KR101269574B1 - Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof - Google Patents

Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof Download PDF

Info

Publication number
KR101269574B1
KR101269574B1 KR1020110013818A KR20110013818A KR101269574B1 KR 101269574 B1 KR101269574 B1 KR 101269574B1 KR 1020110013818 A KR1020110013818 A KR 1020110013818A KR 20110013818 A KR20110013818 A KR 20110013818A KR 101269574 B1 KR101269574 B1 KR 101269574B1
Authority
KR
South Korea
Prior art keywords
membrane
alkyl cellulose
acetylated
phase separation
acetylated alkyl
Prior art date
Application number
KR1020110013818A
Other languages
Korean (ko)
Other versions
KR20120094362A (en
Inventor
김인철
김범식
박유인
송두현
진용숙
제갈종건
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020110013818A priority Critical patent/KR101269574B1/en
Publication of KR20120094362A publication Critical patent/KR20120094362A/en
Application granted granted Critical
Publication of KR101269574B1 publication Critical patent/KR101269574B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • B01D67/00165Composition of the coagulation baths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0018Thermally induced processes [TIPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Abstract

본 발명은 폴리에틸렌글리콜 빈용매를 사용하는 열유도 상 분리법을 이용하여 제조된 아세틸화된 알킬 셀룰로스 분리막과 이 분리막의 제조방법에 관한 것으로, 본 발명의 분리막은 기계적물성이 우수하고 투과유량이 탁월하며 친수성이 우수하여 막오염 저항성이 뛰어나므로 수처리용 분리막으로 사용하기에 적합하다. The present invention relates to an acetylated alkyl cellulose separation membrane prepared using a thermally induced phase separation method using a polyethylene glycol poor solvent and a method for preparing the separation membrane. The separation membrane of the present invention has excellent mechanical properties and excellent flow rate. It has excellent hydrophilicity and excellent membrane fouling resistance, making it suitable for use as a membrane for water treatment.

Description

열유도 상 분리법을 이용하여 제조된 아세틸화된 알킬 셀룰로스 분리막과 이의 제조방법{Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof}Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method

본 발명은 폴리에틸렌글리콜 빈용매를 사용하는 열유도 상 분리법을 이용하여 제조된 아세틸화된 알킬 셀룰로스 분리막과 이 분리막의 제조방법에 관한 것이다.
The present invention relates to an acetylated alkyl cellulose separation membrane prepared using a thermally induced phase separation method using a polyethylene glycol poor solvent and a method for preparing the separation membrane.

최근 정수처리공정에서 수질의 신뢰성 및 용이한 자동화 등을 이유로 분리막을 이용하는 것에 대한 관심이 증가하고 있다. 정수처리에 사용되는 분리막은 강한 내구성 등이 요구되며, 이와 더불어 막오염 저항성이 크게 요구된다. 일반적인 분리막 소재로서 폴리설폰(PSF), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리비닐리덴플루오라이드(PVDF)가 알려져 있지만, 이들 고분자 소재는 소수성의 성질을 띠고 있어 막 오염성이 취약하다는 단점이 있다. 따라서, 수처리용 분리막으로서 요구되는 막 오염 저항성을 만족시킬 수 있는 새로운 친수성 고분자 소재의 분리막 개발이 필요하다.Recently, the interest in using a separation membrane due to the reliability and easy automation of water quality in the water treatment process has increased. Separation membrane used for water purification treatment is required to have a strong durability, etc., and also a membrane fouling resistance is greatly required. Polysulfone (PSF), polyethylene (PE), polypropylene (PP), and polyvinylidene fluoride (PVDF) are known as general separator materials. However, these polymer materials have hydrophobic properties and thus have a weak point of membrane contamination. have. Therefore, there is a need to develop a membrane of a new hydrophilic polymer material that can satisfy the membrane fouling resistance required as a separator for water treatment.

친수성 고분자 분리막 소재로서 셀룰로스 아세테이트가 잘 알려져 있다. 이들 친수성 고분자 소재를 이용한 분리막은 막 오염에 대한 저항성은 우수하지만, 기계적 강도가 떨어지는 문제점을 갖고 있다. 이에 막 오염 저항성이 높은 친수성 고분자를 분리막 소재로 적용하기 위해서는 기계적 강도 개선이라는 또 다른 개선이 요구된다. Cellulose acetate is well known as a hydrophilic polymer separator material. Membranes using these hydrophilic polymer materials are excellent in resistance to membrane contamination, but have a problem of poor mechanical strength. Accordingly, in order to apply a hydrophilic polymer having high membrane fouling resistance as a separator material, another improvement of mechanical strength is required.

기계적 강도가 우수한 다공성 분리막의 제조방법으로서, 열유도 상 분리법(Thermal Induced Phase Seperation; TIPS)이 있다. 열유도 상 분리법은 크게 고체-액체 상 분리법과 액체-액체 상 분리법으로 구분된다. 한국등록특허 제805,977호에는 고체-액체 상분리법을 이용하여 폴리비닐리덴플루오라이드 고분자를 이용하여 고강도 중공사막을 제조하는 방법이 개시되어 있고, 한국등록특허 제966,718호에는 액체-액체 상분리법을 이용하여 폴리비닐리덴플루오라이드 고분자를 이용하여 고강도 중공사막을 제조하는 방법이 개시되어 있다. 그러나 상기에서 설명한 바와 같이 기존의 소수성 고분자 소재를 이용하여 열유도 상 분리법(TIPS)으로 분리막을 제조하는 경우, 기계적 물성은 만족시킬 수 있겠으나 소수성 고분자 소재의 사용으로 인하여 막 오염 저항성이 취약하다는 문제점은 여전히 남아 있다.As a method of manufacturing a porous membrane having excellent mechanical strength, there is a thermal induced phase separation (TIPS). Thermally induced phase separation is largely divided into solid-liquid phase separation and liquid-liquid phase separation. Korean Patent No. 805,977 discloses a method for preparing a high strength hollow fiber membrane using a polyvinylidene fluoride polymer using a solid-liquid phase separation method, and Korean Patent No. 966,718 uses a liquid-liquid phase separation method. A method of producing a high strength hollow fiber membrane using a polyvinylidene fluoride polymer is disclosed. However, as described above, when the membrane is manufactured by thermally induced phase separation (TIPS) using the existing hydrophobic polymer material, mechanical properties may be satisfied, but the membrane fouling resistance is weak due to the use of the hydrophobic polymer material. Still remains.

한편, Fu 등은 Desalination 233호에서 셀룰로스 아세테이트 부티레이트(cellulose acetate butyrate) 소재를 이용하여 열유도 상 분리법으로 중공사막을 제조하였으나, 고강도 특성을 갖는 분리막을 얻지 못하였다.
On the other hand, Fu et al. Prepared a hollow fiber membrane using a thermally induced phase separation method using cellulose acetate butyrate in Desalination 233, but did not obtain a separation membrane having high strength characteristics.

본 발명은 수 처리용 분리막에 요구되는 특성으로서 높은 투과유량, 우수한 기계적 물성 및 막 오염 저항성을 가지는 아세틸화된 알킬 셀룰로스 분리막 제조용 고분자 용액을 제공하는데 그 목적이 있다.An object of the present invention is to provide a polymer solution for preparing an acetylated alkyl cellulose separation membrane having high permeate flow rate, excellent mechanical properties and membrane fouling resistance as characteristics required for the separation membrane for water treatment.

또한, 본 발명은 TIPS 공정에 의해 폴리에틸렌글리콜을 빈용매로 사용하여 아세틸화된 알킬 셀룰로스 분리막을 제조하는 방법을 제공하는데 그 목적이 있다.
Another object of the present invention is to provide a method for preparing an acetylated alkyl cellulose separator using polyethylene glycol as a poor solvent by a TIPS process.

상기 과제를 해결하기 위하여, 본 발명은 아세틸화된 알킬 셀룰로스와, 빈용매로서 폴리에틸렌글리콜을 포함하는 열유도 상 분리법을 이용한 아세틸화된 알킬 셀룰로스 분리막 제조용 고분자 용액을 그 특징으로 한다.In order to solve the above problems, the present invention is characterized by the polymer solution for the production of acetylated alkyl cellulose separation membrane using a heat-induced phase separation method containing acetylated alkyl cellulose and polyethylene glycol as a poor solvent.

또한, 본 발명은 아세틸화된 알킬 셀룰로스 10 ∼ 30 중량% 및 폴리에틸렌글리콜의 빈용매 70 ∼ 90 중량%를 혼합하여 고분자 용액을 제조하는 단계; 상기 고분자 용액을 가열하여 방사용액을 제조하는 단계; 및 상기 방사용액과 내부 홀(hole) 형성제를 노즐에서 방사하여 방사용액을 상전이시켜 중공사막을 제조하는 단계; 를 포함하는 열유도 상 분리법을 이용한 아세틸화된 알킬 셀룰로스 분리막의 제조방법을 그 특징으로 한다.
In addition, the present invention is to prepare a polymer solution by mixing 10 to 30% by weight of acetylated alkyl cellulose and 70 to 90% by weight of the poor solvent of polyethylene glycol; Heating the polymer solution to prepare a spinning solution; And spinning the spinning solution and the inner hole former from a nozzle to phase-transfer the spinning solution to produce a hollow fiber membrane. Characterized in that the manufacturing method of the acetylated alkyl cellulose separation membrane using a thermally induced phase separation method comprising a.

본 발명의 아세틸화된 알킬 셀룰로스 분리막은 평균기공크기가 0.05 ∼ 0.4 ㎛이고, 순수투과유량이 500 ∼ 2,000 L/㎡·hr(1 kg/㎠)이고, 인장강도가 9 ∼ 20 MPa이고, 증류수를 이용한 초기투과유량 대비 6 시간 운전 후의 상대투과유량(내 오염도)이 0.7 ∼ 0.9 으로, 수처리용 분리막으로 적합하다.
Acetylated alkyl cellulose separator of the present invention has an average pore size of 0.05 to 0.4 μm, a pure permeate flow rate of 500 to 2,000 L / m 2 · hr (1 kg / cm 2), tensile strength of 9 to 20 MPa, and distilled water Relative permeate flow rate (contamination degree) after 6 hours of operation relative to the initial permeate flow rate is 0.7 to 0.9, which is suitable as a separation membrane for water treatment.

본 발명은 아세틸화된 알킬 셀룰로스 고분자 소재와 폴리에틸렌글리콜(PEG) 빈용매로 이루어진 고분자 용액과, 상기 고분자 용액을 사용하여 열유도 상 분리법(TIPS)으로 분리막을 제조하는 방법에 관한 것이다.The present invention relates to a polymer solution comprising an acetylated alkyl cellulose polymer material and a polyethylene glycol (PEG) poor solvent, and a method for preparing a separator by thermally induced phase separation (TIPS) using the polymer solution.

본 발명은 분리막 소재로 아세틸화된 알킬 셀룰로스를 선택 사용한데 기술적 특징이 있다. 친수성 고분자로 알려진 셀룰로스 아세테이트를 소재로 사용한 분리막은 기계적 강도가 열악하여 막의 두께를 어느 정도 이상으로 증가시켜야 하고, 막의 두께가 증가됨에 따라 투과유량이 감소하고 모듈면적이 감소되어 모듈 효율성이 떨어지는 단점이 있다. 그러나, 본 발명은 아세틸화된 알킬 셀룰로스를 사용하여 열유도 상 분리법(TIPS)으로 분리막을 제조함으로써, 기계적 강도가 우수하면서 고분자 소재 본연의 친수성으로 인하여 막 오염 저항성을 유지할 수 있다.The present invention has a technical feature of using acetylated alkyl cellulose as a separator material. Separation membranes made of cellulose acetate, known as hydrophilic polymers, have poor mechanical strength and must increase the thickness of the membrane to some extent, and as the thickness of the membrane increases, the permeate flow rate decreases and the module area decreases, thereby reducing module efficiency. have. However, according to the present invention, the membrane is prepared by thermally induced phase separation (TIPS) using acetylated alkyl cellulose, thereby maintaining membrane fouling resistance due to the excellent hydrophilicity of the polymer material with excellent mechanical strength.

본 발명에서와 같이 친수성 고분자 소재를 사용하여 열유도 상 분리법(TIPS)을 적용하기 위해서는 최적의 빈용매를 선택 사용하는 기술이 중요하다. 이에, 본 발명은 아세틸화된 알킬 셀룰로스를 열유도 상 분리법(TIPS)에 적용하기 위하여 빈용매로서 폴리에틸렌글리콜(PEG)을 선택 사용한 점도 특징이 있다. 폴리에틸렌글리콜(PEG)은 일반적으로 다공성 분리막 제조를 위한 기공형성제로서 사용되어 왔으나, 고분자와의 용해도가 떨어져서 다량 사용할 경우 고분자 용액 제조가 불가하고 강도가 떨어지는 단점이 있다. 그러나, 본 발명에서는 아세틸화된 알킬 셀룰로스의 빈용매로 폴리에틸렌글리콜(PEG)을 선택 사용함으로써 열유도 상 분리법(TIPS) 적용이 가능하였고, 이로써 기계적 강도가 우수한 분리막을 제조할 수 있었다.As in the present invention, in order to apply TIPS using a hydrophilic polymer material, a technique of selecting an optimal poor solvent is important. Accordingly, the present invention is characterized in that polyethylene glycol (PEG) is selected as a poor solvent in order to apply acetylated alkyl cellulose to thermally induced phase separation (TIPS). Polyethylene glycol (PEG) has been generally used as a pore-forming agent for the manufacture of porous separators, but has a disadvantage in that the polymer solution cannot be manufactured and its strength is low when a large amount of the polymer is inferior in solubility with the polymer. However, in the present invention, by using polyethylene glycol (PEG) as a poor solvent of acetylated alkyl cellulose, thermally induced phase separation (TIPS) can be applied, and thus, a membrane having excellent mechanical strength can be prepared.

본 발명의 수처리용 분리막의 제조방법은 상기 아세틸화된 알킬 셀룰로스를 용융점 근처에서 폴리에틸렌글리콜의 빈용매에 녹인 후, 비용매에서 상전이시켜서 제조하는 것을 그 특징으로 한다. 제조방식은 열유도 상 분리법(TIPS)이며 상세하게는 액체-액체 상 분리법을 이용한다. The method for producing a membrane for water treatment of the present invention is characterized in that the acetylated alkyl cellulose is dissolved in a poor solvent of polyethylene glycol near the melting point and then prepared by phase shifting in a non-solvent. The production method is thermally induced phase separation (TIPS), and in particular, liquid-liquid phase separation.

이러한 본 발명을 더욱 구체적으로 설명하면 다음과 같다.The present invention will be described in more detail as follows.

먼저, 아세틸화된 알킬 셀룰로스와 폴리에틸렌글리콜의 빈용매를 혼합하여 고분자 용액을 제조한다.First, a poor solution of acetylated alkyl cellulose and polyethylene glycol is mixed to prepare a polymer solution.

본 발명이 사용하는 아세틸화된 알킬 셀룰로스는 친수성의 성질을 띠고 있어 유기물질에 의한 막 오염이 적게 일어나고, 높은 투과율을 나타낸다. 상기 아세틸화된 알킬 셀룰로스로는 중량평균분자량이 5만 내지 2백만 범위, 바람직하기로는 20만 내지 100만 범위로 비교적 분자량이 큰 고분자를 사용하는 것이 바람직하다. 만약, 아세틸화된 알킬 셀룰로스의 중량평균분자량이 5만 미만이면 방사 후 강도가 매우 약하여 분리막으로의 사용이 어렵고, 중량평균분자량이 2백만을 초과하면 빈용매를 이용하여 열유도 상분리법을 사용할 경우 점도가 너무 높아서 방사용액 제조가 어렵기 때문이다. 또한, 본 발명이 사용하는 아세틸화된 알킬 셀룰로스는 탄소수 1 내지 3의 알킬기와 아세틸기로 치환된 셀룰로스를 일컫는다. 즉, 셀룰로스 단위구조(unit) 내에는 3개의 히드록시기가 결합되어 있고, 상기의 히드록시기 3개 중 일부가 알킬 또는 아세틸로 치환된 셀룰로스를 본 발명에서는 '아세틸화된 알킬 셀룰로스'로 부른다. 상기한 아세틸화된 알킬 셀룰로스로는 셀룰로스의 단위구조(unit) 당 알킬기와 아세틸기의 치환도는 각각 1.0 내지 2.0 몰비 범위인 것을 사용한다. 아세틸화된 알킬 셀룰로스를 분리막 소재로 사용함에 있어, 아세틸화도가 너무 낮으면 열유도 상 분리법(TIPS)에 적용되어 분리막을 제조한 후 세척과정에서 고분자가 팽윤되어 용출될 수 있으므로 아세틸화도는 1.0 몰비 이상을 유지하는 것이 좋다. 본 발명이 사용하는 아세틸화된 알킬 셀룰로스의 제조방법은 일반적인 방법으로, 예를 들면 알킬 셀룰로스를 무수 아세트산 또는 아세틸 클로라이드(AcCl) 등의 아세틸화제를 이용하여 아세틸화 반응시키는 과정에 의해 제조할 수 있다. Acetylated alkyl cellulose used in the present invention has hydrophilic properties, so that membrane contamination by organic substances is less likely to occur, and exhibits high transmittance. As the acetylated alkyl cellulose, it is preferable to use a polymer having a relatively high molecular weight in a weight average molecular weight in the range of 50,000 to 2 million, preferably in the range of 200,000 to 1 million. If the weight average molecular weight of the acetylated alkyl cellulose is less than 50,000, the strength after spinning is very low, making it difficult to use as a separator. If the weight average molecular weight exceeds 2 million, the thermally induced phase separation method using a poor solvent is used. This is because the viscosity is so high that it is difficult to prepare a spinning solution. In addition, the acetylated alkyl cellulose used in the present invention refers to cellulose substituted with an alkyl group having 1 to 3 carbon atoms and an acetyl group. That is, cellulose in which three hydroxy groups are bonded in a cellulose unit structure and some of the three hydroxy groups are substituted with alkyl or acetyl is referred to as 'acetylated alkyl cellulose' in the present invention. As the acetylated alkyl cellulose, the substitution degree of the alkyl group and the acetyl group per unit structure of cellulose is used in the range of 1.0 to 2.0 molar ratio, respectively. In using acetylated alkyl cellulose as a membrane material, if the degree of acetylation is too low, the acetylation degree is 1.0 molar ratio because the polymer may be swelled and eluted during the washing process after preparing the membrane by applying the thermal induced phase separation method (TIPS). It is good to keep the above. The method for producing acetylated alkyl cellulose used in the present invention may be prepared by a general method, for example, by acetylating an alkyl cellulose using an acetylating agent such as acetic anhydride or acetyl chloride (AcCl). .

본 발명에서는 아세틸화된 알킬 셀룰로스의 빈용매로서 폴리에틸렌글리콜(PEG)을 사용한다. 즉, 폴리에틸렌글리콜(PEG)은 아세틸화된 알킬 셀룰로스를 잘 녹이는 양용매가 아니며, 아세틸화된 알킬 셀룰로스의 용융점 근처까지 승온시켰을 때 고분자를 녹일 수 있는 빈용매이다. TIPS 공정에 사용된 빈용매는 분리막의 매크로보이드가 형성되는 것을 억제하는 역할을 하고, 분리막의 공극크기와 공극률을 극대화시킬 수 있으며, 고분자 용액의 온도 변화와 점도 변화 그리고 성형 과정의 용이성에 영향을 미치게 된다. 본 발명이 빈용매로서 사용하는 폴리에틸렌글리콜(PEG)은 중량평균분자량이 200 내지 1,000 범위, 바람직하게는 중량평균분자량이 200 내지 600 범위인 것을 사용하는 것이 좋다. 그 이유는 아세틸화된 알킬 셀룰로스의 용융점이 170℃ 정도인데, 용융점 주변의 온도까지 가열하여 고분자 용액을 쉽게 제조하기 위함이며, 평균분자량이 상기 범위를 초과하여 지나치게 크면 고분자 용액을 제조할 수 없는 문제가 발생될 수도 있다.In the present invention, polyethylene glycol (PEG) is used as a poor solvent of acetylated alkyl cellulose. That is, polyethylene glycol (PEG) is not a good solvent that dissolves acetylated alkyl cellulose well, but is a poor solvent capable of melting the polymer when heated up to near the melting point of acetylated alkyl cellulose. The poor solvent used in the TIPS process serves to suppress the formation of macrovoids in the membrane, maximize the pore size and porosity of the membrane, and affect the temperature change, viscosity change, and ease of molding process of the polymer solution. Go crazy. Polyethylene glycol (PEG) used in the present invention as the poor solvent, it is preferable to use a weight average molecular weight of 200 to 1,000, preferably a weight average molecular weight of 200 to 600 range. The reason is that the melting point of the acetylated alkyl cellulose is about 170 ° C, and it is easy to prepare the polymer solution by heating up to the temperature around the melting point.If the average molecular weight exceeds the above range, the polymer solution cannot be prepared. May be generated.

본 발명의 고분자 용액 제조를 위하여, 아세틸화된 알킬 셀룰로스 10 내지 30 중량%와 폴리에틸렌글리콜 빈용매 70 내지 90 중량%의 비율로 혼합한다. 이때, 아세틸화된 알킬 셀룰로스의 함량이 10 중량% 미만이면 분리막의 강도가 떨어지고, 30 중량%를 초과하면 고분자 용액의 점도가 너무 높아 방사가 용이하지 않으므로, 상기 농도 범위를 유지하는 것이 좋다. In order to prepare the polymer solution of the present invention, 10 to 30% by weight of acetylated alkyl cellulose is mixed with 70 to 90% by weight of polyethylene glycol poor solvent. In this case, when the content of the acetylated alkyl cellulose is less than 10% by weight, the strength of the separator is lowered. When the content of the acetylated alkyl cellulose is less than 30% by weight, the viscosity of the polymer solution is too high to facilitate spinning, and thus, the concentration range may be maintained.

상기 제조된 고분자 용액의 정제를 위하여, 고분자 용액을 가온한 후에 여과하여 불용성분을 제거할 수 있다. 상기 정제과정을 좀 더 구체적으로 설명하면, 고분자 용액을 60 내지 200℃ 온도로 가열하여 아세틸화된 알킬 셀룰로스를 완전히 용해시킨 다음, 실온에서 3 내지 10시간 정도 방치시킨 후에 여과하여 정제된 고분자 용액을 제조한다.In order to purify the prepared polymer solution, the polymer solution may be warmed and then filtered to remove insoluble components. In more detail the purification process, the polymer solution is heated to a temperature of 60 to 200 ℃ completely dissolved acetylated alkyl cellulose, and then left at room temperature for 3 to 10 hours and then filtered to obtain a purified polymer solution Manufacture.

이상의 방법에서 제조된 고분자 용액을 이용하여 제막하여 분리막을 제조할 수 있다. 본 발명에서는 대표적인 분리막으로서 중공사막을 제조하는 방법을 제시하도록 한다.The membrane may be prepared by forming a membrane using the polymer solution prepared by the above method. In the present invention, to provide a method for producing a hollow fiber membrane as a representative membrane.

먼저, 아세틸화된 알킬 셀룰로스의 용융점이 대략 170℃ 정도임을 감안하여, 고분자 용액을 아세틸화된 알킬 셀룰로스의 용융점 주변 온도인 100℃ 내지 200℃ 범위내로 가열하여 방사용액을 제조한다. 고분자 용액의 제조를 위한 가열온도가 100℃ 미만인 경우 완전한 용해가 일어나지 않아서 가공성이 떨어지며, 200℃를 초과하는 경우 고분자가 분해된다는 문제점이 있다.First, considering that the melting point of the acetylated alkyl cellulose is about 170 ° C, the spinning solution is prepared by heating the polymer solution within the range of 100 ° C to 200 ° C, which is the temperature around the melting point of the acetylated alkyl cellulose. If the heating temperature for the preparation of the polymer solution is less than 100 ℃ complete dissolution does not occur, there is a problem that the processability is degraded, if the polymer exceeds 200 ℃ is decomposed.

제조된 상기 방사용액은 중공사막 형태를 만드는 노즐에 방사되어 방사용액을 상전이시킴으로써 중공사막을 제조한다. 방사 노즐에서 상기 방사용액이 방사될 때 중공사막의 내부 구멍을 형성시켜 주기 위하여 내부 응고욕을 상기 방사용액을 방사시키는 노즐에 정량펌프를 사용하여 주입한다.The prepared spinning solution is spun onto a nozzle forming a hollow fiber membrane to prepare a hollow fiber membrane by phase-transferring the spinning solution. When the spinning solution is spun from the spinning nozzle, an internal coagulation bath is injected into the nozzle for spinning the spinning solution using a metering pump to form an inner hole of the hollow fiber membrane.

상기 내부 응고욕으로는 트리에틸렌글리콜, 디에틸렌글리콜, 에틸렌글리콜과 같은 에틸렌글리콜계 중에서 선택된 1종 또는 2종 이상의 혼합된 용매를 사용할 수 있다. 상기 내부 응고욕에는 비용매로서 물, 알콜류 및 키톤류 중에서 선택된 1 종 또는 2종 이상을 사용할 수 있으며, 바람직하게는 비용매로서 물을 사용할 수 있다. 비용매를 첨가하여 사용 시 빈용매/비용매의 비를 1/0 내지 1/0.5 중량비로, 더욱 바람직하게는 1/0 내지 1/0.4 중량비로 포함하여 사용하는 것이 내부 홀의 손상 없이 기공을 형성할 수 있어 좋다.As the internal coagulation bath, one or two or more kinds of mixed solvents selected from ethylene glycol systems such as triethylene glycol, diethylene glycol, and ethylene glycol may be used. In the internal coagulation bath, one or two or more selected from water, alcohols and ketones may be used as the nonsolvent, and preferably water may be used as the nonsolvent. When non-solvent is added, the use of the non-solvent / non-solvent ratio in a 1/0 to 1 / 0.5 weight ratio, more preferably in a 1/0 to 1 / 0.4 weight ratio, forms pores without damaging the internal holes. I can do it.

상전이가 일어나는 외부 응고욕으로는 트리에틸렌글리콜, 디에틸렌글리콜, 에틸렌글리콜과 같은 에틸렌글리콜계 중에서 선택된 1종 또는 2종 이상의 혼합된 용매, 또는 상기 에틸렌글리콜계와 물의 혼합용액을 사용할 수 있다.As the external coagulation bath in which the phase transition occurs, one or two or more kinds of mixed solvents selected from ethylene glycol systems such as triethylene glycol, diethylene glycol, and ethylene glycol, or a mixed solution of the ethylene glycol system and water may be used.

이때, 내부응고욕은 -10℃ 내지 150℃ 범위, 상전이조는 -10℃ 내지 150℃ 온도를 유지하며, 보다 바람직하기로는 상기 두 경우 모두 10℃ 내지 120℃를 유지하는 조건하에서 수행된다. 상기 내부응고욕의 온도가 너무 낮으면 중공사막의 단면 구조가 조밀하게 형성되어 중공사막의 기계적강도가 증가하지만 공극률이 저하되어 수투과율의 급격한 저하 문제가 발생하며, 내부응고욕의 온도가 너무 높으면 중공사막 내부 표면에 공극률은 증가하지만 단면 구조 형성에 있어서 약한 결합이 형성되기 때문에 중공사막의 기계적강도가 약해지는 문제가 발생한다. 상기 상전이조의 온도가 너무 낮으면 중공사막 표면의 공극률이 감소하여 수투과량의 저하를 초래하고, 상전이조의 온도가 너무 높으면 중공사막 표면의 공극률과 공극의 크기가 증가하여 수투과량은 증가하지만 기계적강도가 급격히 저하되므로 중공사막이 약해지는 문제가 발생하는 바, 상기 범위를 유지하는 것이 바람직하다. At this time, the internal coagulation bath is in the range of -10 ° C to 150 ° C, the phase transition bath maintains a temperature of -10 ° C to 150 ° C, more preferably in both cases is carried out under the conditions of maintaining 10 ° C to 120 ° C. If the temperature of the internal coagulation bath is too low, the cross-sectional structure of the hollow fiber membrane is densely formed, and the mechanical strength of the hollow fiber membrane is increased, but the porosity is lowered, causing a sudden drop in water permeability. If the temperature of the internal coagulation bath is too high, Although the porosity increases on the inner surface of the hollow fiber membrane, weak bonds are formed in the cross-sectional structure, so that the mechanical strength of the hollow fiber membrane is weakened. If the temperature of the phase transition bath is too low, the porosity of the surface of the hollow fiber membrane is reduced, leading to a decrease in permeability. If the temperature of the phase transition tank is too high, the porosity and the pore size of the surface of the hollow fiber membrane are increased, the permeation rate increases, but the mechanical strength is increased. Since the problem of weakening of the hollow fiber membranes occurs rapidly, it is preferable to maintain the above range.

상기 과정을 통해 형성된 중공사를 마지막으로 응고시키기 위하여 비용매에 침지시킨다. 비용매로는 물, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 알콜류 및 키톤류 중에서 선택된 1 종 또는 2종 이상을 사용할 수 있다. 상기 비용매에 양용매 또는 빈용매를 섞은 혼합액을 사용할 수도 있다. 상기 양용매는 디메틸아세트아미드, 디메틸포름아미드, N-메틸-2-피롤리돈 및 디메틸술폭시드 중에서 선택된 1 종 또는 2종 이상을 사용한다.The hollow fiber formed through the above process is immersed in the non-solvent to finally solidify. As the non-solvent, one or two or more selected from water, ethylene glycol, diethylene glycol, triethylene glycol, alcohols, and ketones can be used. You may use the mixed liquid which mixed the good solvent or the poor solvent with the said nonsolvent. The good solvent uses one or two or more selected from dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone and dimethyl sulfoxide.

상기와 같이 얻어진 중공사막은 잔존하는 용매를 제거시켜주기 위하여 70℃내지 100℃, 더 바람직하게는 물의 끓는점 이하까지 높인 수조안에서 3 내지 6 시간 더 바람직하게는 중공사막의 표면에서 용매의 냄새가 나지 않는 상태에 이를 때까지 열수처리를 한다. 열수처리를 하는 경우 수투과율 및 강도가 높아진다는 장점이 있다.The hollow fiber membrane obtained as described above has a smell of the solvent at the surface of the hollow fiber membrane for 3 to 6 hours in a water bath which is raised to 70 ° C. to 100 ° C., more preferably below the boiling point of water, in order to remove the remaining solvent. Hydrothermal treatment is performed until the condition is reached. Hot water treatment has the advantage of increasing the water transmittance and strength.

최종 제조되는 중공사 분리막은 물이 외부에서 내부로 흘러가는 유로를 형성시키는 방식으로 유도되었으며, 외부층이 내부층보다 기공이 작은 비대칭 구조를 갖는다. 즉, 외부층의 기공크기는 0.05 내지 0.2 ㎛ 범위이며, 내부층의 기공크기는 0.1 내지 1 ㎛ 범위를 갖는다. 외부층의 기공크기가 상기 범위 미만으로 너무 작으면 투과유량이 너무 적어 효율성이 떨어지고, 상기 범위를 초과하여 너무 크면 분리능이 떨어지는 문제점이 있다. 내부층의 기공크기가 상기 범위 미만이면 저항이 커서 투과시키는 데 압력이 높게 필요하며, 상기 범위를 초과하면 분리막의 강도가 크게 떨어지는 문제점이 있다.  The final manufactured hollow fiber separator was induced by forming a flow path through which water flows from the outside to the inside, and the outer layer has an asymmetric structure with smaller pores than the inner layer. That is, the pore size of the outer layer is in the range of 0.05 to 0.2 μm, and the pore size of the inner layer is in the range of 0.1 to 1 μm. If the pore size of the outer layer is too small below the above range, the permeate flow rate is too small to decrease the efficiency. If the pore size of the inner layer is less than the above range, the resistance is large, and a high pressure is required for the permeation. If the pore size exceeds the above range, the strength of the separator is greatly reduced.

상기 방법으로 제조된 본 발명의 분리막은 평균기공크기가 0.05 ∼ 0.4 ㎛이고, 순수투과유량이 500 ∼ 2000 L/㎡·hr(1 kg/㎠)이고, 인장강도가 9 ∼ 20 MPa이고, 증류수를 이용한 초기투과유량 대비 6 시간 운전 후의 상대투과유량이 0.7 ∼ 0.9으로, 막오염 저항성이 우수하고, 인장강도 등의 기계적 물성이 우수한 특징을 갖는다.The separation membrane of the present invention prepared by the above method has an average pore size of 0.05 to 0.4 ㎛, pure permeate flow rate of 500 ~ 2000 L / ㎡ · hr (1 kg / ㎠), tensile strength of 9 to 20 MPa, distilled water Relative permeate flow rate after 6 hours of operation compared to initial permeate flow rate is 0.7 to 0.9, which is excellent in fouling resistance and excellent in mechanical properties such as tensile strength.

이상에서 설명한 바와 같은 본 발명은 하기의 실시예에 의거하여 더욱 상세히 설명하겠는 바, 본 발명의 권리범위가 하기 실시예에 의하여 한정되는 것은 아니다.
The present invention as described above will be described in more detail based on the following examples, but the scope of the present invention is not limited by the following examples.

[실시예]
[Example]

실시예 1. 아세틸화된 메틸 셀룰로스 분리막의 제조Example 1 Preparation of Acetylated Methyl Cellulose Membranes

메틸 셀룰로스(PMA, 삼성정밀화학제품, DS:1.7) 10 중량% 및 피리딘 90 중량%가 되도록 칭량한 후, 상기 메틸 셀룰로스를 상기 피리딘에 용해시켜서 용액을 제조하였다. 다음으로, 상기 셀룰로스 단위구조(Unit)당 3 몰비가 되도록 무수 초산을 칭량한 후, 이를 상기 용액에 첨가하고 90℃에서 3 시간 동안 아세틸화 반응을 수행하였다. 다음으로, 아세틸화 반응이 완료된 후, 이를 물 속에서 고형화하여 100% 아세틸화된 메틸 셀룰로스(AMC100)를 제조하였다. 상기 제조된 아세틸화된 메틸 셀룰로스(AMC100)는 셀룰로스 단위구조(Unit)당 메틸기 치환도가 1.7이고, 아세틸기 치환도가 1.3이다. After weighing to 10% by weight of methyl cellulose (PMA, Samsung Fine Chemicals, DS: 1.7) and 90% by weight of pyridine, the methyl cellulose was dissolved in the pyridine to prepare a solution. Next, acetic anhydride was weighed to have a molar ratio of 3 per unit of cellulose, and then, it was added to the solution and acetylated at 90 ° C. for 3 hours. Next, after the acetylation reaction was completed, it was solidified in water to prepare 100% acetylated methyl cellulose (AMC 100 ). The prepared acetylated methyl cellulose (AMC 100 ) has a methyl group substitution degree of 1.7 per cellulose unit (Unit), and an acetyl group substitution degree of 1.3.

상기 아세틸화된 메틸 셀룰로스(AMC100) 20 중량%와 빈용매로서 중량평균분자량이 200인 폴리에틸렌글리콜(PEG 200)80 중량%가 되도록 칭량하였다. 상기 AMC100와 PEG 200을 혼합하고 170℃에서 3 시간 가열하여 완전히 용해시킨 후, 120℃에서 2 시간 동안 방치하여 안정화하였다. 상기 안정화된 고분자 용액의 기포를 제거하고 여과하여 정제된 고분자 용액을 제조하였다.The acetylated methyl cellulose (AMC 100 ) 20% by weight and poor solvent were weighed so that the weight average molecular weight was 80% by weight of polyethylene glycol (PEG 200) 200. The AMC 100 and PEG 200 were mixed and completely dissolved by heating at 170 ° C for 3 hours, and then 120 ° C. It was stabilized by standing for 2 hours in. Bubbles of the stabilized polymer solution were removed and filtered to prepare a purified polymer solution.

상기 정제된 고분자 용액을 120 ℃에서 가열하여 방사용액을 제조하였다. 상기 방사용액을 이중관형 노즐에서 노즐과 1차 외부응고욕 사이의 간격(Air gap) 5 cm로 압출시키는 동시에 내부 홀에 내부 응고욕으로 트리에틸렌글리콜을 가하면서 외부 응고욕으로 트리에틸렌글리콜을 사용하여 중공사막을 제조하였다. 방사 시, 방사용액의 온도는 150℃, 내부응고욕의 온도는 40℃, 외부응고욕의 온도는 25℃로 조절하였다.
The purified polymer solution was heated at 120 ° C to prepare a spinning solution. Extrude the spinning solution into a 5 cm gap between the nozzle and the primary external coagulation bath in a double-tubular nozzle while using triethylene glycol as an external coagulation bath while adding triethylene glycol as an internal coagulation bath to the inner hole. To prepare a hollow fiber membrane. At the time of spinning, the temperature of the spinning solution was adjusted to 150 ° C, the temperature of the internal coagulation bath was 40 ° C, and the temperature of the external coagulation bath was 25 ° C.

실시예 2. 아세틸화된 메틸 셀룰로스 분리막의 제조Example 2 Preparation of Acetylated Methyl Cellulose Membranes

상기 실시예 1과 동일하게 TIPS 공정으로 중공사 형태의 분리막을 제조하되 빈용매로서 PEG200 대신에 수평균분자량이 600인 폴리에틸렌글리콜(PEG600)을 사용하였다.
In the same manner as in Example 1, a hollow fiber-type separator was prepared in the TIPS process, but polyethylene glycol (PEG600) having a number average molecular weight of 600 was used instead of PEG200 as a poor solvent.

실시예 3. 아세틸화된 메틸 셀룰로스 분리막의 제조Example 3 Preparation of Acetylated Methyl Cellulose Membranes

상기 실시예 1과 동일하게 TIPS 공정으로 중공사 형태의 분리막을 제조하되, 외부응고욕으로 에틸렌글리콜 대신에 디에틸렌글리콜을 사용하였다.
In the same manner as in Example 1, a hollow fiber-type separator was manufactured by TIPS process, but diethylene glycol was used instead of ethylene glycol as an external coagulation bath.

실시예 4. 아세틸화된 메틸 셀룰로스 분리막의 제조Example 4 Preparation of Acetylated Methyl Cellulose Membranes

상기 실시예 1과 동일하게 TIPS 공정으로 중공사 형태의 분리막을 제조하되, 외부응고욕으로 에틸렌글리콜 단독으로 사용하는 대신에 에틸렌글리콜 50 중량%와 물 50 중량%의 혼합물을 사용하였다.
In the same manner as in Example 1, a hollow fiber-type separator was prepared by using a TIPS process, but a mixture of 50 wt% of ethylene glycol and 50 wt% of water was used instead of ethylene glycol alone as an external coagulation bath.

비교예 1. 아세틸화된 메틸 셀룰로스 분리막의 제조Comparative Example 1. Preparation of Acetylated Methyl Cellulose Separator

상기 실시예 1과 동일하게 TIPS 공정으로 중공사 형태의 분리막을 제조하되 빈용매로서 PEG200 대신에 평균분자량이 2000인 폴리에틸렌글리콜 PEG2000을 사용하였다.
In the same manner as in Example 1, a hollow fiber-type separator was prepared in the TIPS process, but polyethylene glycol PEG2000 having an average molecular weight of 2000 was used instead of PEG200 as a poor solvent.

비교예 2. 셀룰로스 아세테이트 분리막의 제조Comparative Example 2. Preparation of Cellulose Acetate Separator

상기 실시예 1과 동일하게 TIPS 공정으로 중공사 형태의 분리막을 제조하되, 고분자 소재로 아세틸화된 메틸 셀룰로스 대신에 셀룰로스 아세테이트를 사용하였다.
In the same manner as in Example 1, a hollow fiber-type separator was prepared by TIPS process, but cellulose acetate was used instead of acetylated methyl cellulose as a polymer material.

비교예 3. PVDF 분리막 제조Comparative Example 3. Preparation of PVDF Separator

상기 실시예 1과 동일하게 TIPS 공정으로 중공사 형태의 분리막을 제조하되, 고분자 소재로 아세틸화된 메틸 셀룰로스 대신에 폴리비닐리덴플루오라이드(PVDF, solvay)를 사용하였다. 즉, 폴리비닐리덴플루오라이드(Polyvinyllidene flouride, PVDF, solvay) 고분자 40 중량%와 감마-부티로락톤 60 중량%를 혼합하여 고분자 용액을 제조하여 사용하였고, 내부응고욕으로 감마-부티로락톤을 사용하고, 외부응고욕으로 에틸렌글리콜 50 중량%과 감마-부티로락톤 50 중량%의 혼합물을 사용하였다.
In the same manner as in Example 1, a hollow fiber-type separator was manufactured by TIPS process, but polyvinylidene fluoride (PVDF, solvay) was used instead of acetylated methyl cellulose as a polymer material. That is, a polymer solution was prepared by mixing 40% by weight of polyvinyllidene flouride (PVDF, solvay) polymer and 60% by weight of gamma-butyrolactone, and using gamma-butyrolactone as an internal coagulation bath. A mixture of 50% by weight of ethylene glycol and 50% by weight of gamma-butyrolactone was used as the external coagulation bath.

[실험예]
[Experimental Example]

실험예 1 : 물성측정실험Experimental Example 1 Physical Property Measurement Experiment

상기 실시예 1 ∼ 4 및 비교예 1 ∼ 3에서 제조한 중공사형 분리막의 물성을 하기 방법에 의해서 측정하였으며, 그 결과는 하기 표 1에 나타내었다. The physical properties of the hollow fiber separators prepared in Examples 1 to 4 and Comparative Examples 1 to 3 were measured by the following method, and the results are shown in Table 1 below.

본 실험에서 평균기공크기는 PMI를 사용하여 측정하였다. 그리고, 순수투과유량은 중공사막의 일정한 길이와 가닥수를 갖는 모듈을 제조하여 수조에 있는 순수(20℃)를 Out-In 방식으로 가압하여 측정하였다. 인장강도는 인장강도측정기를 사용하여 힘을 주고 절단이 일어났을 때의 힘을 측정하고 중공사의 단면적으로 나누어서 측정하였다. In this experiment, the average pore size was measured using PMI. In addition, the net permeate flow rate was measured by pressing the pure water (20 ℃) in the water tank in the Out-In method by manufacturing a module having a constant length and the number of strands of the hollow fiber membrane. Tensile strength was measured by using a tensile strength meter to measure the force at the time of cutting and breaking, divided by the cross-sectional area of the hollow fiber.

구분division 평균기공크기
(㎛)
Average pore size
(Μm)
순수투과량
(L/㎡·hr, 1kg/㎠)
Pure permeation amount
(L / ㎡ · hr, 1kg / ㎠)
인장강도 (MPa)Tensile Strength (MPa)
실시예 1Example 1 0.20.2 12001200 1212 실시예 2Example 2 0.40.4 15001500 1010 실시예 3Example 3 0.30.3 12001200 1111 실시예 4Example 4 0.090.09 700700 1313 비교예 1Comparative Example 1 0.080.08 600600 77 비교예 2Comparative Example 2 0.060.06 200200 66 비교예 3Comparative Example 3 0.40.4 12001200 77

실험예 2: 막오염 저항성 측정실험Experimental Example 2: Measurement of membrane fouling resistance

상기 실시예 1 ∼ 4 및 비교예 1 ∼ 3에서 제조한 수처리용 분리막의 막 오염 저항성을 측정하였다. 막오염 유발물질로 보빈 세럼 알부민(bovine serum albumin) 500 ppm 수용액을 사용하였으며, 막오염도는 6 시간 운전 후의 투과유량과 증류수를 이용한 초기투과유량을 비교하여 상대투과유량으로 나타내었다. 상대투과유량은 하기 수학식 1에 의해 계산하였으며, 그 결과는 하기 표 2에 나타내었다.The membrane fouling resistance of the separation membrane for water treatment prepared in Examples 1 to 4 and Comparative Examples 1 to 3 was measured. A 500 ppm aqueous solution of bovine serum albumin was used as a membrane fouling agent, and the membrane fouling degree was expressed as a relative flux by comparing the permeate after 6 hours of operation with the initial flux using distilled water. The relative flux was calculated by the following Equation 1, and the results are shown in Table 2 below.

Figure 112011011175821-pat00001
Figure 112011011175821-pat00001

구분division 상대투과유량Relative Permeate Flow Rate 실시예 1Example 1 0.780.78 실시예 2Example 2 0.810.81 실시예 3Example 3 0.740.74 실시예 4Example 4 0.830.83 비교예 1Comparative Example 1 0.630.63 비교예 2Comparative Example 2 0.610.61 비교예 3Comparative Example 3 0.350.35

본 발명에 따른 실시예 1 내지 3의 분리막은 상대투과유량이 높은 것을 확인할 수 있으며, 이를 통하여 본 발명이 기존의 분리막보다 막오염 저항성이 우수한 것을 확인할 수 있다. The separation membranes of Examples 1 to 3 according to the present invention can be confirmed that the relative permeate flow rate is high, and through this, it can be confirmed that the present invention has superior membrane fouling resistance than the conventional separator.

Claims (8)

아세틸화된 알킬 셀룰로스; 및
빈용매로서 폴리에틸렌글리콜;
을 포함하는 것을 특징으로 하는 열유도 상 분리법을 이용한 아세틸화된 알킬 셀룰로스 분리막 제조용 고분자 용액.
Acetylated alkyl cellulose; And
Polyethylene glycol as a poor solvent;
Polymer solution for the production of acetylated alkyl cellulose separation membrane using a thermally induced phase separation method comprising a.
청구항 1에 있어서,
상기 아세틸화된 알킬 셀룰로스는 중량평균분자량이 5만 내지 2백만 범위이고, 셀룰로스의 단위구조(unit) 당 알킬기의 치환도 1.0 내지 2.0 몰비 및 아세틸기의 치환도 1.0 내지 2.0 몰비인 것을 특징으로 하는 고분자 용액.
The method according to claim 1,
The acetylated alkyl cellulose has a weight average molecular weight in the range of 50,000 to 2 million, characterized in that the substitution degree of the alkyl group per unit structure (cellulose) of 1.0 to 2.0 molar ratio and the degree of substitution of the acetyl group of 1.0 to 2.0 molar ratio Polymer solution.
청구항 1에 있어서,
상기 폴리에틸렌글리콜은 중량평균분자량이 200 내지 1,000 범위인 것을 특징으로 하는 고분자 용액.
The method according to claim 1,
The polyethylene glycol is a polymer solution, characterized in that the weight average molecular weight ranges from 200 to 1,000.
아세틸화된 알킬 셀룰로스 10 ∼ 30 중량% 및 폴리에틸렌글리콜의 빈용매 70 ∼ 90 중량%를 혼합하여 고분자 용액을 제조하는 단계;
상기 고분자 용액을 가열하여 방사용액을 제조하는 단계; 및
상기 방사용액과 내부 홀(hole) 형성제를 노즐에서 방사하여 방사용액을 상전이시켜 중공사막을 제조하는 단계;
를 포함하는 열유도 상 분리법을 이용한 아세틸화된 알킬 셀룰로스 분리막의 제조방법.
Preparing a polymer solution by mixing 10-30 wt% of acetylated alkyl cellulose and 70-90 wt% of the poor solvent of polyethylene glycol;
Heating the polymer solution to prepare a spinning solution; And
Preparing a hollow fiber membrane by spinning the spinning solution and an inner hole forming agent through a nozzle to phase-transfer the spinning solution;
Method for producing an acetylated alkyl cellulose membrane using a thermally induced phase separation method comprising a.
청구항 4에 있어서,
상기 고분자 용액을 100℃ 내지 200℃ 온도 범위로 가열하여 방사용액을 제조하는 것을 특징으로 하는 열유도 상 분리법을 이용한 아세틸화된 알킬 셀룰로스 분리막의 제조방법.
The method of claim 4,
Method for producing an acetylated alkyl cellulose separation membrane using a thermally induced phase separation method characterized in that to prepare a spinning solution by heating the polymer solution in a temperature range of 100 ℃ to 200 ℃.
청구항 4에 있어서,
상기 중공사막은 외부층의 기공크기가 0.05 내지 0.2 ㎛ 범위이고, 내부층의 기공크기가 0.1 내지 1 ㎛ 범위인 것을 특징으로 하는 열유도 상 분리법을 이용한 아세틸화된 알킬 셀룰로스 분리막의 제조방법.
The method of claim 4,
The hollow fiber membrane has a pore size of 0.05 ~ 0.2 ㎛ range of the outer layer, the pore size of the inner layer range of 0.1 to 1 ㎛ characterized in that the method of producing an acetylated alkyl cellulose separation membrane using a thermally induced phase separation method.
청구항 4에 있어서,
상기 상전이 과정에 사용되는 내부응고욕은 에틸렌글리콜계이고, 외부응고욕은 에틸렌글리콜계 단독 또는 에틸렌글리콜계와 물을 혼합한 혼합용액인 것을 특징으로 하는 열유도 상 분리법을 이용한 아세틸화된 알킬 셀룰로스 분리막의 제조방법.
The method of claim 4,
The internal coagulation bath used in the phase transition process is ethylene glycol-based, and the external coagulation bath is ethylene glycol-based alone or acetylated alkyl cellulose using a heat-induced phase separation method, characterized in that a mixed solution of ethylene glycol and water. Method for producing a separator.
청구항 4 내지 7항 중에서 선택된 어느 한 항에 있어서,
분리막의 평균기공크기가 0.05 ∼ 0.4 ㎛이고, 순수투과유량이 500 ∼ 2000 L/㎡·hr(1 kg/㎠)이고, 인장강도가 9 ∼ 20 MPa이고, 증류수를 이용한 초기투과유량 대비 6 시간 운전 후의 상대투과유량이 0.7 ∼ 0.9인 것을 특징으로 하는 열유도 상 분리법을 이용한 아세틸화된 알킬 셀룰로스 분리막의 제조방법.
The compound according to any one of claims 4 to 7, wherein
The average pore size of the membrane is 0.05 to 0.4 µm, the net permeate flow rate is 500 to 2000 L / m 2 · hr (1 kg / cm 2), the tensile strength is 9 to 20 MPa, and 6 hours compared to the initial permeate flow rate using distilled water. A method for producing an acetylated alkyl cellulose separation membrane using a thermally induced phase separation method, characterized in that the relative permeate flow rate after operation is 0.7 to 0.9.
KR1020110013818A 2011-02-16 2011-02-16 Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof KR101269574B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110013818A KR101269574B1 (en) 2011-02-16 2011-02-16 Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110013818A KR101269574B1 (en) 2011-02-16 2011-02-16 Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof

Publications (2)

Publication Number Publication Date
KR20120094362A KR20120094362A (en) 2012-08-24
KR101269574B1 true KR101269574B1 (en) 2013-06-05

Family

ID=46885287

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110013818A KR101269574B1 (en) 2011-02-16 2011-02-16 Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof

Country Status (1)

Country Link
KR (1) KR101269574B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150069422A (en) * 2013-12-13 2015-06-23 한국화학연구원 Cellulosic membrane for water treatment with good anti-fouling property and Method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101530432B1 (en) * 2013-09-12 2015-06-19 주식회사 효성 Polymer composition for preparing acetylated alkyl cellulose membrane and preparation method of acetylated alkyl cellulose membrane using the same
KR20170081798A (en) * 2016-01-04 2017-07-13 주식회사 효성 Acetylated alkyl cellulose separation membrane and method for preparing the same
WO2017175600A1 (en) * 2016-04-08 2017-10-12 株式会社ダイセル Semipermeable membrane
KR102593611B1 (en) * 2021-06-30 2023-10-23 한국화학연구원 Preparation method of cellulose-based polymer microfiltration membrane and microfiltration membrane thereby
KR20240035225A (en) 2022-09-08 2024-03-15 한국화학연구원 Hollow fiber separation membrane manufacturing method and hollow fiber separation membrane manufactured therefrom

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305824A (en) * 1978-08-10 1981-12-15 Toray Industries, Incorporated Cellulose derivative reverse osmosis membrane
US5403485A (en) * 1992-05-20 1995-04-04 Akzo N.V. Dialysis membrane made of cellulose acetate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305824A (en) * 1978-08-10 1981-12-15 Toray Industries, Incorporated Cellulose derivative reverse osmosis membrane
US5403485A (en) * 1992-05-20 1995-04-04 Akzo N.V. Dialysis membrane made of cellulose acetate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150069422A (en) * 2013-12-13 2015-06-23 한국화학연구원 Cellulosic membrane for water treatment with good anti-fouling property and Method thereof
KR102054838B1 (en) 2013-12-13 2020-01-22 한국화학연구원 Cellulosic membrane for water treatment with good anti-fouling property and Method thereof

Also Published As

Publication number Publication date
KR20120094362A (en) 2012-08-24

Similar Documents

Publication Publication Date Title
JP5622833B2 (en) High durability PVDF porous membrane, method for producing the same, and cleaning method and filtration method using the same
KR101132731B1 (en) Acetylated methyl cellulose, Membrane for water treatment using that and Preparing method thereof
KR101269574B1 (en) Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof
KR101392943B1 (en) Hollow fiber membrane for forward osmotic use, and method for manufacturing the same
CN105120992B (en) Polyvinylidene fluoride hollow fiber membrane and its preparation
KR102054838B1 (en) Cellulosic membrane for water treatment with good anti-fouling property and Method thereof
KR20180048692A (en) Patent application title: PROCESS FOR PREPARING COATING FILM FOR COST-INDUCED PHASES AND METHOD FOR PRODUCING POROUS HYBRIDS
KR101179161B1 (en) Novel polymer resin of Polyvinylidenefluoride type hollow fiber membrane, PVDF hollow fiber membrane with resistant membrane-pollution and Preparing method thereof
KR101394416B1 (en) Method for Manufacturing Polyvinylidene fluoride Hollow fiber membrane and Hollow fiber membrane
KR101161709B1 (en) Method of producing porous hollow fiber membranes based on acetylated alkyl cellulose
KR101530432B1 (en) Polymer composition for preparing acetylated alkyl cellulose membrane and preparation method of acetylated alkyl cellulose membrane using the same
KR101648843B1 (en) A preparation method of fouling-resistant hollow fiber membrane and a fouling-resistant hollow fiber membrane prepared by the same
Chen et al. Fabrication of PVDF ultrafiltration membrane using modified thermally induced phase separation: The role of amphiphilic and hydrophilic non-solvents
KR101894077B1 (en) Polysulfone-based polymeric holleow fiber membrane with good selectivity
KR101310815B1 (en) Method for Manufacturing Hollow fiber membrane
KR101434166B1 (en) Manufacturing method of highly efficient hollow fiber membranes and poor solvent for manufacturing hollow fiber
KR101675455B1 (en) A preparation method of a membrane having improved chlorine resistance and a chlorine resistant membrane prepared by the same
KR20160078322A (en) A preparation method of fouling-resistant hollow fiber membrane and a fouling-resistant hollow fiber membrane prepared by the same
KR102399330B1 (en) Acetylated alkyl cellulose separation membrane and method for preparing the same
CN110831690B (en) Film-forming solution and method for producing separation membrane using same
KR101885255B1 (en) Porous Membrane and Method for Manufacturing The Same
KR102306426B1 (en) Composite porous membrane of acetylated alkyl cellulose and polyolefinketone
KR102172621B1 (en) Method for preparation of polyketone hollow fiber membrane
KR101435609B1 (en) A preparation method of high-performance and reinforced membrane
KR101355017B1 (en) Highly efficient hollow fiber membranes and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160419

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee