JP2793251B2 - Pattern formation method - Google Patents

Pattern formation method

Info

Publication number
JP2793251B2
JP2793251B2 JP1115477A JP11547789A JP2793251B2 JP 2793251 B2 JP2793251 B2 JP 2793251B2 JP 1115477 A JP1115477 A JP 1115477A JP 11547789 A JP11547789 A JP 11547789A JP 2793251 B2 JP2793251 B2 JP 2793251B2
Authority
JP
Japan
Prior art keywords
pattern
upper layer
alkyl group
film
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1115477A
Other languages
Japanese (ja)
Other versions
JPH02293850A (en
Inventor
宰 多田
明敏 熊谷
透 後河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1115477A priority Critical patent/JP2793251B2/en
Publication of JPH02293850A publication Critical patent/JPH02293850A/en
Application granted granted Critical
Publication of JP2793251B2 publication Critical patent/JP2793251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体装置、マスク等の製造工程に適用さ
れるパターン形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a pattern forming method applied to a manufacturing process of a semiconductor device, a mask and the like.

(従来の技術) 高密度集積回路、高速半導体素子、光部品等の製造に
際しては、微細加工技術として主に波長が436〜248nmの
光によるリソグラフィ技術が採用されている。かかるリ
ソグラフィ技術は、基板上に単層又は多層のレジスト膜
を形成し、このレジスト膜に光を選択的に照射する露光
を行なった後、水溶液又は有機溶媒を用いて現像処理及
びリンス処理を施という湿式処理によってレジストパタ
ーンを形成する方法である。なお、多層レジスト膜の場
合には上層パターンをマスクとして下層レジスト膜を更
に酸素ガスによる反応性イオンエッチング(RIE)法を
用いてエッチングして上層パターンを下層レジスト膜に
転写する方法が行われる。
(Prior Art) When manufacturing high-density integrated circuits, high-speed semiconductor elements, optical components, and the like, a lithography technique mainly using light having a wavelength of 436 to 248 nm is employed as a fine processing technique. In such a lithography technique, a single-layer or multi-layer resist film is formed on a substrate, the resist film is exposed to light for selective irradiation, and then subjected to a developing treatment and a rinsing treatment using an aqueous solution or an organic solvent. Is a method of forming a resist pattern by wet processing. In the case of a multilayer resist film, a method is employed in which the lower layer resist film is further etched using a reactive ion etching (RIE) method using oxygen gas using the upper layer pattern as a mask to transfer the upper layer pattern to the lower layer resist film.

しかしながら、上述したリソグラフィ技術では現像又
はリンス工程において水溶液や有機溶媒を使用する湿式
処理が不可欠であるため、現像液の温度、組成及び現像
時間等のプロセス条件を厳密に制御しなければならな
い。また、現像液中のダストによる欠陥が生じ易いた
め、現像液のダストレベルも相当厳密に制御する必要が
ある。その結果、パターン形成工程が極めて繁雑にな
り、しかも欠陥が発生し易いという問題があった。
However, in the lithography technique described above, a wet process using an aqueous solution or an organic solvent is indispensable in the developing or rinsing step, so that process conditions such as the temperature, composition, and developing time of the developer must be strictly controlled. In addition, since defects due to dust in the developing solution are likely to occur, it is necessary to control the dust level of the developing solution quite strictly. As a result, there has been a problem that the pattern forming process becomes extremely complicated and defects are easily generated.

また、半導体デバイス等の微細化に伴い、より短波長
の光がリソグラフィ光源として使用される傾向にある
が、200nm以下の波長になるとレジストの吸収が大きく
なり、通常の方式によるパターン形成が困難となる。
In addition, with the miniaturization of semiconductor devices and the like, light having a shorter wavelength tends to be used as a lithography light source.However, when the wavelength is 200 nm or less, absorption of a resist increases, and it is difficult to form a pattern by a normal method. Become.

このようなことから、湿式の現像工程を省略するリソ
グラフィ技術として例えばポリメチルメタクリレート
(PMMA)を短波長のエキシマレーザでパターン状に照射
し、レジストの照射部分を直接除去してパターン形成を
行なう方法がR.Srinvasan and V.Mayne−Banton Appl.P
hys.Lett,41、576(1982)に報告されている。しかしな
がら、かかる方法ではPMMAレジストをかなり薄膜化しな
ければサブミクロン水準の微細パターンを形成できない
ため、高密度集積回路の微細加工に必要な高アスペクト
比の微細パターンの形成が困難であった。こうしたこと
から、前記PMMAレジストを多層レジストプロセスの上層
レジストとして利用して高アスペクト比のパターンを形
成することが考えられる。しかしながら、該PMMAレジス
トは耐酸素RIE性を有さないため、該PMMAの上層パター
ンをマスクとして下層レジストを酸素RIE法でエッチン
グ、転写することができず、実質的に二層レジストプロ
セスに適用できない。また、中間層を用いる三層レジス
トの上層として用いれば、工程が二層レジストよりさら
に複雑になる。
For this reason, as a lithography technique that omits the wet development step, for example, a method in which polymethyl methacrylate (PMMA) is irradiated in a pattern with a short-wavelength excimer laser and the irradiated portion of the resist is directly removed to form a pattern. Is R. Srinvasan and V. Mayne-Banton Appl.P
hys. Lett, 41 , 576 (1982). However, such a method cannot form a submicron-level fine pattern unless the PMMA resist is considerably thinned, so that it has been difficult to form a high aspect ratio fine pattern required for fine processing of a high-density integrated circuit. Therefore, it is conceivable to form a pattern having a high aspect ratio by using the PMMA resist as an upper layer resist of a multilayer resist process. However, since the PMMA resist does not have oxygen RIE resistance, the lower resist cannot be etched and transferred by the oxygen RIE method using the upper layer pattern of the PMMA as a mask, and cannot be practically applied to the two-layer resist process. . Further, when used as an upper layer of a three-layer resist using an intermediate layer, the process becomes more complicated than a two-layer resist.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされた
もので、湿式の現像工程を省略した二層レジストのドラ
イプロセスによって容易に高アスペクト比の微細パター
ンを形成し得るパターン形成方法を提供しようとするも
のである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and a fine pattern having a high aspect ratio can be easily formed by a dry process of a two-layer resist omitting a wet developing process. It is intended to provide a pattern forming method that can be formed.

[発明の構成] (課題を解決するための手段) 本発明は、基板上に有機高分子からなる下層膜及び下
記一般式(I)にて表されるシリコン含有モノマの単独
重合体、異なるモノマ間の共重合体から選ばれる1種又
は2以上の高分子からなる上層膜を順次被覆する工程
と、 前記二層膜に波長50〜300nmの電磁放射線をパターン
状に照射し、照射された上層膜部分を湿式現像せずに直
接除去して微細な上層パターンを形成する工程と、 前記上層パターンをマスクとして酸素ガスによる反応
性イオンエッチング法により下層膜を選択的に異方性エ
ッチングして上層パターンを下層膜に転写する工程と を具備したことを特徴とするパターン形成方法である。
[Constitution of the Invention] (Means for Solving the Problems) The present invention relates to an underlayer film composed of an organic polymer on a substrate, a homopolymer of a silicon-containing monomer represented by the following general formula (I), A step of sequentially coating an upper layer film made of one or more polymers selected from copolymers between, and irradiating the two-layer film with electromagnetic radiation having a wavelength of 50 to 300 nm in a pattern, and irradiating the upper layer. Forming a fine upper layer pattern by directly removing the film portion without performing wet development, and selectively anisotropically etching the lower layer film by a reactive ion etching method using oxygen gas using the upper layer pattern as a mask. Transferring a pattern to a lower layer film.

但し、式中のR1はCH3、Cl、F、1つ以上のSi原子を
含むアルキル基、又はSi(R3[R3;水素、アルキル
基]、R2は1つ以上のSi原子を含むアルキル基、1つ以
上のSi原子を含むハロゲン化アルキル基、1つ以上のSi
原子及びO原子を含むアルキル基、又はSi(R4
[R4;水素、アルキル基]を示す。
However, in the formula, R 1 is CH 3 , Cl, F, an alkyl group containing one or more Si atoms, or Si (R 3 ) 3 [R 3 ; hydrogen, alkyl group], and R 2 is one or more. Alkyl group containing Si atom, halogenated alkyl group containing one or more Si atom, one or more Si
Alkyl group containing an atom and an O atom, or Si (R 4 )
3 [R 4 ; hydrogen, alkyl group].

上記基板としては、例えば不純物をドープしたシリコ
ン基板単独、又はこのシリコン基板を母材として酸化シ
リコン層を介して多結晶シリコン膜やAl、Moなどの金属
膜を被覆したものなどの半導体基板、ガリウム砒素など
の化合物半導体基板、透明ガラス板上にクロム膜や酸化
クロム膜を単独もしくは積層して被覆したマスク基板等
を挙げることができる。
As the substrate, for example, a silicon substrate alone doped with impurities, or a semiconductor substrate such as a substrate obtained by coating a polycrystalline silicon film or a metal film such as Al or Mo through a silicon oxide layer using this silicon substrate as a base material, or gallium Examples include a compound semiconductor substrate such as arsenic, a mask substrate in which a chromium film or a chromium oxide film is coated on a transparent glass plate alone or in a laminated manner.

上記下層膜の形成に用いられる有機高分子は、Si、G
e、Sn、Fe等の金属原子を含まない通常の有機高分子で
ある。具体的には、東京応化社製のOFPR−800、シップ
レー社製のMP−2400などのノボラック系のフォトレジス
ト、又はポリスチレン、ポリビニルトルエン、クロロメ
チル化ポリスチレン、ポリアリルスチレン、ポリクロロ
スチレン、塩素化ポリスチレン、塩素化ポリビニルトル
エン、塩素化ポリジメチルスチレン、ポリビニルフェノ
ール、ポリイソプロペニルフェノールなどのスチレン系
高分子を主成分とするもの、或いはポリイミド、ポリビ
ニルナフタレン、クロロメチル化ポリビニルナフタレ
ン、ポリビニルビリジン、ポリビニルカルバゾールなど
のポリマーを主成分とする高分子等を挙げることができ
る。
Organic polymers used for forming the lower layer film include Si, G
It is a normal organic polymer that does not contain metal atoms such as e, Sn, and Fe. Specifically, novolak type photoresist such as OFPR-800 manufactured by Tokyo Ohka Co., Ltd., MP-2400 manufactured by Shipley, or polystyrene, polyvinyl toluene, chloromethylated polystyrene, polyallyl styrene, polychlorostyrene, chlorinated Polystyrene, chlorinated polyvinyltoluene, chlorinated polydimethylstyrene, polyvinylphenol, styrene-based polymers such as polyisopropenylphenol as main components, or polyimide, polyvinylnaphthalene, chloromethylated polyvinylnaphthalene, polyvinylviridine, polyvinylcarbazole And polymers having a polymer as a main component.

上記一般式(I)のシリコン含有モノマに導入される
R1としては、例えば−CH3、−Cl、−Si(CH3等を挙
げることができる。
Introduced into the silicon-containing monomer of the above general formula (I)
The R 1, may be, for example, -CH 3, -Cl, a -Si (CH 3) 3 or the like.

上記一般式(I)のシリコン含有モノマに導入される
R2としては、例えば 等を挙げることができる。
Introduced into the silicon-containing monomer of the above general formula (I)
As R 2 , for example, And the like.

上記一般式(I)にて表されるシリコン含有モノマの
単独重合体、異なるモノマ間の共重合体におけるシリコ
ン含有率については、シリコン含有率が低く過ぎると、
上層パターンをマスクとして下層膜のエッチングを行う
時に上層膜が酸素プラズマに対して十分な耐性を持たせ
なくなることから、7重量%以上にすることが好まし
い。
Regarding the silicon content of the homopolymer of the silicon-containing monomer represented by the general formula (I) and the copolymer between different monomers, if the silicon content is too low,
When the lower layer film is etched using the upper layer pattern as a mask, the upper layer film does not have sufficient resistance to oxygen plasma.

上記波長50〜300nmの電磁放射線としては、例えばKrF
エキシマレーザ(波長248nm)、ArFエキシマレーザ(波
長193nm)又はシンクロトロン放射光から得られる波長5
0〜200nmの真空紫外線等を挙げることができる。
As the electromagnetic radiation having the wavelength of 50 to 300 nm, for example, KrF
Excimer laser (wavelength 248nm), ArF excimer laser (wavelength 193nm) or synchrotron radiation 5
A vacuum ultraviolet ray of 0 to 200 nm can be used.

(作用) 本発明によれば、特定の高分子により上層膜を形成す
る二層レジストプロセスを採用することによって湿式の
現像処理工程を省略でき、かつかなり短波長の光源でも
高アスペクト比の微細なレジストパターンの形成が可能
となる。
(Function) According to the present invention, a wet development process can be omitted by employing a two-layer resist process for forming an upper layer film with a specific polymer, and a fine aspect having a high aspect ratio can be obtained even with a light source having a considerably short wavelength. A resist pattern can be formed.

即ち、上記一般式(I)で表されるシリコン含有モノ
マの単独重合体、異なるモノマ間の共重合体から選ばれ
る1種又は2種以上の高分子を、有機高分子からなる下
層膜上に通常のレジスト膜(1〜1.5μm)よりもかな
り薄膜化(厚さ0.1〜0.5μm)した状態で上層膜として
形成するため、波長50〜300nmの電磁放射線の選択的な
照射によって、照射部分が選択的に除去されて容易にサ
ブミクロン水準の微細でかつ耐酸素RIE性に優れた上層
パターンを形成できる。その結果、該上層パターンをマ
スクとして下層薄膜を酸素ガスによるRIE法で異方性エ
ッチングを行なうことによって上層パターンを下層膜に
忠実に転写できるため、現像処理工程を省略したプロセ
スで、しかも解像能力の高い波長光源を使用して高アス
ペクト比の微細パターンの形成が可能となる。また、こ
うした高アスペクト比のパターンをマスクとして露出す
る基板部分を任意のエッチング法でエッチングすること
によって、基板に高密度のパターンを形成できる。
That is, one or two or more polymers selected from a homopolymer of a silicon-containing monomer represented by the general formula (I) and a copolymer between different monomers are formed on an underlayer film made of an organic polymer. Because it is formed as an upper layer in a state of being much thinner (0.1 to 0.5 μm) than a normal resist film (1 to 1.5 μm), the irradiated part is selectively irradiated with electromagnetic radiation of wavelength 50 to 300 nm. By being selectively removed, a fine pattern of submicron level and excellent in oxygen RIE resistance can be easily formed. As a result, the lower layer thin film is anisotropically etched by RIE using oxygen gas using the upper layer pattern as a mask, so that the upper layer pattern can be faithfully transferred to the lower layer film. A fine pattern having a high aspect ratio can be formed using a wavelength light source having a high capability. In addition, a high-density pattern can be formed on the substrate by etching the exposed portion of the substrate using the high aspect ratio pattern as a mask by an arbitrary etching method.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail.

実施例1 まず、多結晶シリコン基板上に東京応化社製のOFPR−
800を1.5μmの膜厚で塗布した後、200℃、1時間加熱
処理して下層レジスト膜を形成した。つづいて、この下
層レジスト膜上にポリトリメチルシリルメチルα−クロ
ルアクリレートを0.5μmの膜厚で塗布した後、190℃、
30分間加熱処理して上層レジスト膜を被覆し、二層レジ
スト膜を形成した。ひきつづき、波長193nmのArFエキシ
マレーザを光源とする縮小投影露光装置によって、パル
ス当り100mJ/cm2の照度でパルスを5回、上層レジスト
膜にパターン状に照射し、該上層レジスト膜の照射部分
を選択的に除去した。これによって、湿式の現像処理工
程を行なうことなくシリコン原子を含むサブミクロンの
微細な上層パターンが形成された。
Example 1 First, OFPR- made by Tokyo Ohkasha on a polycrystalline silicon substrate
After 800 was applied in a thickness of 1.5 μm, it was heated at 200 ° C. for 1 hour to form a lower resist film. Subsequently, polytrimethylsilylmethyl α-chloroacrylate was applied on the lower resist film in a thickness of 0.5 μm, and then applied at 190 ° C.
Heat treatment was performed for 30 minutes to cover the upper resist film to form a two-layer resist film. Subsequently, the upper resist film was irradiated in a pattern five times with illuminance of 100 mJ / cm 2 per pulse by a reduction projection exposure apparatus using a 193 nm wavelength ArF excimer laser as a light source, and the irradiated portion of the upper resist film was irradiated. Removed selectively. As a result, a submicron fine upper layer pattern containing silicon atoms was formed without performing a wet development process.

次いで、上層パターンをマスクとして酸素ガスによる
RIE法(RF出力;100W、圧力;5mtorr、酸素ガス流量40scc
m)で下層レジスト層を16分間異方性エッチングを行な
った。この時、上層パターンはシリコンを含有する高分
子からなり、耐酸素RIE性に優れているため、該パター
ンが下層レシスト層に忠実に転写されて高アスペクト比
の微細レジストパターンが形成された。
Then, using the upper layer pattern as a mask,
RIE method (RF output; 100W, pressure; 5mtorr, oxygen gas flow rate 40scc
In m), the lower resist layer was anisotropically etched for 16 minutes. At this time, since the upper layer pattern was made of a polymer containing silicon and had excellent oxygen RIE resistance, the pattern was faithfully transferred to the lower resist layer, and a fine resist pattern having a high aspect ratio was formed.

その後、前記二層のレジストパターンをマスクとして
露出する多結晶シリコン基板を四塩化炭素ガスによるRI
E法でエッチングしたところ、該基板表面にサブミクロ
ン水準の高密度のパターン(触刻パターン)を転写でき
た。
Thereafter, the exposed polycrystalline silicon substrate is masked using the two-layer resist pattern as a mask by RI using carbon tetrachloride gas.
As a result of etching by the E method, a high-density pattern (contact pattern) of a submicron level could be transferred to the substrate surface.

実施例2 まず、SiO2基板上に東京応化社製のOFPR−800を1.5μ
mの膜厚で塗布した後、200℃、1時間加熱処理して下
層レジスト膜を形成し、更にこの下層レジスト膜上に厚
さ0.3μmの下記構造式(A)の上層レジスト膜を被覆
し、二層レジスト膜を形成した。
Example 2 First, 1.5μ the OFPR-800 manufactured by Tokyo Ohka Kogyo Co., on a SiO 2 substrate
m, and then heat-treated at 200 ° C. for 1 hour to form a lower resist film, and further, a 0.3 μm thick upper resist film of the following structural formula (A) is coated on the lower resist film. Then, a two-layer resist film was formed.

次いで、波長193nmのArFエキシマレーザを光源とする
縮小投影露光装置によって、パルス当り100mJ/cm2の照
度でパルスを7回、上層レジスト膜にパターン状に照射
し、該上層レジスト膜の照射部分を選択的に除去した。
これによって、湿式の現像処理工程を行なうことなくシ
リコン原子を含むサブミクロンの微細な上層パターンが
形成された。
Then, the upper resist film was irradiated with a pulse seven times at an illuminance of 100 mJ / cm 2 per pulse by a reduced projection exposure apparatus using an ArF excimer laser having a wavelength of 193 nm as a light source, and the irradiated portion of the upper resist film was irradiated. Removed selectively.
As a result, a submicron fine upper layer pattern containing silicon atoms was formed without performing a wet development process.

次いで、上層パターンをマスクとして実施例1と同様
に酸素ガスによるRIE法で下層レジスト膜を異方性エッ
チングを行なった。その結果、上層パターンが下層レジ
スト膜に忠実に転写されて高アスペクト比の微細レジス
トパターンが形成された。
Next, the lower resist film was anisotropically etched by the RIE method using oxygen gas in the same manner as in Example 1 using the upper layer pattern as a mask. As a result, the upper layer pattern was faithfully transferred to the lower layer resist film, and a fine resist pattern having a high aspect ratio was formed.

[発明の効果] 以上詳述した如く、本発明によれば一般式(I)で示
されるシリコン含有モノマの単独重合体、異なるモノマ
間の共重合体から選ばれる1種又は2以上の高分子によ
り上層膜を形成する二層レジストプロセスを採用するこ
とによって、欠陥が発生し易い湿式の現像処理工程を省
略でき、かつ波長300nm以下の短波長光源で高アスペク
ト比の微細なパターンを形成でき、ひいては高密度半導
体装置などの微細加工工程に有効に適用できる等顕著な
効果を奏する。
[Effects of the Invention] As described above in detail, according to the present invention, one or more polymers selected from homopolymers of silicon-containing monomers represented by the general formula (I) and copolymers between different monomers By adopting a two-layer resist process to form an upper layer film, it is possible to omit the wet development processing step in which defects easily occur, and to form a fine pattern with a high aspect ratio with a short wavelength light source having a wavelength of 300 nm or less, As a result, it has a remarkable effect such as being effectively applicable to a fine processing step for a high-density semiconductor device or the like.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−154050(JP,A) 特開 平2−115853(JP,A) 特開 昭59−105638(JP,A) 特開 昭63−216044(JP,A) 特開 昭63−116151(JP,A) 特開 昭60−119549(JP,A) (58)調査した分野(Int.Cl.6,DB名) G03F 7/00 - 7/16──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-1-154050 (JP, A) JP-A-2-11553 (JP, A) JP-A-59-105638 (JP, A) JP-A-63-1988 216044 (JP, A) JP-A-63-116151 (JP, A) JP-A-60-119549 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G03F 7/00-7 / 16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に有機高分子からなる下層膜及び下
記一般式(I)にて表されるシリコン含有モノマの単独
重合体、異なるモノマ間の共重合体から選ばれる1種又
は2以上の高分子からなる上層膜を順次被覆する工程
と、 前記二層膜に波長50〜300nmの電磁放射線をパターン状
に照射し、照射された上層膜部分を湿式現像せずに直接
除去して微細な上層パターンを形成する工程と、 前記上層パターンをマスクとして酸素ガスによる反応性
イオンエッチング法により下層膜を選択的に異方性エッ
チングして上層パターンを下層膜に転写する工程と を具備したことを特徴とするパターン形成方法。 但し、式中のR1はCH3、Cl、F、1つ以上のSi原子を含
むアルキル基、又はSi(R3[R3;水素、アルキル
基]、R2は1つ以上のSi原子を含むアルキル基、1つ以
上のSi原子を含むハロゲン化アルキル基、1つ以上のSi
原子及びO原子を含むアルキル基、又はSi(R4
[R4;水素、アルキル基]を示す。
An underlayer film made of an organic polymer on a substrate and one or more selected from a homopolymer of a silicon-containing monomer represented by the following general formula (I) and a copolymer between different monomers. A step of sequentially coating an upper layer film composed of a polymer of the above, and irradiating the two-layer film with electromagnetic radiation having a wavelength of 50 to 300 nm in a pattern, and directly removing the irradiated upper layer portion without performing wet development to obtain fine particles. Forming an upper layer pattern, and selectively transferring an upper layer pattern to the lower layer film by selectively anisotropically etching the lower layer film by a reactive ion etching method using oxygen gas using the upper layer pattern as a mask. A pattern forming method characterized by the above-mentioned. However, in the formula, R 1 is CH 3 , Cl, F, an alkyl group containing one or more Si atoms, or Si (R 3 ) 3 [R 3 ; hydrogen, alkyl group], and R 2 is one or more. Alkyl group containing Si atom, halogenated alkyl group containing one or more Si atom, one or more Si
Alkyl group containing an atom and an O atom, or Si (R 4 )
3 [R 4 ; hydrogen, alkyl group].
JP1115477A 1989-05-09 1989-05-09 Pattern formation method Expired - Fee Related JP2793251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1115477A JP2793251B2 (en) 1989-05-09 1989-05-09 Pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1115477A JP2793251B2 (en) 1989-05-09 1989-05-09 Pattern formation method

Publications (2)

Publication Number Publication Date
JPH02293850A JPH02293850A (en) 1990-12-05
JP2793251B2 true JP2793251B2 (en) 1998-09-03

Family

ID=14663497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1115477A Expired - Fee Related JP2793251B2 (en) 1989-05-09 1989-05-09 Pattern formation method

Country Status (1)

Country Link
JP (1) JP2793251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347608C (en) * 2001-09-25 2007-11-07 米卢塔技术株式会社 Method for forming a micro-pattern on a substrate by using capillary force

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100335070B1 (en) * 1999-04-21 2002-05-03 백승준 Method for forming micro pattern on substrate by using compression patterning technique
EP1054296A3 (en) * 1999-04-30 2002-03-06 Fuji Photo Film Co., Ltd. Fine pattern forming method
JP4253423B2 (en) 2000-06-14 2009-04-15 富士フイルム株式会社 Positive resist laminate
KR101860385B1 (en) 2009-06-19 2018-05-23 닛산 가가쿠 고교 가부시키 가이샤 Carbazole novolak resin
US9263285B2 (en) 2010-12-09 2016-02-16 Nissan Chemical Industries, Ltd. Composition for forming a resist underlayer film including hydroxyl group-containing carbazole novolac resin
CN103827159B (en) 2011-09-29 2016-07-06 日产化学工业株式会社 diaryl amine novolac resin
JP6137486B2 (en) 2012-02-01 2017-05-31 日産化学工業株式会社 Resist underlayer film forming composition containing copolymer resin containing heterocycle
KR102072490B1 (en) 2012-03-27 2020-02-03 닛산 가가쿠 가부시키가이샤 Resist underlayer film-forming composition which contains phenylindole-containing novolac resin
KR102076528B1 (en) 2012-08-21 2020-02-13 닛산 가가쿠 가부시키가이샤 Composition for forming resist underlayer film, which contains novolac resin having polynuclear phenol
US10017664B2 (en) 2013-05-13 2018-07-10 Nissan Chemical Industries, Ltd. Novolac resin-containing resist underlayer film-forming composition using bisphenol aldehyde
WO2015098594A1 (en) 2013-12-26 2015-07-02 日産化学工業株式会社 Resist underlayer film-forming composition containing novolac polymer having secondary amino group
CN106133607B (en) 2014-03-31 2020-01-03 日产化学工业株式会社 Resist underlayer film forming composition containing aromatic vinyl compound-added novolak resin
US11650505B2 (en) 2014-08-08 2023-05-16 Nissan Chemical Industries, Ltd. Resist underlayer film-forming composition containing novolac resin reacted with aromatic methylol compound

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988737A (en) * 1982-11-15 1984-05-22 Hitachi Ltd Radiation sensitive organic high polymer material
US4414059A (en) * 1982-12-09 1983-11-08 International Business Machines Corporation Far UV patterning of resist materials
JPS60119549A (en) * 1983-12-02 1985-06-27 Nippon Telegr & Teleph Corp <Ntt> Pattern forming material and pattern forming method
US4481049A (en) * 1984-03-02 1984-11-06 At&T Bell Laboratories Bilevel resist
JPH0682215B2 (en) * 1986-03-31 1994-10-19 株式会社東芝 Radiation resist and pattern forming method using the same
JPS63116151A (en) * 1986-11-05 1988-05-20 Toshiba Corp Formation of pattern
JPS63216044A (en) * 1987-03-05 1988-09-08 Nippon Zeon Co Ltd Pattern forming material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347608C (en) * 2001-09-25 2007-11-07 米卢塔技术株式会社 Method for forming a micro-pattern on a substrate by using capillary force

Also Published As

Publication number Publication date
JPH02293850A (en) 1990-12-05

Similar Documents

Publication Publication Date Title
JP2793251B2 (en) Pattern formation method
EP1279072B1 (en) Ozone-enhanced silylation process to increase etch resistance of ultra thin resists
US5948570A (en) Process for dry lithographic etching
JP3368888B2 (en) Organometallic polymers and uses thereof
US6730458B1 (en) Method for forming fine patterns through effective glass transition temperature reduction
JP2003195521A (en) Forming method for photoresist pattern and semiconductor element
JPH05289307A (en) Reticle and its production
US6140023A (en) Method for transferring patterns created by lithography
JPH01154050A (en) Pattern forming method
US6673525B1 (en) Thin layer imaging process for microlithography using radiation at strongly attenuated wavelengths
JPS61218133A (en) Pattern formation of semiconductor device
US6045981A (en) Method of manufacturing semiconductor device
US6177233B1 (en) Method of forming resist pattern
KR950004910B1 (en) Photoetching method using multilayerresist
JP2004014652A (en) Method of forming fine pattern
JP4675450B2 (en) Method for forming a thin film pattern
JP3257126B2 (en) Pattern formation method
KR100309906B1 (en) How to improve dry etching resistance of photoresist
KR20010037049A (en) Lithography method using silylation
JPS61116838A (en) Formation of resist pattern
Bousaba et al. Plasma resistant modified I-line, deep UV, and e-beam resists
JPS6364772B2 (en)
KR950006347B1 (en) Patterning method
JP2002064054A (en) Resist pattern, method for forming wiring, and electronic parts
JPH05142788A (en) Formation of resist pattern

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees