JPH06319967A - Porous hollow fiber membrane with continuous multiphase separating structure and production thereof - Google Patents

Porous hollow fiber membrane with continuous multiphase separating structure and production thereof

Info

Publication number
JPH06319967A
JPH06319967A JP13011493A JP13011493A JPH06319967A JP H06319967 A JPH06319967 A JP H06319967A JP 13011493 A JP13011493 A JP 13011493A JP 13011493 A JP13011493 A JP 13011493A JP H06319967 A JPH06319967 A JP H06319967A
Authority
JP
Japan
Prior art keywords
hollow fiber
polymer
fiber membrane
polymers
porous hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13011493A
Other languages
Japanese (ja)
Inventor
Hisashi Namura
久士 奈村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Millipore KK
Original Assignee
Nihon Millipore KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Millipore KK filed Critical Nihon Millipore KK
Priority to JP13011493A priority Critical patent/JPH06319967A/en
Publication of JPH06319967A publication Critical patent/JPH06319967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To provide a novel membranous fiber which maintains a structure wherein at least two kinds of polymer phases are tangled with one another and in which the polymers mutually make up for their disadvantages and the feature of each polymer is maintained. CONSTITUTION:At least two kinds of immiscible polymer solutions are mixed together and this mixture is made a multiphase blended solution having a phase changed structure or a similar blended form by a static mixer, etc., immediately before injection by a multiple annular nozzle for coagulation, whereby a hollow fiber membrane of the structure in which the polymer phases are continuously tangled with one another is obtained. By the combination of the polymers in this way, a membrane is provided which is changeable in thermal stability, hydrophilic property and the adsorbing performance for a biologically active substance such as protein and which is easily given a higher degree of function by the after-treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は精密濾過に使用される多
孔質中空繊維膜に関し、更に詳しくは医薬、医療、微生
物、生化学分野等でのウィルス分離・除去・濃縮試験等
に利用することができるだけでなくその他の工業用途に
も用いられる新規な分離膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous hollow fiber membrane used for microfiltration, and more particularly, to use for a virus separation / removal / concentration test in the fields of medicine, medicine, microorganisms, biochemistry and the like. The present invention relates to a novel separation membrane which can be used not only for other industrial applications.

【0002】[0002]

【従来の技術】従来、多孔質中空繊維膜の製造法とし
て、膜の構成ポリマーに孔形成剤として第二のポリマ
ー、第三のポリマー等をブレンドして多重環ノズルより
凝固浴に押しだし、ミクロ相分離を起こし所望の多孔質
膜構造の形成を計る製法が採用されている。この場合第
二ポリマー以下は主ポリマーと同一組成の溶媒に溶解し
ポリマー同志相溶性があり且つ中空繊維形成後は膜構成
ポリマーを残し、第二ポリマー以下は完全に抽出され多
孔質膜が形成される。
2. Description of the Related Art Conventionally, as a method for producing a porous hollow fiber membrane, a polymer constituting the membrane is blended with a second polymer, a third polymer or the like as a pore-forming agent, and the mixture is extruded from a multi-ring nozzle into a coagulation bath. A manufacturing method is employed which causes phase separation to form a desired porous membrane structure. In this case, the second polymer and below are soluble in a solvent having the same composition as the main polymer and are compatible with each other, and the membrane-constituting polymer remains after the hollow fiber is formed, and the second polymer and below are completely extracted to form a porous membrane. It

【0003】このような例として代表的なものはポリス
ルホンまたはポリエーテルスルホンにポリエチレングラ
イコール等の水溶性ポリマーをブレンドする方式が特開
昭57−35906等に提案されている。即ち、両ポリ
マーはジメチルアセトアミド、ジメチルホルムアミド、
ジメチルスルホキシド、N−メチル−2−ピロリドン等
の極性有機溶媒あるいはその混合溶媒から選択された溶
媒を用いてブレンドされ、このポリマー溶液は多重環状
ノズルより押し出され、ポリスルホンまたはポリエーテ
ルスルホンはその非溶媒である水系の凝固浴中で固化さ
れ、ミクロ相分離することにより所定の多孔質膜構造の
中空繊維が製造される。この際ポリエチレングライコー
ル等は水溶性のため最終的には完全に水中に抽出され
る。これら第二ポリマー以下は相分離の際の膜構造を支
配するもので、一旦凝固固化されると後は不要のものと
なる。またこれらのポリマーはそれ自身繊維形成能はな
い。
As a typical example of such an example, a method of blending a polysulfone or a polyethersulfone with a water-soluble polymer such as polyethylene glycol is proposed in JP-A-57-35906. That is, both polymers are dimethylacetamide, dimethylformamide,
Blended using a solvent selected from polar organic solvents such as dimethylsulfoxide, N-methyl-2-pyrrolidone or a mixed solvent thereof, the polymer solution is extruded through a multi-ring nozzle, and polysulfone or polyether sulfone is a non-solvent thereof. Is solidified in an aqueous coagulation bath and microphase-separated to produce hollow fibers having a predetermined porous membrane structure. At this time, polyethyleneglycol and the like are water-soluble, and finally completely extracted into water. These second and lower polymers dominate the film structure during phase separation, and once solidified and solidified are no longer necessary. Also, these polymers are not capable of forming fibers by themselves.

【0004】また、特開昭58−104940には、こ
れら水溶性ポリマーとしてポリビニルピロリドン等を選
定・添加し、水洗溶出後多少を残存させ親水性を付与す
ることも提案されている。かかる水溶性ポリマーを一部
でも残す場合はこれを不溶化する後処理が必要であり特
開昭62−38205、63−97205等にその技術
が開示されている。
Further, JP-A-58-104940 proposes that polyvinylpyrrolidone or the like is selected and added as the water-soluble polymer, and a small amount remains after elution with water to impart hydrophilicity. When even a part of the water-soluble polymer is left, a post-treatment for insolubilizing the water-soluble polymer is necessary, and the technique is disclosed in JP-A-62-38205, 63-97205 and the like.

【0005】異種ポリマーブレンドの方式として例え
ば、特開昭57−50507に記載のようにポリスルホ
ンにセルローズ誘導体を混合するとか特開昭57−50
506に記載のアクリロニトリル系重合体を混合すると
か、同一系統のポリマーとして特開昭56−86941
に記載のポリスルホンとポリエーテルスルホンを混合す
るとか、重合度の異なる同一ポリマーの混合など、その
例は数多くみられる。目的としては強度上昇、紡糸性の
向上、孔径の制御、流束の向上などが挙げられている。
As a method of blending different polymers, for example, as described in JP-A-57-50507, polysulfone may be mixed with a cellulose derivative, or JP-A-57-50 may be used.
The acrylonitrile-based polymer described in No. 506 is mixed, or as a polymer of the same system, JP-A-56-86941
There are many examples such as mixing the polysulfone and the polyether sulfone described in 1) or mixing the same polymer having different polymerization degrees. The purpose is to increase strength, improve spinnability, control pore size, improve flux, and the like.

【0006】又、互いの特長を兼備させるため、異種の
ポリマーをブレンドしてなる多孔質中空繊維膜の製造に
おいては一般に溶媒の選択、凝固剤としての非溶媒の選
択が難しい。仮に溶媒及び非溶媒が見い出されたとして
も、ポリマー間の相溶性がない場合溶液同志の混合性が
悪く従って原液安定性に乏しく紡糸することが困難とな
る。このため、かかる異種ポリマーの組合せはその組成
比と温度の制限の少ないほとんどの領域で溶け合う相溶
系か或る組成比、或る温度領域では溶け合う一層領域を
有する半相溶系の場合に限り初めて通常の紡糸方法で多
孔質中空繊維膜の製造が可能となる。これに対しほとん
どの領域で全く相互に溶解しない非相溶系のポリマーを
ブレンドして中空繊維膜を製造する試みは殆どなされて
いない。
Further, in order to combine the features of each other, it is generally difficult to select a solvent and a non-solvent as a coagulant in the production of a porous hollow fiber membrane formed by blending different polymers. Even if a solvent and a non-solvent are found, if there is no compatibility between the polymers, the miscibility between the solutions is poor and the stability of the stock solution is poor, making spinning difficult. For this reason, such a combination of different polymers is usually not available for the first time only in the case of a compatible system in which the composition ratio and the temperature are less restricted, or a semi-compatible system having a certain composition ratio and a single layer region in which a certain temperature range is compatible. It is possible to manufacture a porous hollow fiber membrane by the spinning method described above. On the other hand, almost no attempts have been made to produce hollow fiber membranes by blending incompatible polymers that do not dissolve each other in most regions.

【0007】一般に異種ポリマーの組合せによって性能
の改善を行うには溶融系を経たポリマーアロイを形成す
る方法がよく知られている。互いに非相溶であるポリマ
ー同志を溶融し機械的に混合すると混合物はエマルジョ
ン状態、いわゆる連続相である海と分散相である島構造
とからなるのが一般的で、放置すると島部は徐々に合体
粗大化してついにはそれぞれのポリマー相となり分離す
る。かかる分離は溶融系、溶液系共通の現象であり溶液
系の方が一般に粘度が低いためこの現象は速やかに起こ
り中空繊維の紡糸は非常に困難となりほとんど検討され
てきていなかった。
[0007] Generally, in order to improve the performance by combining different kinds of polymers, a method of forming a polymer alloy through a melt system is well known. When polymers that are incompatible with each other are melted and mechanically mixed, the mixture generally consists of an emulsion state, the so-called continuous phase of sea and an island structure of dispersed phase. Coalescence and coarsening eventually lead to the respective polymer phases and separation. Such separation is a phenomenon common to both the melt system and the solution system, and since the viscosity is generally lower in the solution system, this phenomenon occurs more rapidly and spinning of the hollow fiber becomes very difficult, and it has been hardly studied.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、自身繊
維形成能を有するが互いに非相溶性のポリマー同志をそ
れぞれの特長を発揮させるようにブレンドして得た多孔
質中空繊維膜は、幅広い特徴を有することが期待し得る
ことから魅力のあるものと考えられ、例えば疎水性ポリ
マーであるポリフッ化ビニリデン、ポリスルホン、ポリ
エーテルスルホン、ポリアミドイミド、ポリケトン、ポ
リイミドと、親水性ポリマーであるエチレン−ビニルア
ルコール共重合体、ポリビニルアルコール及びそれのア
セタール化物等のポリマーの組合せ等が考えられる。
However, the porous hollow fiber membranes obtained by blending polymers which are capable of forming fibers themselves but are incompatible with each other so as to exert their respective characteristics have a wide range of characteristics. It is considered to be attractive because it can be expected that, for example, polyvinylidene fluoride, polysulfone, polyether sulfone, polyamide imide, polyketone, polyimide which are hydrophobic polymers, and ethylene-vinyl alcohol copolymerization which is a hydrophilic polymer. Combinations of polymers such as coalesce, polyvinyl alcohol and acetalized products thereof are considered.

【0009】特に多孔質中空繊維膜の製造を目的とする
場合はかかる異種ポリマーの混合溶液を出発原料とした
製法が課題となる。例えば上記のポリマー例に対しては
ジメチルアセトアミド、ジメチルホルムアミド、ジメチ
ルスルホキシド、N−メチル−2−ピロリドン等の極性
溶媒を用いた製法が課題となる。
In particular, in the case of producing a porous hollow fiber membrane, a production method using a mixed solution of such different polymers as a starting material is an issue. For example, for the above polymer examples, a production method using a polar solvent such as dimethylacetamide, dimethylformamide, dimethylsulfoxide, N-methyl-2-pyrrolidone becomes a problem.

【0010】さらに具体的に一例を挙げて課題に言及す
るなら、非相溶系のポリマーの組合せとしての疎水性の
ポリフッ化ビニリデンと親水性のエチレンービニルアル
コール共重合体の二相連続多孔質中空繊維膜は入手し得
ればこのうえない製品と言え、課題として魅力のあるも
のといえよう。即ち、ポリフッ化ビニリデンは疎水性ポ
リマーの一つで、耐薬品性、耐熱性、製膜に優れ、強力
でもあり膜素材として広く使われている。しかし使用に
際しては疎水性のため水ぬれ性が悪く、水系で使用する
ためにはアルコール類で前処理後水で置換するなどの手
間のかかる工程が欠かせない。或いは非共有結合的な吸
着による蛋白の吸着が大きい等の欠点がある。これらを
改良するため製造工程に親水化処理する方法が種々提案
されている。
More specifically, referring to the problem by way of example, a biphasic continuous porous hollow of a hydrophobic polyvinylidene fluoride and a hydrophilic ethylene-vinyl alcohol copolymer as a combination of incompatible polymers. If a fiber membrane is available, it can be said that it is an excellent product, and it can be said that it is an attractive subject. That is, polyvinylidene fluoride is one of hydrophobic polymers, is excellent in chemical resistance, heat resistance, and film formation, is strong, and is widely used as a film material. However, when used, it has poor water wettability due to its hydrophobicity, and in order to use it in an aqueous system, a laborious process such as substituting with water after pretreatment with alcohol is essential. Alternatively, there are drawbacks such as large non-covalent adsorption of proteins. In order to improve these, various methods of hydrophilic treatment in the manufacturing process have been proposed.

【0011】一方エチレン−ビニルアルコール共重合体
は親水性のため生体適合性が良く特に人工腎臓などに大
量に使用されている。また疎水性膜の表面に後処理によ
って結合し使用されている例もある。例えば特開昭61
−271003には疎水性膜の表面に後処理によってこ
のポリマーを結合し、親水化して蛋白吸着を低下させる
提案がなされている。しかしながら、エチレン−ビニル
アルコール共重合体は単独では吸水性が大きく、ハイド
ロゲルとなり、湿潤時の膜強度は著しく低下する。一旦
吸水した膜をそのまま乾燥すると収縮し膜性能は変化し
て再使用は不可能となる。また50℃以上では使用でき
ない欠点もある。
On the other hand, the ethylene-vinyl alcohol copolymer is hydrophilic and has good biocompatibility, and is used in large amounts especially in artificial kidneys. There is also an example in which it is used by being bonded to the surface of a hydrophobic film by post-treatment. For example, JP-A-61
It has been proposed in -271003 that this polymer be bound to the surface of a hydrophobic membrane by a post-treatment to make it hydrophilic and reduce protein adsorption. However, the ethylene-vinyl alcohol copolymer alone has a large water absorbency, becomes a hydrogel, and the film strength when wet is significantly reduced. If the water-absorbed film is dried as it is, it will shrink and the film performance will change, making reuse impossible. There is also a drawback that it cannot be used above 50 ° C.

【0012】換言するなら、それぞれ特徴を有するポリ
マーを組合せ両者の持つ特長を活かしその上、欠点を相
互に補完する様な異種ポリマーの組合せを連続多相構造
により発揮せしめるのが本発明の課題である。
In other words, it is an object of the present invention to combine polymers having their respective characteristics, to utilize the characteristics of both, and to exhibit a combination of dissimilar polymers that complements each other by a continuous multiphase structure. is there.

【0013】[0013]

【課題を解決するための手段】一般的に非相溶系を機械
的に混合するとエマルションとなりこれにより海島構造
となることはよく知られている。これに対しポリマー同
志が半相溶系を形成する場合「ポリマーアロイ」(共立
出版、1988年初版)に詳述されている様に一旦一相
状態になる領域で混合均一化しておき、これを二相領域
となる条件例えば系の温度をかえることで相分離させる
と海島とは異なる特徴的な高次構造が形成される。これ
は一般にスピノーダル分解といわれ、分離相が共に連続
して規則的に即ち構造周期をもって絡み合った相構造が
形成される。即ち一定の構造周期を有する変調構造と呼
ばれる状態を保つことができることが知られている。ま
た、非相溶なポリマーの組合せに対して溶媒を用いて均
一系から溶媒を次第に蒸発させて濃縮されたポリマーを
含む系が二相領域に突入しスピノーダル分解様式で相分
解して変調構造を構成することも知られている。以上の
ような技術背景のもとに異種ポリマー相が連続して存在
する多孔質中空繊維膜膜を製造することを鋭意検討し
た。
It is well known that, when mechanically mixing an incompatible system, an emulsion is formed and a sea-island structure is formed. On the other hand, when the polymers form a semi-compatible system, they are mixed and homogenized in the region where they are once in a one-phase state, as described in detail in “Polymer Alloy” (Kyoritsu Shuppan, 1988 first edition). When phase separation is performed by changing the conditions of the phase region, for example, by changing the temperature of the system, a characteristic higher-order structure different from sea islands is formed. This is generally referred to as spinodal decomposition, and the separated phases are continuously formed together to form a phase structure in which they are regularly entangled with each other with a structural period. That is, it is known that a state called a modulation structure having a constant structure period can be maintained. In addition, for a combination of incompatible polymers, a system containing concentrated polymer by gradually evaporating the solvent from a homogeneous system using a solvent plunges into the two-phase region and undergoes phase decomposition in a spinodal decomposition mode to form a modulated structure. It is also known to configure. Based on the above technical background, the inventors have earnestly studied to produce a porous hollow fiber membrane having different polymer phases continuously present.

【0014】その結果、前記一相状態や均一系を経ずし
て、繊維形成能を有するが互いに相溶性のないポリマー
を溶解してなる溶液混合物に撹拌により変調構造を与え
多重環状ノズルから凝固浴中に吐出固化してなる連続多
相分離構造を有する多孔質中空繊維膜及びその製造法を
見い出し本願発明を完成するに至ったので以下に詳述す
る。
As a result, a modulation structure is imparted to a solution mixture obtained by dissolving polymers having a fiber-forming ability but incompatible with each other without going through the above-mentioned one-phase state or a homogeneous system, and solidified from multiple annular nozzles. The present invention has been completed by discovering a porous hollow fiber membrane having a continuous multiphase separation structure which is discharged and solidified in a bath and a method for producing the same, and will be described in detail below.

【0015】曳糸性を有するポリマー、コポリマーは枚
挙に暇のないほどたくさん存在し互いに相溶しないそれ
らポリマーの組合せもその数は甚大でありポリマーの種
類が増えるほど相溶性はほとんど期待し得ない。このよ
うなポリマーを溶媒に溶解することを試みるなら純溶
媒、混合溶媒はかなりの数にのぼるが例え各ポリマーの
溶液が調製できてもポリマー同志相溶性がない場合これ
らの溶液の混合物は均一系を形成しないのが普通であ
る。
The number of polymers and copolymers having spinnability is so numerous that they are incompatible, and the number of combinations of those polymers which are incompatible with each other is enormous, and the compatibility cannot be expected as the kinds of polymers increase. . If you try to dissolve such a polymer in a solvent, there are a considerable number of pure solvents and mixed solvents, but even if a solution of each polymer can be prepared but the polymers are not compatible with each other, the mixture of these solutions is a homogeneous system. It is normal not to form.

【0016】しかしながら、かかる混合物を強く撹拌す
ると通常のエマルジョンとは異なる変調構造もしくは変
調構造類似の状況を達成し得ることがあることを見いだ
した。さらに、この変調構造を保持したまま紡糸浴に吐
出固化させて得た多孔質中空繊維膜の構成成分のポリマ
ーの一方だけを溶解しても中空繊維構造体が維持されて
いることから、各ポリマー相が連続して絡み合った構造
を有していることを見い出し、連続多相分離構造をもつ
多孔質中空繊維膜とその製造法を提供するという課題を
達成するに至った。
However, it has been found that vigorous stirring of such a mixture may achieve a different modulation structure or modulation structure-like situation than conventional emulsions. Furthermore, since the hollow fiber structure is maintained even if only one of the constituent polymers of the porous hollow fiber membrane obtained by discharging and solidifying into the spinning bath while maintaining this modulation structure is dissolved, the respective polymer is maintained. It has been found that the phases have a structure in which the phases are continuously entangled with each other, and the object of providing a porous hollow fiber membrane having a continuous multiphase separation structure and a method for producing the same has been achieved.

【0017】ここに、変調構造が典型的に達成された場
合は攪拌されている混合溶液の高速度撮影などにより通
常エマルジョンが海の部分にほぼ球形の島部が存在して
いるのでその達成が確認し得る。一方、変調構造類似と
は混合溶液を撹拌している状態では各溶液の非球形の存
在をを確認し得なくとも最終中空繊維で実施例の構造解
析に記載したように製造した多孔質中空繊維のポリマー
各1成分を溶解しても、残りのポリマーが繊維構造を保
持していることからかかる攪拌下の混合溶液に定義され
るもので、実質的に目的とする連続多層分離構造を有す
る多孔質中空繊維膜を与える点から以下一括して変調構
造と記す。
Here, when the modulated structure is typically achieved, the achievement is usually achieved because the emulsion has a substantially spherical island portion in the sea portion by high-speed photography of the mixed solution being stirred. You can check. On the other hand, the term “modulated structure similarity” means that in the state where the mixed solution is stirred, the presence of non-spherical shapes in each solution cannot be confirmed, but the final hollow fiber is a porous hollow fiber produced as described in the structural analysis of the example. Since the remaining polymer retains the fibrous structure even after dissolving each one component of the above polymer, it is defined as such a mixed solution under stirring, and substantially has the intended continuous multilayer separation structure. From the viewpoint of providing a high quality hollow fiber membrane, it will be collectively referred to as a modulation structure hereinafter.

【0018】従来の変調構造が一旦相溶系ないしは均一
溶液系を経てから、スピノーダル分解工程に至らしめ達
成されるのに対し本願発明では当初からスピノーダル分
解工程を経た状況をつくり出しかかる状況がきわめて不
安定で相分離を起こして二相に分かれやすいにもかかわ
らず強力な撹拌により変調構造を与えるもので、撹拌に
よりかかる状態を得るにはポリマー種類、ポリマーの組
合せ、これを溶解する溶媒、混合溶媒、溶液濃度、溶液
温度などを選定することが不可欠で一般的な選定指標は
未だ知られてはいない。しかしながら要は、強く撹拌し
た状態で互いの溶液相が絡み合った状態を実現し得れば
よく、上述のような溶液系にあってはすでに知られてい
るテトラヒドロフランに溶解したポリ塩化ビニルとアク
リロニトリル−ブタジェン共重合体の溶液がテトラヒド
ロフランが蒸発する過程でスピノーダル分解によって変
調構造を形成することを参照すればかかる状態は容易に
判断し得る。
While the conventional modulation structure is achieved by once passing through a compatible system or a homogeneous solution system to a spinodal decomposition step, the present invention creates a situation from the beginning through a spinodal decomposition step, which is extremely unstable. In order to obtain such a state by stirring, the type of polymer, the combination of polymers, the solvent that dissolves this, the mixed solvent, the mixed solvent, It is essential to select the solution concentration, the solution temperature, etc., and a general selection index has not been known yet. However, the point is that it is possible to realize a state in which the solution phases are entangled with each other in a strongly stirred state, and in the above-mentioned solution system, polyvinyl chloride and acrylonitrile-dissolved in tetrahydrofuran which are already known in tetrahydrofuran are known. Such a state can be easily determined by referring to the fact that the solution of the butadiene copolymer forms a modulation structure by spinodal decomposition in the process of evaporating tetrahydrofuran.

【0019】ところで、上述の撹拌に当たっては混合溶
液系にガス成分を巻き込まないように工夫することが均
一な繊維構造を得るためあるいは充分な強度を保持させ
るため等の観点からきわめて重要なポイントになる。特
に、本願の場合には溶液が分離し易く強力に撹拌して溶
液同志が海海の状況を保持させることが肝要だが、その
結果ガス成分が巻き込まれ易い。このため撹拌にはガス
巻き込みが避けらるように工夫が要され、例えば各ポリ
マー毎に溶液を調製しておき、脱気後スタティックミキ
サーにこれら溶液を供給しノズル直前まで海々混合形態
の状態に保ち、多重環状ノズルより吐出させて凝固固化
させる方法が有用である。ここにスタティックミキサー
は図4にエレメント数4の例を示したことからも分かる
ように中空円筒のハウジング1にミキシングユニット2
が収納されて構成されているもので、ミキシングユニッ
ト2は複数のエレメント3が長手方向に連接されてお
り、1エレメントは板状体を長手方向に進むに従って周
方向に、例えば180度捩ったような形状をしている。
そして隣り合うエレメントの捩れ方向が互いに逆方向に
なっていて、エレメント同士の結合部4は板面を90度
捩った状態で結合される。流体は1エレメント毎に2分
割され全分割数Nは
By the way, in the above-mentioned stirring, it is a very important point from the viewpoint of obtaining a uniform fiber structure or maintaining sufficient strength, etc., so as not to entrain the gas component in the mixed solution system. . In particular, in the case of the present application, it is essential that the solutions are easily separated and vigorously stirred so that the solutions maintain the sea-sea condition, but as a result, the gas components are easily involved. For this reason, stirring must be devised so that gas entrainment can be avoided.For example, prepare a solution for each polymer, supply these solutions to a static mixer after degassing, and maintain a sea-sea mixing state until just before the nozzle. It is useful to maintain the temperature at a constant value and discharge from multiple annular nozzles to solidify and solidify. Here, the static mixer has a hollow cylindrical housing 1 and a mixing unit 2 as shown in FIG.
The mixing unit 2 has a plurality of elements 3 connected in the longitudinal direction, and one element is twisted in the circumferential direction, for example, 180 degrees as the plate body advances in the longitudinal direction. It has such a shape.
The twisting directions of the adjacent elements are opposite to each other, and the connecting portions 4 of the elements are connected with the plate surfaces twisted by 90 degrees. The fluid is divided into two for each element, and the total number of divisions N is

【数1】N=2n (nはエレメント数) となり流体の混合が行なわれる。また流体は各断面内で
並び替えられ、1エレメント毎に回転方向が入れ替わり
均質化されるものであり本願には好適な撹拌手段であ
る。また、溶液の供給に当たっては各溶液の直後、スタ
ティックミキサーの直前に供給手段即ちポンプ等を設置
することが好ましく必要ならスタティックミキサーの直
後に更に供給手段を設けてもよい。
## EQU1 ## N = 2 n (n is the number of elements), and the fluids are mixed. Further, the fluid is rearranged within each cross section and is homogenized by changing the rotation direction for each element, which is a suitable stirring means in the present application. Further, in supplying the solutions, it is preferable to install a supply means, that is, a pump or the like immediately after each solution and immediately before the static mixer, and if necessary, further supply means may be provided immediately after the static mixer.

【0020】あるいはまた必要数のポリマーと必要量の
一定組成の溶媒とを一挙に真空下撹拌翼で強力に撹拌し
て変調構造を維持して上記同様紡糸する方法も有用であ
るがこの際も撹拌槽とノズル間をスタティックミキサー
でラインミキシングを行いながらかかるミキサーの前も
しくは後あるいはまた前後に設置した供給手段で同様操
作し得る。但しこのような真空下の操作の場合はノズル
側から大気が逆流することを回避するために大気圧以上
の頭(ヘッド)を持つように混合溶液タンクの位置ぎめ
をするなどの注意が必要である。
Alternatively, a method in which a required number of polymers and a required amount of a solvent having a constant composition are intensively stirred all at once with a stirring blade under vacuum to maintain the modulation structure and spinning as in the above is also useful. While performing line mixing between the stirring tank and the nozzle with a static mixer, the same operation can be performed by a supply means installed before or after such a mixer or before or after such a mixer. However, when operating under such a vacuum, it is necessary to position the mixed solution tank so that it has a head above atmospheric pressure in order to avoid backflow of air from the nozzle side. is there.

【0021】また、これら撹拌によってより容易に変調
構造にいたらしめるために温度を調整するとか同一また
は異種の溶媒を撹拌工程に添加するなどの操作は好まし
く、要するに攪拌の程度は変調構造を達成せしめれがよ
く、その判定は前述のごとく紡糸前の混合溶液の攪拌状
態を観察するか、紡糸後の構造解析により明らかとな
る。事前に混合溶液構成成分の系に対し攪拌槽やライ
ン、攪拌羽やエレメントの形状や枚数を定め回転数、エ
レメント数を選定する等の攪拌条件決定は困難で通常良
く行われるように攪拌技術に従い試行錯誤的に前記判断
基準を基にこれらを決定し得る。溶媒は前記した様に通
常極性溶媒が好ましいが、ポリマー溶解に当たっては共
通溶媒でも異種溶媒でもよく、純溶媒でも混合溶媒でも
要は変調構造を形成し得目的の多孔質中空繊維膜が得ら
れればよく多くの組合せからポリマーの組合せに適した
溶媒を選定すればよい。ただ、回収系のことを考えると
純溶媒を共通に使用するのが好ましい。
Further, it is preferable to adjust the temperature or to add the same or different solvent to the stirring step in order to more easily bring the modulated structure to the modulated structure by stirring. The determination is made clear by observing the agitated state of the mixed solution before spinning as described above or by structural analysis after spinning. It is difficult to determine the stirring conditions such as the number of rotations and the number of elements, etc., which are difficult to determine for the system of the components of the mixed solution, and the shape and number of stirring tanks and lines, stirring blades and elements, etc. These can be determined based on the above judgment criteria by trial and error. The solvent is usually preferably a polar solvent as described above, but in dissolving the polymer, it may be a common solvent or a different solvent, and a pure solvent or a mixed solvent may form a modulated structure so long as the desired porous hollow fiber membrane is obtained. A solvent suitable for a combination of polymers may be selected from many combinations. However, considering the recovery system, it is preferable to use a pure solvent in common.

【0022】多重環状ノズルは中空繊維を製造するには
不可欠な設備であり、中心ノズルには水その他の溶媒が
供給されノズル出口で中空繊維を内側から凝固固化しそ
の外側に位置する円環状ノズルの流路に前述した変調構
造を有するポリマー溶液混合流体を供給しノズル吐出後
ドライゾ−ンを経て凝固浴に接触するか、または直接凝
固浴に吐出接触し中空繊維を外側から凝固固化するため
に用いられる。これらノズルの大きさは当然ながら中空
繊維の内外径を決定するため必要に応じた寸法の物を選
択使用する。なお、ノズルからの吐出性を向上するた
め、適宜界面活性剤を溶液に添加してもよい。
The multi-annular nozzle is an indispensable facility for producing hollow fibers. Water and other solvents are supplied to the central nozzle, and the hollow fibers are solidified and solidified from the inside at the nozzle outlet, and are located outside the annular nozzle. In order to coagulate and solidify the hollow fiber from the outside by supplying the polymer solution mixed fluid having the above-mentioned modulation structure to the channel of the above and contacting the coagulation bath through the dry zone after discharge from the nozzle, or directly contacting the coagulation bath by discharge contact. Used. As for the size of these nozzles, of course, those having dimensions as necessary are selected and used in order to determine the inner and outer diameters of the hollow fibers. In addition, in order to improve the ejection property from the nozzle, a surfactant may be appropriately added to the solution.

【0023】また繊維が有する微細孔は脱溶媒によるミ
クロ相分離により形成されるが、ポリマー含有混合溶液
のノズル吐出条件即ちノズル線速度、ノズル温度、ドラ
イゾーンの温度・湿度、凝固浴温度、凝固浴液の種類、
繊維巻取り速度、ポリマー組合せ、選択された変調構
造、溶媒種類、ポリマー濃度などの条件を選定する事に
より孔数、孔径を選択し得、孔径は0.01〜1.0μ
mの範囲で選べる。かくして上記の方法を適用し目的の
連続多相分離構造をもつ多孔質中空繊維膜が製造され
る。
The fine pores of the fibers are formed by microphase separation by desolvation, but the nozzle discharge conditions of the polymer-containing mixed solution, that is, the nozzle linear velocity, nozzle temperature, dry zone temperature / humidity, coagulation bath temperature, coagulation Type of bath liquid,
The number of pores and pore diameter can be selected by selecting conditions such as fiber winding speed, polymer combination, selected modulation structure, solvent type, and polymer concentration, and the pore diameter is 0.01 to 1.0 μm.
You can choose in the range of m. Thus, the porous hollow fiber membrane having the desired continuous multiphase separation structure is produced by applying the above method.

【0024】また、かかる構成ポリマーの少なくとも1
種に官能基が結合している場合、例えば前記エチレン−
ビニルアルコ−ル共重合体を構成要素とするような場合
は一旦連続多相分離構造をもつ多孔質中空繊維膜を製造
後その官能基が可能な化学反応を利用して更に高次の化
学修飾が可能であり、該中空繊維の用途を大幅に拡大で
きる。
Also, at least one of such constituent polymers
When a functional group is bonded to the species, for example, the above-mentioned ethylene-
In the case where a vinyl alcohol copolymer is used as a constituent element, once a porous hollow fiber membrane having a continuous multiphase separation structure is produced, a higher-order chemical modification can be performed by utilizing the chemical reaction capable of the functional group. It is possible and the use of the hollow fiber can be greatly expanded.

【0025】[0025]

【作用】均一系を形成し難いポリマー同志相溶性がない
溶液の混合物をスタティックミキサー等により強く撹拌
し通常のエマルションとは異なる変調構造もしくは変調
構造類似の状況を達成し、この変調構造を保持したまま
該混合溶媒を多重環状ノズルに供給される凝固用液体と
共に紡糸浴に吐出固化させて連続多相分離構造を持つ多
孔質膜中空繊維が形成されるところとなる。
[Function] A polymer which is difficult to form a homogeneous system and which is not compatible with each other is strongly stirred by a static mixer or the like to achieve a modulation structure or a structure similar to that of a normal emulsion and maintain this modulation structure. As it is, the mixed solvent is discharged and solidified in the spinning bath together with the coagulating liquid supplied to the multi-annular nozzle to form the porous membrane hollow fiber having the continuous multiphase separation structure.

【0026】[0026]

【実施例】【Example】

実施例1 ポリフッ化ビニリデンとエチレン−ビニルアルコール共
重合体から成る連続多相分離構造をもつ多孔質中空繊維
膜の製造 ポリフッ化ビニリデンとエチレン−ビニルアルコール共
重合体を共通溶媒であるジメチルアセトアミドに同時に
添加するとポリフッ化ビニリデンは容易に溶けるが、溶
解速度の差によりエチレン−ビニルアルコール共重合体
は溶けにくく、各々別々に溶解した。即ちポリフッ化ビ
ニリデン(クレハ化学、商品名クレハKF#1000)
20重量部、界面溶性剤としてポリオキシエチレンソル
ビタンモノオレート(花王アトラス、商品名ツイーン8
0)0.5重量部着色防止剤としてパラトルエンスルホ
ン酸1重量部をジメチルアセトアミド78.5重量部に
撹拌下60℃で溶解して紡糸原液Aを調整した。一方、
エチレン−ビニルアルコール共重合体(クラレ、商品名
エバールEP−F101:エチレン32モルパーセン
ト)20重量部、界面溶性剤(ツイーン80)0.5重
量部をジメチルアセトアミド79.5重量部に120℃
で撹拌溶解し紡糸原液Bを調整した。
Example 1 Production of Porous Hollow Fiber Membrane Having Continuous Multiphase Separation Structure Composed of Polyvinylidene Fluoride and Ethylene-Vinyl Alcohol Copolymer Polyvinylidene fluoride and ethylene-vinyl alcohol copolymer are simultaneously added to dimethylacetamide which is a common solvent. When added, polyvinylidene fluoride was easily dissolved, but due to the difference in the dissolution rate, the ethylene-vinyl alcohol copolymer was difficult to dissolve, and each was dissolved separately. That is, polyvinylidene fluoride (Kureha Chemical, trade name Kureha KF # 1000)
20 parts by weight, polyoxyethylene sorbitan monooleate as a surfactant (Kao Atlas, trade name Tween 8
0) 0.5 parts by weight As a coloring inhibitor, 1 part by weight of paratoluenesulfonic acid was dissolved in 78.5 parts by weight of dimethylacetamide at 60 ° C. with stirring to prepare a spinning solution A. on the other hand,
20 parts by weight of an ethylene-vinyl alcohol copolymer (Kuraray, trade name Eval EP-F101: 32 mol% of ethylene) and 0.5 part by weight of a surfactant (Tween 80) in 79.5 parts by weight of dimethylacetamide at 120 ° C.
The solution was stirred and dissolved with to prepare a spinning solution B.

【0027】ノリタケ製スタティックミキサー(エレメ
ント数21)と外径1.0mm、内径0.5mm、注入
口径0.25mmの環状スリット型ノズルを連結し、前
記原液Aと原液Bを直接スタティックミキサーに所定量
注入しながら環状ノズルより、原液Aと原液Bの混合比
を変えて吐出し、同時に中心孔からは注入液としてジメ
チルアセトアミド30重量%の水溶液を吐出し、ドライ
ゾーン100mmを通過後凝固浴(水、40℃)に導
き、凝固、水洗を行いつつ30m/minで捲き取り乾
燥した。この間、いずれの条件においても糸切れがな
く、きれいな円形断面を持つ多孔質中空繊維膜を製造し
得た。また紡糸速度45m/minでも上記実験と同様
に多孔質中空繊維膜を製造し得、エチレン−ビニルアル
コール共重合体だけでの生産性と比較するとはるかに優
れていた。得られた中空糸の製造条件・状況及び性能を
表1に示す。
A Noritake static mixer (21 elements) and an annular slit nozzle having an outer diameter of 1.0 mm, an inner diameter of 0.5 mm and an inlet diameter of 0.25 mm are connected to each other, and the stock solution A and the stock solution B are directly placed in the static mixer. While injecting a fixed amount, the mixture was discharged from the annular nozzle while changing the mixing ratio of the stock solution A and the stock solution B, and at the same time, an aqueous solution of 30% by weight of dimethylacetamide was injected as an injection solution from the central hole, and after passing through the dry zone 100 mm, the coagulation bath It was introduced into water, 40 ° C., and coagulated and washed with water, and wound up and dried at 30 m / min. During this period, a porous hollow fiber membrane having a clean circular cross section without producing yarn breakage under any of the conditions could be produced. Further, even at a spinning speed of 45 m / min, a porous hollow fiber membrane could be produced in the same manner as in the above experiment, which was far superior to the productivity with the ethylene-vinyl alcohol copolymer alone. Table 1 shows the production conditions / conditions and performance of the obtained hollow fiber.

【0028】[0028]

【表1】 [Table 1]

【0029】注*1:BP(バブルポイント) 製造した長さ200mmの中空繊維20本をU字形に束
ね開口部下10mmの部分を長さ20mmのゴム栓状に
ウレタンで接着結束しゴム栓状部3mmを切断し鋼管に
嵌合し繊維部を水中に1時間浸漬し50mmHgで脱気
して気泡を除いた後鋼管側に取り付けられたバルブを介
して徐々に空気圧加圧し気泡が最初に発生した空気圧P
を読みとる。大気圧と水頭を差引きバブルポイントを算
出する。 注*2:蛋白吸着量 製造した中空繊維20本をU字型に束ね長さ50mm、
内径6mm、外径10mmのポリカーボネート製ハウジ
ングに収納し、開口端をポリウレタン樹脂でポッティン
グしたモジュールを作製した。得られたモジュールをエ
チレンオキサイドガスにより滅菌した後、PBS緩衝溶
液(pH=7.3 日水製薬社製)に溶解した0.02
5%牛血清アルブミン(シグマ社製Bovine Se
rumAlbumin)の蛋白溶液100mlを常温
下、圧力0.5kg/cm2 のもとに中空繊維外側より
内側を経て開口端に向けて通液し、回収した溶液中の蛋
白量を波長280nmの吸光度測定により定量し減算に
より中空繊維にたいする蛋白吸着量を算出した。
Note * 1: BP (Bubble Point) Twenty manufactured 200 mm long hollow fibers are bundled in a U shape, and a portion 10 mm below the opening is adhesively bound into a rubber plug of 20 mm in length with urethane to form a rubber plug. 3 mm was cut, fitted into a steel pipe, the fiber part was immersed in water for 1 hour, deaerated at 50 mmHg to remove air bubbles, and then air pressure was gradually applied through a valve attached to the steel pipe side to generate air bubbles first. Air pressure P
Read. Calculate the bubble point by subtracting the atmospheric pressure and the water head. Note * 2: Protein adsorption amount 20 hollow fibers produced were bundled in a U-shape with a length of 50 mm,
The module was housed in a polycarbonate housing having an inner diameter of 6 mm and an outer diameter of 10 mm, and the open end was potted with a polyurethane resin to prepare a module. The obtained module was sterilized with ethylene oxide gas and then dissolved in a PBS buffer solution (pH = 7.3, manufactured by Nissui Pharmaceutical Co., Ltd.) 0.02.
5% bovine serum albumin (Bovine Se manufactured by Sigma)
rumAlbumin) protein solution (100 ml) at room temperature under a pressure of 0.5 kg / cm2 from the outside to the inside of the hollow fiber toward the open end, and measure the amount of protein in the recovered solution by measuring the absorbance at a wavelength of 280 nm. The amount of protein adsorbed on the hollow fibers was calculated by quantification and subtraction.

【0030】表1より組成によりその物性や性能が変化
していることが判る。例えば最大孔径と並行的な関係に
あるといわれるバブルポイントは中空繊維の組成変化に
対応した緩やかな対応関係を示すのに対し、ポリフッ化
ビニリデンの量と蛋白吸着量の関係は特異的である。実
験番号3ではポリフッ化ビニリデン単味の多孔質中空繊
維膜の蛋白吸着量の1/4ないし1/2を示しエチレン
−ビニルアルコール共重合体の存在が強く影響し実験番
号3でも同様の傾向が引続き認められるものの以後はそ
れほど変化の大きくない特徴を示している。理由の解明
はなされていないが本願発明による方法で製造した連続
多相分離構造をもつ多孔質中空繊維膜の特徴の一端を示
すものといえよう。次の構造解析の操作がこの考え方の
一助となるものと考えられる。
From Table 1, it can be seen that the physical properties and performances vary depending on the composition. For example, the bubble point, which is said to be in parallel with the maximum pore size, shows a gradual correspondence corresponding to the change in the composition of the hollow fiber, whereas the relationship between the amount of polyvinylidene fluoride and the amount of adsorbed protein is specific. In Experiment No. 3, the amount of protein adsorbed on the porous hollow fiber membrane containing only polyvinylidene fluoride was 1/4 to 1/2, and the presence of the ethylene-vinyl alcohol copolymer had a strong influence. Although it is still recognized, it shows a feature that does not change so much after that. Although the reason has not been clarified, it can be said that it shows one of the characteristics of the porous hollow fiber membrane having a continuous multiphase separation structure produced by the method of the present invention. It is considered that the following structural analysis operation will contribute to this idea.

【0031】即ち、実験番号1の中空繊維をエチレン−
ビニルアルコール共重合体は可溶でポリフッ化ビニリデ
ンは不溶のイソプパノールと水50対50の溶液で50
℃で処理したところ、減量は約40%となり、ポリフッ
化ビニリデン単独の相構造を有する中空繊維状の形状を
保ったものが残った。
That is, the hollow fiber of Experiment No. 1 was replaced with ethylene-
Vinyl alcohol copolymer is soluble and polyvinylidene fluoride is insoluble. 50:50 with a solution of isopanol and water.
When it was treated at 0 ° C., the weight loss was about 40%, and a hollow fiber-like shape having a phase structure of polyvinylidene fluoride alone remained.

【0032】又、同一中空糸をグルタルアルデヒド2重
量部、硫酸3重量部、水95重量部の温度60℃の水溶
液で処理してエチレン−ビニルアルコール共重合体の架
橋反応を行なった後これをジメチルアセトアミド60℃
で処理した。減量は約60%となり、エチレン−ビニル
アルコール重合体単独の相構造に基づく中空繊維形状の
ものが残った。
Further, the same hollow fiber was treated with an aqueous solution of 2 parts by weight of glutaraldehyde, 3 parts by weight of sulfuric acid and 95 parts by weight of water at a temperature of 60 ° C. to carry out a cross-linking reaction of the ethylene-vinyl alcohol copolymer, and then this. Dimethylacetamide 60 ° C
Processed in. The weight loss was about 60%, and the hollow fiber shape based on the phase structure of the ethylene-vinyl alcohol polymer alone remained.

【0033】実験番号1の原糸、エチレン−ビニルアル
コール共重体溶出後のポリフッ化ビニリデン単独の相構
造及びポリフッ化ビニリデンを溶出してエチレン−ビニ
ルアルコール共重合体架橋反応生成物の相構造電子顕微
鏡写真をそれぞれ図1、2、3に示した。このことより
ポリフッ化ビニリデン及びエチレン−ビニルアルコール
共重合体がそれぞれ連続した相構造をもち、両者が互い
に絡み合った構造を形成していたことが判断できる。因
に、スタティックミキサーエレメントを6とした以外は
実験番号1と同様に中空繊維製造を行った後、上述した
構造解析操作を行ったところ、ポリフッ化ビニリデンは
連続した相構造を有するのに対して、エチレン−ビニル
アルコート共重合体は極めて切れ易くほとんど連続した
状態とは言えない構造であり、ポリフッ化ビニリデンの
海構造に対してエチレン−ビニルアルコール共重合体は
島構造を形成したものと考えられた。また、以上の操作
からも明らかなようにはじめに製造した多孔質中空繊維
膜の構成単位のエチレン−ビニルアルコール共重合体の
水酸基がアルデヒド基との化学反応を進め得ることを示
しており、多孔質中空繊維膜の官能基がこれに続く高次
化学修飾を可能ならしめることを示すといえる。
Phase No. 1 of Experiment No. 1, phase structure of polyvinylidene fluoride alone after elution of ethylene-vinyl alcohol copolymer, and phase structure of crosslinked reaction product of ethylene-vinyl alcohol copolymer by elution of polyvinylidene fluoride Electron microscope The photographs are shown in FIGS. 1, 2 and 3, respectively. From this, it can be judged that the polyvinylidene fluoride and the ethylene-vinyl alcohol copolymer each had a continuous phase structure and formed a structure in which both were entangled with each other. By the way, when the hollow fiber production was performed in the same manner as in Experiment No. 1 except that the static mixer element was changed to 6, and the above-described structural analysis operation was performed, polyvinylidene fluoride had a continuous phase structure. , Ethylene-vinyl alkote copolymer is a structure that is extremely fragile and cannot be said to be in a nearly continuous state, and the ethylene-vinyl alcohol copolymer is considered to have formed an island structure with respect to the sea structure of polyvinylidene fluoride. It was Further, as is clear from the above operation, it is shown that the hydroxyl groups of the ethylene-vinyl alcohol copolymer constituting the structural unit of the initially produced porous hollow fiber membrane can advance the chemical reaction with the aldehyde group, It can be said that the functional group of the hollow fiber membrane enables subsequent high-order chemical modification.

【0034】なお、これらの多孔質中空繊維膜はエチレ
ン−ビニルアルコール共重合体単味から製造したそれら
とは異なり格段の引っ張り強度を示した。ポリフッ化ビ
ニリデンが構造単位を形成することに由来するものと思
われるが、混合溶液状態を経て形成される変調構造形成
時に両ポリマー間の相互作用が増大し単にポリフッ化ビ
ニリデンが連続構造体として存在する事によるだけでな
い強度向上効果が示されたと考えられる。
These porous hollow fiber membranes showed marked tensile strength, unlike those produced from ethylene-vinyl alcohol copolymer alone. It seems that polyvinylidene fluoride forms a structural unit, but the interaction between both polymers increases during the formation of the modulation structure formed through the mixed solution state, and simply polyvinylidene fluoride exists as a continuous structure. It is considered that the strength improving effect was exhibited not only by doing so.

【0035】実施例2 実施例1と同様に脱泡した透明なポリフッ化ビニリデン
20重量部及びエチレン−ビニルアルコール共重体20
重量部をそれぞれ含むジメチルアセトアミド溶液を重量
比で3対2の配合で気泡の混入しない状態で撹拌して混
合原液を得た。この原液は白濁不透明な混合液で撹拌を
止めると次第にエマルション粒子を形成し、一夜放置す
ると完全にポリフッ化ビニリデンのジメチルアセトアミ
アミド溶液とエチレン−ビニルアルコール共重合体のジ
メチルアセトアミド溶液の透明な二相に分離した。撹拌
直後の不透明な混合液を実施例1と同様にスタティック
ミキサーを通して円環状ノズルより10g/min中心
より注入液3g/minの供給速度で吐出しドライゾー
ン100mmを通過後ジメチルアセトアミド30重量%
の水溶液からなる凝固液でを固化し、水洗し30m/m
inで捲き取った。紡糸状況は極めて順調で実施例1と
同様両ポリマーが互いに連続的に絡み合った構造の多孔
質中空繊維膜が得られた。親水性は良好で90℃温水処
理後も膜性能の変化は認められず繰り返し使用すること
が可能となった。
Example 2 20 parts by weight of transparent polyvinylidene fluoride defoamed in the same manner as in Example 1 and ethylene-vinyl alcohol copolymer 20
A dimethylacetamide solution containing each part by weight was stirred in a weight ratio of 3 to 2 without stirring to obtain a mixed stock solution. This stock solution is a cloudy opaque mixed solution, and gradually forms emulsion particles when stirring is stopped. The phases were separated. Immediately after stirring, the opaque mixed liquid was discharged from the center of the annular nozzle at a feed rate of 3 g / min from the center of 10 g / min through a static mixer in the same manner as in Example 1, and after passing through a dry zone of 100 mm, 30% by weight of dimethylacetamide.
Is solidified with a coagulating liquid consisting of an aqueous solution of and washed with water to 30 m / m
It was rolled up in. The spinning condition was extremely good, and as in Example 1, a porous hollow fiber membrane having a structure in which both polymers were continuously entangled with each other was obtained. The hydrophilicity was good, and no change in the membrane performance was observed even after treatment with hot water at 90 ° C., and repeated use was possible.

【0036】比較例1 実施例2と同様ポリフッ化ビニリデン12重量%、エチ
レン−ビニルアルコール8重量%のジメチルアセトアミ
ド混合溶液をスタティックミキサーを通さずに通常の方
法により紡糸したところ、初めは紡糸可能だったが時間
と共に糸表面に粒状物が多数発生し、均質な中空糸は得
られなかった。時間と共に糸切れが多発し紡糸は不可能
となった。これは二相の分離が進行し、両ポリマーの脱
溶時速度の異いから部分的な不均一凝集ポリマーが発生
し不均一な相分離現象を示したものである。
Comparative Example 1 Similar to Example 2, a dimethylacetamide mixed solution containing 12% by weight of polyvinylidene fluoride and 8% by weight of ethylene-vinyl alcohol was spun by a usual method without passing through a static mixer. Initially, spinning was possible. However, many hollow particles were generated on the surface of the yarn over time, and a uniform hollow fiber could not be obtained. Thread breakage occurred frequently over time, making spinning impossible. This is because the separation of the two phases proceeded and a partial non-uniform coagulated polymer was generated due to the difference in the dissolution rate of both polymers, which showed a non-uniform phase separation phenomenon.

【0037】[0037]

【発明の効果】かくして、本願発明の多相連続多孔質中
空繊維膜の製造法において、基礎物性や特性をもとに必
要な種類だけポリマーを選択しそれらの純溶媒もしくは
混合溶媒を選びそれぞれもしくは一挙に溶解し、さらに
スタティックミキサーその他の強力な撹拌手段により変
調構造を形成せしめ紡糸工程を経て多相連続多孔質中空
繊維膜が製造し得ることとなった。(従来の均一溶液系
をつくりスピノーダル分解工程を経て変調構造を形成す
るという製造工程を省き得る効果を示すところとなっ
た。)
As described above, in the method for producing a multi-phase continuous porous hollow fiber membrane of the present invention, only required kinds of polymers are selected on the basis of basic physical properties and characteristics, and pure solvents or mixed solvents thereof are selected respectively or It became possible to manufacture a multi-phase continuous porous hollow fiber membrane through a spinning process in which the compound was dissolved all at once, and a modulation structure was formed by a strong stirring means such as a static mixer and a spinning process was performed. (It shows the effect of omitting the manufacturing process of forming a modulation structure through a conventional homogeneous solution system and a spinodal decomposition process.)

【0038】また、この様にして製造された多相連続多
孔質薄膜中空繊維において、原料ポリマーは前記実施例
で示されたように繊維形成能はそのまま保持されている
ことからも判るように元来の性質を持ち合わせるととも
にそれぞれ一方のポリマーでは有し得ない性質・性能を
他のポリマーが補完し得、かかる性状がポリマーが連続
して存在することから製造した多相連続多孔質薄膜中空
繊維全体に及ぶ効果が出現した。
Further, in the multi-phase continuous porous thin film hollow fiber produced in this manner, the raw material polymer retains its fiber-forming ability as shown in the above-mentioned Examples. The whole multi-phase continuous porous thin film hollow fiber produced by having the conventional properties and being able to complement the properties / performances that one polymer cannot have with the other polymer, and such properties are present continuously in the polymer. The effect that extends to appeared.

【0039】更に、少なくとも一方のポリマーが官能基
を有する場合はこれを利用した化学反応による修飾が可
能なことから高次化学修飾多孔質中空繊維膜の原料とし
ての用途を有する効果が明白となった。
Furthermore, when at least one of the polymers has a functional group, it can be modified by a chemical reaction utilizing the functional group, so that the effect of having a use as a raw material of a higher-order chemically modified porous hollow fiber membrane becomes clear. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明実施例1にて製造した中空繊維であ
る。
FIG. 1 is a hollow fiber produced in Example 1 of the present invention.

【図2】同上繊維をイソプロパノール/水=50/50
で溶解処理した中空繊維である。
[Fig. 2] Same as above, except that the fiber was isopropanol / water = 50/50.
Hollow fiber dissolved in

【図3】実施例1にて製造した中空繊維をグルタルアル
デヒドで架橋した後ジメチルアセトアミドで溶解処理し
た中空繊維である。
FIG. 3 is a hollow fiber obtained by crosslinking the hollow fiber produced in Example 1 with glutaraldehyde and then subjecting it to dissolution treatment with dimethylacetamide.

【図4】スタティックミキサーの構造を示す図である。FIG. 4 is a diagram showing a structure of a static mixer.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年11月1日[Submission date] November 1, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明実施例1にて製造した中空繊維の形状
を示す写真である。
1] Shape of hollow fiber produced in Example 1 of the present invention
Is a photograph showing .

【図2】同上繊維をイソプロパノール/水=50/50
で溶解処理した中空繊維の形状を示す写真である。
[Fig. 2] Same as above, except that the fiber was isopropanol / water = 50/50.
2 is a photograph showing the shape of the hollow fiber that has been subjected to the dissolution treatment in Step 1.

【図3】実施例1にて製造した中空繊維をグルタルアル
デヒドで架橋した後ジメチルアセトアミドで溶解処理し
た中空繊維の形状を示す写真である。
FIG. 3 is a photograph showing the shape of hollow fibers produced by crosslinking the hollow fibers produced in Example 1 with glutaraldehyde and then dissolving with dimethylacetamide.

【図4】スタティックミキサーの構造を示す図である。FIG. 4 is a diagram showing a structure of a static mixer.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリマー含有液を環状ノズルから吐出、
凝固させる多孔質中空繊維膜製造法において、繊維形成
能を有するが互いに相溶性のない二種以上のポリマーを
溶解してなる溶液混合物に撹拌により変調構造を与え、
多重環状ノズルから凝固浴に吐出固化してなる連続多相
分離構造を有する多孔質中空繊維膜。
1. A polymer-containing liquid is discharged from an annular nozzle,
In the method for producing a porous hollow fiber membrane to be solidified, a modulation structure is imparted by stirring to a solution mixture obtained by dissolving two or more polymers having a fiber-forming ability but not compatible with each other,
A porous hollow fiber membrane having a continuous multiphase separation structure formed by discharging and solidifying from a multiple annular nozzle into a coagulation bath.
【請求項2】 ポリマー含有液を環状ノズルから吐出、
凝固させる多孔質中空繊維膜製造法において、繊維形成
能を有するが互いに相溶性のない二種以上のポリマーを
溶解してなる溶液混合物に撹拌により変調構造を与え多
重環状ノズルから凝固浴に吐出固化してなる連続多相分
離構造を有する多孔質中空繊維膜の製造方法。
2. A polymer-containing liquid is discharged from an annular nozzle,
In the method of producing a porous hollow fiber membrane for coagulation, a solution mixture prepared by dissolving two or more types of polymers capable of forming a fiber but having incompatibility with each other is provided with a modulation structure by agitation to be discharged from a multiple annular nozzle into a coagulation bath and solidified. And a method for producing a porous hollow fiber membrane having a continuous multiphase separation structure.
【請求項3】 ポリマーの少なくとも1種が官能基を有
することに基づき高次化学修飾可能な請求項1記載の多
孔質中空繊維膜。
3. The porous hollow fiber membrane according to claim 1, which is capable of higher-order chemical modification based on at least one polymer having a functional group.
【請求項4】 ポリマーの少なくとも1種が官能基を有
することに基づき高次化学修飾可能な請求項2記載の多
孔質中空繊維膜の製造方法。
4. The method for producing a porous hollow fiber membrane according to claim 2, wherein at least one of the polymers has a functional group and is capable of high-order chemical modification.
JP13011493A 1993-05-07 1993-05-07 Porous hollow fiber membrane with continuous multiphase separating structure and production thereof Pending JPH06319967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13011493A JPH06319967A (en) 1993-05-07 1993-05-07 Porous hollow fiber membrane with continuous multiphase separating structure and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13011493A JPH06319967A (en) 1993-05-07 1993-05-07 Porous hollow fiber membrane with continuous multiphase separating structure and production thereof

Publications (1)

Publication Number Publication Date
JPH06319967A true JPH06319967A (en) 1994-11-22

Family

ID=15026290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13011493A Pending JPH06319967A (en) 1993-05-07 1993-05-07 Porous hollow fiber membrane with continuous multiphase separating structure and production thereof

Country Status (1)

Country Link
JP (1) JPH06319967A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001528A1 (en) * 2004-06-28 2006-01-05 Kureha Corporation Porous membrane for water treatment and process for producing the same
WO2013137438A1 (en) * 2012-03-16 2013-09-19 三菱レイヨン株式会社 Method and spinning device for producing porous hollow yarn membrane
WO2018159642A1 (en) * 2017-02-28 2018-09-07 東レ株式会社 Composite hollow-fiber membrane and production method therefor
CN110241467A (en) * 2019-05-23 2019-09-17 东华大学 Inner cone angie type electrostatic spinning apparatus and its application method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001528A1 (en) * 2004-06-28 2006-01-05 Kureha Corporation Porous membrane for water treatment and process for producing the same
WO2013137438A1 (en) * 2012-03-16 2013-09-19 三菱レイヨン株式会社 Method and spinning device for producing porous hollow yarn membrane
JPWO2013137438A1 (en) * 2012-03-16 2015-08-03 三菱レイヨン株式会社 Method for producing porous hollow fiber membrane and spinning device
WO2018159642A1 (en) * 2017-02-28 2018-09-07 東レ株式会社 Composite hollow-fiber membrane and production method therefor
JPWO2018159642A1 (en) * 2017-02-28 2019-12-19 東レ株式会社 Composite hollow fiber membrane and method for producing the same
US11369925B2 (en) 2017-02-28 2022-06-28 Toray Industries, Inc. Composite hollow-fiber membrane and production method therefor
CN110241467A (en) * 2019-05-23 2019-09-17 东华大学 Inner cone angie type electrostatic spinning apparatus and its application method

Similar Documents

Publication Publication Date Title
EP0037836B1 (en) Polyvinylidene fluoride resin hollow filament microfilter and process for producing same
JP2916446B2 (en) Method for producing asymmetric microporous hollow fiber
US5049276A (en) Hollow fiber membrane
CN111549448B (en) Performance enhancing additives for fiber formation and polysulfone fibers
JPH0628705B2 (en) Method for producing semipermeable hollow fiber membrane
CN101439269A (en) Method for preparing thermoplastic polyurethane elastic hollow fiber membrane
CN1128176A (en) Polyvinylidene fluoride hollow fibre porous membrane manufacturing method
US4284594A (en) Method of manufacturing hollow fiber
JPH057051B2 (en)
JPH11253771A (en) Manufacture of polysulfone hollow fiber membrane and polysulfone hollow fiber membrane
JPH06319967A (en) Porous hollow fiber membrane with continuous multiphase separating structure and production thereof
JP3216910B2 (en) Porous hollow fiber membrane
CN1253241C (en) Manufacture and products of hollow fiber membrane of outer pressured polyvinylidene fluoride by immersion gelation
JPS62117812A (en) Hollow fiber and its production
JPH0569571B2 (en)
JPH08108053A (en) Cellulose acetate hollow-fiber separation membrane and its production
JP2794610B2 (en) Method for producing large-diameter polyethersulfone hollow fiber membrane
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JPS6320339A (en) Production of porous membrane
JP2818359B2 (en) Method for producing cellulose triacetate hollow fiber membrane
JPS63100902A (en) Aromatic polysulfone hollow yarn membrane and its manufacture
JPH0760083A (en) Production of cellulose ester hollow fiber membrane
JPH1119491A (en) Production of hollow fiber membrane
JP2005205358A (en) Production method of porous hollow fiber membrane
JPH04166219A (en) Production of membrane provided with hydrophilic property

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021105