JPH1119491A - Production of hollow fiber membrane - Google Patents

Production of hollow fiber membrane

Info

Publication number
JPH1119491A
JPH1119491A JP9195209A JP19520997A JPH1119491A JP H1119491 A JPH1119491 A JP H1119491A JP 9195209 A JP9195209 A JP 9195209A JP 19520997 A JP19520997 A JP 19520997A JP H1119491 A JPH1119491 A JP H1119491A
Authority
JP
Japan
Prior art keywords
spinning
hollow fiber
fiber membrane
soln
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9195209A
Other languages
Japanese (ja)
Inventor
Kei Murase
圭 村瀬
Osamu Tanaka
修 田中
Yoshihiko Hosako
芳彦 宝迫
Akira Hajikano
彰 初鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP9195209A priority Critical patent/JPH1119491A/en
Publication of JPH1119491A publication Critical patent/JPH1119491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To improving spinning stability and to lessen the generation of defective points by removing dissolved gases from a spinning stock soln., then spinning this spinning stock soln. and solidifying the soln. in a non-solvent in the case of producing a hollow fiber membrane by a dry process or dry and wet process spinning method. SOLUTION: The wet process spinning method of using the soln. prepd. by dissolving a high-polymer material into a solvent as the spinning stock soln., directly spinning this soln. into the non-solvent of the high-polymer material from a spinning mouthpiece and solidifying the spun soln. in the non-solvent or the dry and wet process spinning method of once spinning the soln. into the air from the spinning mouthpiece, then introducing the soln. into the non- solvent of the high-polymer material and solidifying the soln. in the non-solvent is used for production of the hollow fiber membrane. At this time, the gases dissolved in the spinning stock soln. are removed from the spinning stock soln. prior to spinning the spinning stock soln., by which yarn breakage are eliminated and the spinning stable for a long period is made possible. The spinning stock soln. having a viscosity below 100 poises at 30 deg.C is preferable and is preferably a polysulfone resin, hydrophilic high polymer, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、湿式又は乾湿式紡
糸法による中空糸膜の製造方法に関する。
[0001] The present invention relates to a method for producing a hollow fiber membrane by a wet or dry-wet spinning method.

【0002】[0002]

【従来の技術】従来より、食品工業分野、医療分野、電
子工業分野等の分野で有用成分の濃縮、回収、不要成分
の除去、或いは造水等にセルロースアセテート、ポリア
クリロニトリル、ポリスルホン等からなる精密濾過膜、
限外濾過膜、逆浸透膜等が用いられており、これらの膜
の多くには、湿式又は乾湿式紡糸法により製造される中
空糸膜が用いられている。この中空糸膜に要求される主
要な性能としては、透水性能が優れていること、分離能
が優れていること等が挙げられる。これらの要求性能を
満足するためには、中空糸膜の製造の際の湿式又は乾湿
式紡糸が安定に行われると共に、得られる中空糸膜の品
質が一定であることが必要である。
2. Description of the Related Art Conventionally, in the fields of the food industry, the medical field, the electronics industry, and the like, the concentration and recovery of useful components, the removal of unnecessary components, or the use of cellulose acetate, polyacrylonitrile, polysulfone, etc. Filtration membrane,
Ultrafiltration membranes, reverse osmosis membranes and the like are used, and many of these membranes use hollow fiber membranes produced by a wet or dry-wet spinning method. The main performance required for the hollow fiber membrane includes excellent water permeability and excellent separation performance. In order to satisfy these required performances, it is necessary that wet or dry-wet spinning be performed stably during the production of the hollow fiber membrane and that the quality of the obtained hollow fiber membrane be constant.

【0003】湿式又は乾湿式紡糸法による中空糸膜の製
造においては、従来、紡糸原液の濃度、粘度や凝固液の
凝固性を調節することによって紡糸の安定化を行ってき
た。しかし、中空糸膜の性能、特に精密濾過膜等の場合
に透水性能を重視して低濃度、低粘度の紡糸原液を用い
るときには、紡糸安定性が損なわれると共に、欠陥点
(ピンホール等)が発生する等の問題を生じることがあ
る。
In the production of hollow fiber membranes by a wet or dry-wet spinning method, spinning has conventionally been stabilized by adjusting the concentration and viscosity of a spinning dope and the coagulability of a coagulating liquid. However, when a low-concentration, low-viscosity spinning dope is used for the performance of hollow fiber membranes, especially for microfiltration membranes with emphasis on water permeability, spinning stability is impaired and defect points (pinholes, etc.) Problems may occur.

【0004】従来より、アクリル繊維等の繊維の湿式又
は乾湿式紡糸においては、紡糸安定性の向上を目的とし
て紡糸原液を脱泡することが行われているが、多くの場
合紡糸原液中の気泡を除去することでその目的が達成さ
れ、その手段としての減圧等の操作も紡糸原液の粘度が
高いため気泡の除去に要する時間を短縮するためのもの
であった。そして、湿式紡糸法等による繊維の製造にお
いては、紡糸原液の粘度が数百ポイズ以上となり紡糸原
液に溶存する気体が気泡として発生し難く、例え発生し
ても糸切れを生じさせる程には大きくなく、また紡糸後
の延伸条件等を適切にすることにより繊維性能の低下を
防ぐことが可能であることから、紡糸原液に溶存する気
体まで除去することはあまり重要なことではなかった。
Conventionally, in wet or dry-wet spinning of fibers such as acrylic fiber, defoaming of a spinning stock solution has been performed for the purpose of improving spinning stability. In many cases, bubbles in the spinning stock solution are defoamed. The purpose was achieved by removing the water, and the operation such as decompression was also used to shorten the time required for removing bubbles due to the high viscosity of the spinning dope. In the production of fibers by the wet spinning method or the like, the viscosity of the spinning dope becomes several hundred poise or more, and the gas dissolved in the spinning dope is hardly generated as bubbles, and even if it is generated, it is large enough to cause yarn breakage. However, since it is possible to prevent a decrease in fiber performance by appropriately setting the drawing conditions and the like after spinning, it is not very important to remove even the gas dissolved in the spinning solution.

【0005】しかしながら、ミクロ相分離を利用した湿
式又は乾湿式紡糸法により中空糸膜を製造する場合に
は、膜構造の破壊をもたらすため延伸ができず、紡糸時
に紡糸原液に溶存する気体に起因する気泡、特に分離活
性層中に発生した気泡はそのまま中空糸膜の欠陥点とな
る。また、特開平9−52028号公報にて、中空糸膜
の製造において内部凝固液を脱気することによって紡糸
安定性を向上させ欠点糸を減少させることが示されてい
るが、この方法は、内部凝固液に発生する気泡を原因と
する糸切れを減少させることや、中空糸膜内表面の欠陥
点を減少させることが可能であっても、紡糸原液に溶存
する気体に起因する気泡による糸切れや欠陥点、特に分
離活性層を中空糸膜外表面に有する場合の外表層におけ
る欠陥点を減少させるためには有効な手段とはいえな
い。
[0005] However, when a hollow fiber membrane is produced by a wet or dry-wet spinning method utilizing microphase separation, the membrane structure is destroyed and drawing cannot be performed. The generated bubbles, in particular, the bubbles generated in the separation active layer, directly become defect points of the hollow fiber membrane. Japanese Patent Application Laid-Open No. 9-52028 discloses that in the production of hollow fiber membranes, degassing of an internal coagulation liquid improves spinning stability and reduces defective yarns. Even if it is possible to reduce yarn breakage caused by bubbles generated in the internal coagulation liquid and to reduce the number of defects on the inner surface of the hollow fiber membrane, it is possible to reduce the yarn caused by gas dissolved in the spinning solution. It is not an effective means for reducing the number of cuts or defective points, particularly defective points in the outer surface layer when the separation active layer is provided on the outer surface of the hollow fiber membrane.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、中空
糸膜を湿式又は乾湿式紡糸法により製造する方法におい
て、紡糸安定性を向上させると共に、欠陥点の発生を減
少させた中空糸膜を得ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a hollow fiber membrane by a wet or dry-wet spinning method, wherein the hollow fiber membrane has improved spinning stability and reduced occurrence of defect points. Is to get

【0007】[0007]

【課題を解決するための手段】本発明は、中空糸膜を湿
式又は乾湿式紡糸法により製造する方法において、紡糸
原液より溶存する気体を除去した後、該紡糸原液を紡糸
し、非溶媒中で凝固させることを特徴とする中空糸膜の
製造方法にある。
According to the present invention, there is provided a method for producing a hollow fiber membrane by a wet or dry-wet spinning method, comprising removing a dissolved gas from a spinning stock solution, spinning the spinning stock solution, and spinning the solution in a non-solvent. In the method for producing a hollow fiber membrane.

【0008】[0008]

【発明の実施の形態】本発明において、中空糸膜に用い
る素材としては、中空糸膜状に成形できるものであれば
特に限定はなく、例えばセルロース系、ポリアミド系、
ポリスルホン系、ポリオレフィン系、ポリアクリロニト
リル系等の高分子物質が用いられ、好ましくはポリスル
ホン系樹脂、特に好ましくはポリアリルスルホン樹脂及
び/又はポリエーテルスルホン樹脂が用いられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the material used for the hollow fiber membrane is not particularly limited as long as it can be formed into a hollow fiber membrane.
Polymer materials such as polysulfone, polyolefin, and polyacrylonitrile are used, and a polysulfone resin, particularly preferably a polyallyl sulfone resin and / or a polyether sulfone resin is used.

【0009】本発明における中空糸膜の製造には、中空
糸膜状に成形可能な高分子物質を溶媒に溶解し、この溶
液を紡糸原液として、紡糸口金より高分子物質の非溶媒
中に直接紡出し、非溶媒中で凝固させる湿式紡糸法又は
紡糸口金より一旦空気中に紡出した後高分子物質の非溶
媒中に導き、非溶媒中で凝固させる乾湿式紡糸法が用い
られる。
In the production of the hollow fiber membrane of the present invention, a polymer substance which can be formed into a hollow fiber membrane is dissolved in a solvent, and this solution is used as a spinning solution directly from a spinneret into a non-solvent for the polymer substance. A wet spinning method of spinning and coagulating in a non-solvent or a dry-wet spinning method of once spinning out into the air from a spinneret, guiding the polymer into a non-solvent, and coagulating in a non-solvent is used.

【0010】中空糸膜製造時における湿式又は乾湿式紡
糸法としては、特にその紡糸条件には限定はなく、公知
の任意の紡糸条件が用いられる。紡糸口金としては、中
空糸膜状に成形し得る任意の紡糸口金が用いられ、例え
ば二重環状ノズル等の紡糸口金を用い、外周側に紡糸原
液を、紡糸口金の中心側に高分子物質の非溶媒をそれぞ
れ分配して紡糸する。
The wet or dry-wet spinning method for producing the hollow fiber membrane is not particularly limited in spinning conditions, and any known spinning conditions can be used. As the spinneret, any spinneret that can be formed into a hollow fiber membrane shape is used.For example, a spinneret such as a double annular nozzle is used, a spinning solution is provided on the outer peripheral side, and a polymer substance is provided on the center side of the spinneret. Each of the non-solvents is distributed and spun.

【0011】本発明においては、紡糸原液として、中空
糸膜状に成形可能な前記高分子物質とその溶媒からなる
紡糸原液が用いられるが、紡糸原液には親水性高分子等
が添加されていてもよく、好ましくは高分子物質として
ポリスルホン系樹脂、親水性高分子及びこれらの溶媒か
らなる紡糸原液が用いられる。
In the present invention, as the spinning solution, a spinning solution comprising the above-mentioned polymer substance which can be formed into a hollow fiber membrane and its solvent is used, and a hydrophilic polymer or the like is added to the spinning solution. Preferably, a polysulfone-based resin, a hydrophilic polymer, and a spinning solution comprising these solvents are used as the polymer substance.

【0012】親水性高分子は、一般に中空糸膜製造時の
造孔剤、増粘剤として用いられもので特に限定はない
が、例えばポリビニルピロリドン、ポリエチレングリコ
ール等が挙げられる。
The hydrophilic polymer is generally used as a pore-forming agent and a thickening agent in producing a hollow fiber membrane, and is not particularly limited. Examples thereof include polyvinyl pyrrolidone and polyethylene glycol.

【0013】また、紡糸原液における高分子物質の溶媒
としては、高分子物質或いはさらに添加される親水性高
分子によって異なるが、例えば、本発明において好まし
く用いられる高分子物質がポリスルホン系樹脂、親水性
高分子がポリビニルピロリドン又はポリエチレングリコ
ール等である場合は、N,N−ジメチルアセトアミド、
N,N−ジメチルホルムアミド、N−メチル−2−ピロ
リドン、ジメチルスルホキシド等が挙げられ、これらの
単独又は混合物或いはこれら溶媒にその溶解性を損なわ
ない範囲で非溶媒を加えたものが好ましく用いられる。
The solvent of the polymer substance in the spinning dope varies depending on the polymer substance or the hydrophilic polymer to be added. For example, the polymer substance preferably used in the present invention is a polysulfone resin, a hydrophilic polymer. When the polymer is polyvinylpyrrolidone or polyethylene glycol, N, N-dimethylacetamide,
N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide and the like can be mentioned, and a single or a mixture thereof or a mixture of these solvents with a non-solvent as long as the solubility is not impaired is preferably used.

【0014】溶媒に添加される非溶媒としては、水、ア
ルコール類、グリセリン、エチレングリコール等が挙げ
られ、好ましくは水が用いられる。また凝固の際に用い
られる非溶媒としても、前記と同様の非溶媒が挙げら
れ、好ましくは水又は水に凝固性を損なわない範囲で溶
媒を加えた混合液が用いられる。
Examples of the non-solvent to be added to the solvent include water, alcohols, glycerin, ethylene glycol and the like, and water is preferably used. Examples of the non-solvent used for coagulation include the same non-solvents as described above. Preferably, water or a mixed solution obtained by adding a solvent to water as long as coagulability is not impaired is used.

【0015】本発明においては、中空糸膜の製造の際、
湿式又は乾湿式紡糸法にて紡糸原液を紡糸するに先立
ち、紡糸原液より紡糸原液中に溶存する気体を除去する
ことを必須とする。特に本発明においては、中空糸膜の
製造の際の紡糸原液として30℃における粘度が100
ポイズ以下、好ましくは50ポイズ以下、特に好ましく
は25ポイズ以下である紡糸原液である場合に有効に適
用される。
In the present invention, when producing a hollow fiber membrane,
Prior to spinning the spinning dope by the wet or dry-wet spinning method, it is essential to remove gas dissolved in the spinning dope from the spinning dope. In particular, in the present invention, the viscosity at 30 ° C. is 100% as a stock solution for spinning when producing a hollow fiber membrane.
It is effectively applied to a spinning solution having a poise of not more than 50 poise, particularly preferably not more than 25 poise.

【0016】紡糸原液より溶存する気体の除去方法とし
ては、気体の液体中への溶解度が高温で低下することを
利用した紡糸原液を加熱する方法、溶解度の低い気体を
バブリングして置換する方法、減圧する方法等が挙げら
れが、これらに限定されるものではない。紡糸原液を加
熱する方法は、通常紡糸原液を調製する場合、加熱操作
が加わるが紡糸原液よりの気体の除去が不十分であるこ
と、また溶解度の低い気体をバブリングして置換する方
法は、粘度が低いとはいえ或程度の粘度を有する紡糸原
液では置換効率が低くなることから、溶存する気体の除
去方法としては、減圧する方法、即ち減圧脱気方法が好
ましく用いられる。
As a method for removing a gas dissolved from a spinning stock solution, a method of heating a spinning stock solution utilizing the fact that the solubility of a gas in a liquid decreases at a high temperature, a method of bubbling and replacing a gas having a low solubility, Examples of the method include a method of reducing the pressure, but the method is not limited to these. The method of heating the spinning dope generally involves the heating operation when preparing the spinning dope, but insufficient removal of gas from the spinning dope, and the method of bubbling and displacing gas with low solubility has a viscosity Although the spinning solution having a certain viscosity is low, the displacement efficiency is low. Therefore, as a method for removing dissolved gas, a method of reducing pressure, that is, a method of degassing under reduced pressure is preferably used.

【0017】溶存する気体を減圧脱気する際の条件は、
紡糸原液の粘度、温度、紡糸条件等により異なるが、紡
糸原液の組成に影響を与えない範囲で減圧度が高い程、
減圧時間が長い程効果的である。しかしながら、中空糸
膜の生産性を考慮するならば、減圧脱気する際の条件
は、例えば紡糸原液の粘度が10〜100ポイズ程度で
あれば、減圧度は25〜95kPa、好ましくは50〜
95kPa、減圧時間は15分〜5時間、好ましくは3
0分〜2時間である。また、減圧脱気する際に、脱気効
率を高めるために紡糸原液を加熱して粘度を低下させる
と共に溶解度を低下させる方法を併用してもよい。
The conditions for degassing the dissolved gas under reduced pressure are as follows:
Depending on the viscosity of the spinning dope, the temperature, the spinning conditions, etc., the higher the degree of decompression within the range that does not affect the composition of the spinning dope,
The longer the decompression time, the more effective. However, in consideration of the productivity of the hollow fiber membrane, the conditions for degassing under reduced pressure are, for example, if the viscosity of the spinning dope is about 10 to 100 poise, the degree of decompression is 25 to 95 kPa, preferably 50 to 95 kPa.
95 kPa, decompression time is 15 minutes to 5 hours, preferably 3
0 minutes to 2 hours. In addition, when degassing under reduced pressure, a method of heating the spinning dope to lower the viscosity and lower the solubility may be used in combination to increase the degassing efficiency.

【0018】紡糸原液における糸切れや欠陥点の発生の
原因となる溶存する気体は、図1に示すモデル実験装置
によって確認される。図1中、1は減圧ポンプへの接続
口、2は紡糸原液タンク、3は紡糸原液、4は定量ポン
プ、5はガラス管狭小部、6はガラス管開放太部を示
し、モデル実験装置において、原液タンク2から自重で
送られた紡糸原液3は、定量ポンプ4でガラス管狭小部
5に送液されるようにし、ガラス管狭小部5及びガラス
管開放太部6によって、紡糸時に紡糸原液が紡糸口金直
前で圧力が高くなり紡糸口金から吐出された瞬間に圧力
が急激に低下する現象をモデル的に再現させてある。
The dissolved gas which causes the yarn breakage and the generation of defect points in the spinning solution is confirmed by a model experiment apparatus shown in FIG. In FIG. 1, 1 is a connection port to a decompression pump, 2 is a spinning dope tank, 3 is a spinning dope, 4 is a metering pump, 5 is a narrow portion of a glass tube, and 6 is a thick portion of an open glass tube. The undiluted spinning solution 3 sent from the undiluted solution tank 2 by its own weight is sent to the narrow glass tube portion 5 by the metering pump 4, and the undiluted spinning solution during spinning is fed by the narrow glass tube portion 5 and the thick open glass tube portion 6. The model reproduces a phenomenon in which the pressure rises immediately before the spinneret and the pressure suddenly drops at the moment when the pressure is discharged from the spinneret.

【0019】紡糸原液を調製した後、モデル実験装置の
原液タンク2に紡糸原液紡3を移液し、原液タンク2を
減圧することなく静置して脱泡させ、その後、定量ポン
プ4にて送液すると、ガラス管狭小部5を通ってガラス
管開放太部6に放出された紡糸原液から気泡が発生して
いることが確認できる。この時、ガラス管狭小部5直前
での圧力を約3kg/cm3にし、ガラス管開放太部6
ではほぼ大気圧と同じとなる。紡糸原液の粘度が数百ポ
イズと高い場合には、発生する気泡は径が0.1mm以
下で、その量も僅かであるが、紡糸原液の粘度が数十ポ
イズ程度となると、発生する気泡は径が数mm程度と大
きくなり、その量も多くなる。
After preparing the spinning stock solution, the spinning stock solution 3 is transferred to the stock solution tank 2 of the model experimental apparatus, and the stock solution tank 2 is allowed to stand without depressurization to remove bubbles. When the liquid is sent, it can be confirmed that bubbles are generated from the spinning solution discharged through the narrow portion 5 of the glass tube and into the open portion 6 of the glass tube. At this time, the pressure immediately before the narrow portion 5 of the glass tube was set to about 3 kg / cm 3 ,
Then it is almost the same as atmospheric pressure. When the viscosity of the spinning dope is as high as several hundred poise, the generated bubbles have a diameter of 0.1 mm or less and the amount is small, but when the viscosity of the spinning dope becomes about several tens poise, the generated bubbles are The diameter increases to about several mm, and the amount also increases.

【0020】これに対し、紡糸原液を調製した後、モデ
ル実験装置の原液タンク2に紡糸原液紡3を移液し、接
続口1より減圧ポンプで原液タンク2を例えば減圧度約
90kPaで、約3時間減圧し、その後、定量ポンプ4
にて送液すると、ガラス管狭小部5を通ってガラス管開
放太部6に放出された紡糸原液からは気泡の発生がない
ことが確認できる。
On the other hand, after preparing the spinning solution, the spinning solution spinning solution 3 is transferred to the stock solution tank 2 of the model experimental apparatus, and the stock solution tank 2 is evacuated from the connection port 1 with a vacuum pump at, for example, a pressure of about 90 kPa. Reduce the pressure for 3 hours, and then
, It can be confirmed that no bubbles are generated from the spinning dope discharged through the narrow portion 5 of the glass tube into the thick portion 6 with the open glass tube.

【0021】以上のモデル実験によれば、紡糸原液に溶
存する気体が、特に低粘度の紡糸原液を用いて中空糸膜
を製造する際、紡糸口金から吐出されるときの圧力の急
激な低下によって溶存する気体が気泡となり、この気泡
が原因となって糸切れ及び欠陥点の発生をもたらすもの
と推測でき、本発明は、かかる実験での確認結果によっ
ても支持されるものである。
According to the above model experiment, the gas dissolved in the spinning dope is caused by a sharp decrease in pressure when discharged from the spinneret, particularly when a hollow fiber membrane is produced using a low-viscosity spinning dope. It can be inferred that the dissolved gas turns into bubbles, which cause yarn breakage and the generation of defect points, and the present invention is also supported by the confirmation results of such experiments.

【0022】本発明においては、このように紡糸原液よ
り溶存する気体を除去した後、紡糸することにより、紡
糸原液より発生する気泡がなく、気泡を原因とする糸切
れがなく長時間にわたって安定した紡糸が可能となると
共に、気泡を原因とする欠陥点の発生の少ない良好な中
空糸膜が得られる。
In the present invention, by removing the dissolved gas from the spinning dope and spinning, no bubbles are generated from the spinning dope, and the yarn is not broken due to the air bubbles and is stable for a long time. Spinning becomes possible, and a good hollow fiber membrane having few defects due to bubbles can be obtained.

【0023】[0023]

【実施例】以下、本発明を実施例により具体的に説明す
る。
The present invention will be described below in more detail with reference to examples.

【0024】(実施例1)ポリスルホン樹脂(帝人アモ
コ(株)製UDEL P−3500)15重量%、ポリ
ビニルピロリドン(ISP社製K90)5重量%及び
N,N−ジメチルホルムアミド80重量%を攪拌下に加
熱溶解して紡糸原液を調製した。調製した紡糸原液の3
0℃における粘度は約80ポイズであった。この紡糸原
液を80℃に保温し減圧度90kPaで3時間減圧して
脱気した。
Example 1 15% by weight of a polysulfone resin (UDEL P-3500 manufactured by Teijin Amoko Co., Ltd.), 5% by weight of polyvinylpyrrolidone (K90 manufactured by ISP) and 80% by weight of N, N-dimethylformamide were stirred. To prepare a spinning stock solution. 3 of the prepared spinning dope
The viscosity at 0 ° C. was about 80 poise. This spinning dope was kept at 80 ° C., depressurized at 90 kPa for 3 hours, and deaerated.

【0025】紡糸口金として二重環状ノズルを用い、ノ
ズルの中心部側にN,N−ジメチルホルムアミド70重
量%水溶液を、外周部側に減圧脱気した紡糸原液を、そ
れぞれ分配して吐出し、20mmの空気層を介して80
℃に保温したN,N−ジメチルアセトアミド40重量%
水溶液中に導いて凝固させ、引き取って中空糸膜を得
た。
A double annular nozzle is used as a spinneret. A 70% by weight aqueous solution of N, N-dimethylformamide is distributed to the center of the nozzle, and a spinning stock solution degassed under reduced pressure is distributed and discharged to the outer periphery. 80 through a 20 mm air layer
40% by weight of N, N-dimethylacetamide kept at ℃
It was introduced into an aqueous solution to be coagulated, and was taken out to obtain a hollow fiber membrane.

【0026】この乾湿式紡糸法における12時間の紡糸
中には糸切れの発生がなく、紡糸安定性は極めて良好で
あった。得られた中空糸膜は、外径約500μm、内径
約300μmで、純水の透水性能は14リットル/m2
・hr・mmHgであった。得られた中空糸膜で作製し
たモジュールを水中に浸漬し、中空糸膜の内側から差圧
1.0kg/cm2をかけて中空糸膜のピンホール検査
を行ったところ、気泡の発生は全くなかった。
No yarn breakage occurred during spinning for 12 hours in this dry-wet spinning method, and spinning stability was extremely good. The obtained hollow fiber membrane had an outer diameter of about 500 μm and an inner diameter of about 300 μm, and the water permeability of pure water was 14 liter / m 2.
· Hr · mmHg. The module made of the obtained hollow fiber membrane was immersed in water, and a pinhole inspection was performed on the hollow fiber membrane by applying a pressure difference of 1.0 kg / cm 2 from the inside of the hollow fiber membrane. Did not.

【0027】(比較例1)実施例1において、紡糸原液
を減圧脱気しなかった以外は、実施例1と同様にして中
空糸膜を得た。紡糸中における糸切れ回数は約2時間に
1回程度発生した。得られた中空糸膜は、外径約500
μm、内径約300μmで、純水の透水性能は14リッ
トル/m2・hr・mmHgであったが、得られた中空
糸膜で作製したモジュールを水中に浸漬し、中空糸膜の
内側から差圧1.0kg/cm2をかけて中空糸膜のピ
ンホール検査を行ったところ、中空糸膜の数カ所から気
泡の発生が認められた。
Comparative Example 1 A hollow fiber membrane was obtained in the same manner as in Example 1, except that the spinning solution was not degassed under reduced pressure. The number of yarn breaks during spinning occurred about once every two hours. The obtained hollow fiber membrane has an outer diameter of about 500
μm, the inner diameter was about 300 μm, and the water permeability of pure water was 14 l / m 2 · hr · mmHg, but the module made of the obtained hollow fiber membrane was immersed in water, and the difference from the inside of the hollow fiber membrane was observed. When a pinhole inspection was performed on the hollow fiber membrane under a pressure of 1.0 kg / cm 2 , generation of air bubbles was observed from several places in the hollow fiber membrane.

【0028】(実施例2)ポリアリルスルホン樹脂(帝
人アモコ(株)製RADEL R−5000)15.1
重量%、ポリビニルピロリドン(ISP社製K30)
5.7重量%及びN,N−ジメチルアセトアミド79.
2重量%を攪拌下に加熱溶解して紡糸原液を調製した。
調製した紡糸原液の30℃における粘度は28ポイズで
あった。この紡糸原液を80℃に保温し減圧度80kP
aで2時間減圧して脱気した。
(Example 2) 15.1 Polyallyl sulfone resin (RADEL R-5000, manufactured by Teijin Amoko Co., Ltd.)
% By weight, polyvinylpyrrolidone (K30 manufactured by ISP)
5.7% by weight and N, N-dimethylacetamide 79.
2% by weight was heated and dissolved under stirring to prepare a spinning stock solution.
The viscosity at 30 ° C. of the prepared spinning dope was 28 poise. The spinning solution is kept at 80 ° C and the pressure is reduced to 80 kP.
a for 2 hours to degas.

【0029】紡糸口金として二重環状ノズルを用い、ノ
ズルの中心部側にグリセリン80重量%、N,N−ジメ
チルアセトアミド15重量%及び水5重量%の混合液
を、外周部側に減圧脱気した紡糸原液を、それぞれ分配
して吐出し、20mmの空気層を介して80℃に保温し
たN,N−ジメチルアセトアミド40重量%水溶液中に
導いて凝固させ、引き取って中空糸膜を得た。
A double annular nozzle is used as a spinneret. A mixture of 80% by weight of glycerin, 15% by weight of N, N-dimethylacetamide and 5% by weight of water is provided on the center side of the nozzle, and degassed under reduced pressure on the outer side. The spinning stock solutions thus obtained were distributed and discharged, respectively, introduced into a 40% by weight aqueous solution of N, N-dimethylacetamide kept at 80 ° C. through an air layer of 20 mm, solidified, and taken out to obtain a hollow fiber membrane.

【0030】この乾湿式紡糸法における12時間の紡糸
中には糸切れの発生がなく、紡糸安定性は極めて良好で
あった。得られた中空糸膜は、外径約600μm、内径
約400μmで、純水の透水性能は8リットル/m2
hr・mmHgであった。得られた中空糸膜で作製した
モジュールを水中に浸漬し、中空糸膜の内側から差圧
1.0kg/cm2をかけて中空糸膜のピンホール検査
を行ったところ、気泡の発生は全くなかった。
There was no yarn breakage during spinning for 12 hours in this dry-wet spinning method, and spinning stability was extremely good. The obtained hollow fiber membrane has an outer diameter of about 600 μm and an inner diameter of about 400 μm, and the permeability of pure water is 8 liter / m 2.
hr · mmHg. The module made of the obtained hollow fiber membrane was immersed in water, and a pinhole inspection was performed on the hollow fiber membrane by applying a pressure difference of 1.0 kg / cm 2 from the inside of the hollow fiber membrane. Did not.

【0031】(比較例2)実施例2において、紡糸原液
を減圧脱気しなかった以外は、実施例2と同様にして中
空糸膜を得た。紡糸中における糸切れ回数は1時間に1
〜2回程度発生した。得られた中空糸膜は、外径約60
0μm、内径約400μmで、純水の透水性能は8リッ
トル/m2・hr・mmHgであったが、得られた中空
糸膜で作製したモジュールを水中に浸漬し、中空糸膜の
内側から差圧1.0kg/cm2をかけて中空糸膜のピ
ンホール検査を行ったところ、中空糸膜の数カ所から気
泡の発生が認められた。
Comparative Example 2 A hollow fiber membrane was obtained in the same manner as in Example 2, except that the spinning solution was not degassed under reduced pressure. The number of yarn breaks during spinning is 1 hour
About two times. The obtained hollow fiber membrane has an outer diameter of about 60.
0 μm, inner diameter of about 400 μm, and water permeability of pure water of 8 l / m 2 · hr · mmHg, but the module made of the obtained hollow fiber membrane was immersed in water, and the difference from the inside of the hollow fiber membrane was observed. When a pinhole inspection was performed on the hollow fiber membrane under a pressure of 1.0 kg / cm 2 , generation of air bubbles was observed from several places in the hollow fiber membrane.

【0032】(実施例3)ポリアリルスルホン樹脂(帝
人アモコ(株)製RADEL R−5000)10.3
重量%、ポリエーテルスルホン樹脂(帝人アモコ(株)
製RADEL A−100)6.9重量%、ポリビニル
ピロリドン(ISP社製K30)4.8重量%及びN,
N−ジメチルアセトアミド78重量%を攪拌下に加熱溶
解して紡糸原液を調製した。調製した紡糸原液の30℃
における粘度は19ポイズであった。この紡糸原液を8
0℃に保温し減圧度70kPaで3時間減圧して脱気し
た。
(Example 3) Polyallyl sulfone resin (RADEL R-5000, manufactured by Teijin Amoko Co., Ltd.) 10.3
% By weight, polyether sulfone resin (Teijin Amoko Co., Ltd.)
RADEL A-100) 6.9% by weight, polyvinylpyrrolidone (ISP K30) 4.8% by weight and N,
78% by weight of N-dimethylacetamide was heated and dissolved under stirring to prepare a spinning stock solution. 30 ° C of the prepared spinning dope
Was 19 poise. This spinning stock solution is
The temperature was kept at 0 ° C. and the pressure was reduced at 70 kPa for 3 hours to degas.

【0033】紡糸口金として二重環状ノズルを用い、ノ
ズルの中心部側にグリセリン90重量%及びN,N−ジ
メチルアセトアミド10重量%の混合液を、外周部側に
減圧脱気した紡糸原液を、それぞれ分配して吐出し、2
0mmの空気層を介して80℃に保温したN,N−ジメ
チルアセトアミド40重量%水溶液中に導いて凝固さ
せ、引き取って中空糸膜を得た。
A double annular nozzle was used as a spinneret. A mixed solution of 90% by weight of glycerin and 10% by weight of N, N-dimethylacetamide was placed at the center of the nozzle, and a spinning stock solution degassed under reduced pressure was placed at the outer side. Distribute and discharge each 2
The solution was introduced into a 40% by weight aqueous solution of N, N-dimethylacetamide kept at 80 ° C. through an air layer of 0 mm, solidified, and taken out to obtain a hollow fiber membrane.

【0034】この乾湿式紡糸法における12時間の紡糸
中には糸切れの発生がなく、紡糸安定性は極めて良好で
あった。得られた中空糸膜は、その組成がポリアリルス
ルホン樹脂/ポリエーテルスルホン樹脂(重量比)が6
0/40であり、外径約600μm、内径約400μm
で、純水の透水性能は約16リットル/m2・hr・m
mHgであった。得られた中空糸膜で作製したモジュー
ルを水中に浸漬し、中空糸膜の内側から差圧1.0kg
/cm2をかけて中空糸膜のピンホール検査を行ったと
ころ、気泡の発生は全くなかった。
There was no yarn breakage during spinning for 12 hours in this dry-wet spinning method, and spinning stability was extremely good. The obtained hollow fiber membrane has a composition of polyallyl sulfone resin / polyether sulfone resin (weight ratio) of 6
0/40, outer diameter about 600 μm, inner diameter about 400 μm
The pure water permeability is about 16 liters / m 2 · hr · m
mHg. A module made of the obtained hollow fiber membrane is immersed in water, and a differential pressure of 1.0 kg is applied from the inside of the hollow fiber membrane.
/ Cm 2 and a pinhole inspection of the hollow fiber membrane was performed, and no bubbles were generated.

【0035】(比較例3)実施例3において、紡糸原液
を減圧脱気しなかった以外は、実施例3と同様にして中
空糸膜を得た。紡糸中における糸切れ回数は1時間に2
〜3回程度発生した。得られた中空糸膜は、外径約60
0μm、内径約400μmで、純水の透水性能は約17
リットル/m2・hr・mmHgであったが、得られた
中空糸膜で作製したモジュールを水中に浸漬し、中空糸
膜の内側から差圧1.0kg/cm2をかけて中空糸膜
のピンホール検査を行ったところ、中空糸膜の数カ所か
ら気泡の発生が認められた。
Comparative Example 3 A hollow fiber membrane was obtained in the same manner as in Example 3, except that the spinning solution was not degassed under reduced pressure. The number of yarn breaks during spinning is 2 per hour
About three times. The obtained hollow fiber membrane has an outer diameter of about 60.
0 μm, inner diameter about 400 μm, water permeability of pure water is about 17
Liter / m 2 · hr · mmHg, but the module made of the obtained hollow fiber membrane was immersed in water, and a pressure difference of 1.0 kg / cm 2 was applied from the inside of the hollow fiber membrane to obtain a hollow fiber membrane. When a pinhole inspection was performed, generation of air bubbles was observed from several places of the hollow fiber membrane.

【0036】[0036]

【発明の効果】本発明によれば、中空糸膜を湿式又は乾
湿式紡糸法により製造する方法において、紡糸安定性を
向上させると共に、ピンホール等の欠陥点の発生を減少
させることができることから膜性能が良好である中空糸
膜を得ることができる。したがって、本発明は、中空糸
膜の製造工程及び品質検査工程での生産性、歩留まりが
向上し、製造原価の低減等の経済性の点でも優れたもの
である。
According to the present invention, in a method for producing a hollow fiber membrane by a wet or dry-wet spinning method, spinning stability can be improved and the occurrence of defect points such as pinholes can be reduced. A hollow fiber membrane having good membrane performance can be obtained. Therefore, the present invention improves productivity and yield in the hollow fiber membrane manufacturing process and quality inspection process, and is also excellent in economical aspects such as reduction in manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】紡糸原液中に溶存する気体を確認するモデル実
験装置の説明図である。
FIG. 1 is an explanatory diagram of a model experiment apparatus for confirming a gas dissolved in a spinning solution.

【符号の説明】[Explanation of symbols]

1 減圧ポンプへの接続口 2 紡糸原液タンク 3 紡糸原液 4 定量ポンプ 5 ガラス管狭小部 6 ガラス管開放太部 1 Connection to decompression pump 2 Spinning solution tank 3 Spinning solution 4 Metering pump 5 Glass tube narrow section 6 Glass tube open thick section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 初鹿野 彰 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社大竹事業所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Hatsukano 20-1 Miyukicho, Otake City, Hiroshima Prefecture Inside the Mitsubishi Rayon Co., Ltd. Otake Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 中空糸膜を湿式又は乾湿式紡糸法により
製造する方法において、紡糸原液より溶存する気体を除
去した後、該紡糸原液を紡糸し、非溶媒中で凝固させる
ことを特徴とする中空糸膜の製造方法。
1. A method for producing a hollow fiber membrane by a wet or dry-wet spinning method, wherein a dissolved gas is removed from a spinning stock solution, and then the spinning stock solution is spun and coagulated in a non-solvent. A method for producing a hollow fiber membrane.
【請求項2】 紡糸原液として、30℃における粘度
が100ポイズ以下である紡糸原液を用いる請求項1記
載の中空糸膜の製造方法。
2. The method for producing a hollow fiber membrane according to claim 1, wherein the spinning dope having a viscosity at 30 ° C. of 100 poise or less is used as the spinning dope.
【請求項3】 紡糸原液として、ポリスルホン系樹脂、
親水性高分子及びこれらの溶媒からなる紡糸原液を用い
る請求項1又は請求項2記載の中空糸膜の製造方法。
3. A polysulfone-based resin as a spinning solution,
The method for producing a hollow fiber membrane according to claim 1 or 2, wherein a spinning solution comprising a hydrophilic polymer and a solvent thereof is used.
【請求項4】 ポリスルホン系樹脂として、ポリアリル
スルホン樹脂及び/又はポリエーテルスルホン樹脂を用
いる請求項3記載の中空糸膜の製造方法。
4. The method for producing a hollow fiber membrane according to claim 3, wherein a polyallyl sulfone resin and / or a polyether sulfone resin is used as the polysulfone resin.
JP9195209A 1997-07-07 1997-07-07 Production of hollow fiber membrane Pending JPH1119491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9195209A JPH1119491A (en) 1997-07-07 1997-07-07 Production of hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9195209A JPH1119491A (en) 1997-07-07 1997-07-07 Production of hollow fiber membrane

Publications (1)

Publication Number Publication Date
JPH1119491A true JPH1119491A (en) 1999-01-26

Family

ID=16337280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9195209A Pending JPH1119491A (en) 1997-07-07 1997-07-07 Production of hollow fiber membrane

Country Status (1)

Country Link
JP (1) JPH1119491A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192329A (en) * 2005-01-11 2006-07-27 Toray Ind Inc Method of manufacturing hollow fiber membrane and method of manufacturing hollow fiber membrane module
US9296886B2 (en) 2011-04-19 2016-03-29 Mitsubishi Rayon Co., Ltd. Method for dissolving and degassing polymer, and method for producing porous film
CN105544019A (en) * 2015-12-16 2016-05-04 华南理工大学 High oil-absorbing polyacrylonitrile hollow activated carbon fiber and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192329A (en) * 2005-01-11 2006-07-27 Toray Ind Inc Method of manufacturing hollow fiber membrane and method of manufacturing hollow fiber membrane module
US9296886B2 (en) 2011-04-19 2016-03-29 Mitsubishi Rayon Co., Ltd. Method for dissolving and degassing polymer, and method for producing porous film
CN105544019A (en) * 2015-12-16 2016-05-04 华南理工大学 High oil-absorbing polyacrylonitrile hollow activated carbon fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5504560B2 (en) Hollow fiber membrane for liquid processing
US4399035A (en) Polyvinylidene fluoride type resin hollow filament microfilter and process for producing the same
JP5433921B2 (en) Polymer porous hollow fiber membrane
WO2007125943A1 (en) Polymeric porous hollow fiber membrane
JP2008284471A (en) Polymeric porous hollow fiber membrane
JP2542572B2 (en) Hollow fiber
EP0579749B2 (en) Fiber spinning process and product thereof
JP3427658B2 (en) Cellulose hollow fiber membrane and method for producing the same
JPH1119491A (en) Production of hollow fiber membrane
EP0824960A1 (en) Hollow-fiber membrane of polysulfone polymer and process for the production thereof
JP4103037B2 (en) Diaphragm cleaning hollow fiber membrane and method for producing the same
JP4781497B2 (en) Cellulose acetate hollow fiber separation membrane
JP5126459B2 (en) Cellulose ester hollow fiber membrane and method for producing the same
JP3805634B2 (en) Porous hollow fiber membrane and method for producing the same
CN109890490B (en) Cellulose acetate series asymmetric hollow fiber membrane
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
CN109922876B (en) Cellulose acetate hollow fiber membrane
JP2008194647A (en) Hollow fiber membrane
JP2794610B2 (en) Method for producing large-diameter polyethersulfone hollow fiber membrane
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
WO2024128243A1 (en) Porous membrane and purification method
JP3473202B2 (en) Manufacturing method of hollow fiber membrane
JP2005021510A (en) Highly permeabile hollow fiber type hemocatharsis device
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
CN112915809A (en) Civil hollow fiber nanofiltration membrane and preparation method thereof