge-like polysulphone hollow fibre membrane having active layer and manufacturing method thereof
JPS60172312A (en) Preparation of polysulfone hollow yarn film
JP2675197B2 (en) Manufacturing method of high strength and porous polysulfone hollow fiber membrane
KR20010061733A (en) A polysulfone typed hollow fiber membrane, and a process of preparing for the same
JPH06319967A (en) Porous hollow fiber membrane with continuous multiphase separating structure and production thereof
JPH1119491A (en) Production of hollow fiber membrane
JP3224307B2 (en) Manufacturing method of hollow fiber membrane

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees