JPH01154050A - Pattern forming method - Google Patents

Pattern forming method

Info

Publication number
JPH01154050A
JPH01154050A JP62312659A JP31265987A JPH01154050A JP H01154050 A JPH01154050 A JP H01154050A JP 62312659 A JP62312659 A JP 62312659A JP 31265987 A JP31265987 A JP 31265987A JP H01154050 A JPH01154050 A JP H01154050A
Authority
JP
Japan
Prior art keywords
thin film
upper layer
pattern
layer thin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62312659A
Other languages
Japanese (ja)
Inventor
Tsukasa Tada
宰 多田
Haruaki Watanabe
渡辺 治昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62312659A priority Critical patent/JPH01154050A/en
Publication of JPH01154050A publication Critical patent/JPH01154050A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To omit a wet development processing step in which faults are apt to generate, and to form a fine pattern with a high aspect ratio by using a two layer resist process in which the upper layer thin film is formed by a specified polymer. CONSTITUTION:An under layer thin film composed of an org. polymer and the upper layer thin film composed of one or two or more than two kinds of olefin sulfone type polymers contg. silicon and shown by formula I are formed on a substrate in this order. The fine upper layer pattern is formed by imagewisely irradiating the upper layer thin film with an electromagnetic radiation having a wavelength of <=300nm, followed by selectively removing the exposed part. Next, the upper layer pattern is transferred on the under layer thin film by selectively and anisotropically etching the under layer thin film by oxygen gas according to a reactive ion etching method using the upper layer pattern as a mask. In formula I, R is alkyl group contg. silicon atom. Thus, the fine pattern with the high aspect ratio can be formed by a dry process in which the wet development processing step is omitted.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体装置、マスク等の製造工程に適用され
るパターン形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a pattern forming method applied to the manufacturing process of semiconductor devices, masks, etc.

(従来の技術) 高密度集積回路、高速半導体素子、光部品等の製造に際
しては、微細加工技術として主に波長が436〜248
n−の光によるリソグラフィ技術が採用されている。か
かるリソグラフィ技術は、基板上に単層又は多層レジス
ト膜を形成し、このレジスト膜に光を選択的に照射する
露光を行なった後、水溶液又は有機溶媒を用いて現像処
理及びリンス処理を施という湿式処理によってレジスト
パターンを形成する方法である。なお、多層レジスト膜
の場合には上層パターンをマスクとして下層レジスト膜
を更に酸素ガスによる反応性イオンエツチング(RIE
)法を用いてエツチングして上層パターンを下層レジス
ト膜に転写する方法が行われる。
(Conventional technology) When manufacturing high-density integrated circuits, high-speed semiconductor devices, optical components, etc., microfabrication technology is mainly used for wavelengths of 436 to 248.
A lithography technique using n- light is employed. Such lithography technology involves forming a single-layer or multi-layer resist film on a substrate, exposing the resist film to selective irradiation with light, and then developing and rinsing using an aqueous solution or an organic solvent. This is a method of forming a resist pattern by wet processing. In the case of a multilayer resist film, the lower resist film is further subjected to reactive ion etching (RIE) using oxygen gas using the upper layer pattern as a mask.
) is used to transfer the upper layer pattern to the lower resist film by etching.

しかしながら、上述したりソグラフィ技術では現像又は
リンス工程において水溶液や有機溶媒を使用する湿式処
理が不可欠であるため、現像液の温度、組成及び現像時
間等のプロセス条件を厳密に制御しなければならない。
However, in the above-mentioned lithography technology, wet processing using an aqueous solution or an organic solvent is essential in the development or rinsing process, so process conditions such as the temperature, composition, and development time of the developer must be strictly controlled.

また、現像液中のダストによる欠陥が生じやすいため、
現像液のダストレベルも相当厳密に制御する必要がある
。その結果、パターン形成工程が極めて繁雑になり、し
かも欠陥が発生し易いという聞届があった。
In addition, since defects are likely to occur due to dust in the developer,
Developer dust levels also need to be controlled fairly closely. As a result, it has been reported that the pattern forming process becomes extremely complicated and defects are likely to occur.

このようなことから、湿式の現像工程を省略するリング
ラフィ技術として例えばポリメチルメタクリレート(P
MMA)を短波長のエキシマレーザでパターン状に照射
し、レジストの照射部分を直接除去してパターン形成を
行なう方法がRlS rinvasan and  V
、 Mayne −Banton 、 Appl 。
For this reason, for example, polymethyl methacrylate (P
RlS rinvasan and V
, Mayne-Banton, Appl.

Phys 、  Lett 、 41.578  (1
9H)に報告されている。しかしながら、かかる方法で
はPMMAレジストをかなり薄膜化しなければサブミク
ロン水準の微細パターンを形成できないため、高密度集
積回路の微細加工に必要な高アスペクト比の微細パター
ンの形成が困難であった。こうしたことから、前記PM
MAレジストを二層レジストプロセスの上層レジストと
して利用として高アスペクト比のパターンを形成するこ
とが考えられる。しかしながら、該PMMAレジストは
耐酸素RIE性を有さないため、該PMMAの上層パタ
ーンをマスクとして下層レジストを酸素RIE法でエツ
チング、転写することができず、実質的に二層レジスト
プロセスに適用できない。
Phys, Lett, 41.578 (1
9H). However, with this method, it is not possible to form submicron-level fine patterns unless the PMMA resist is considerably thinned, making it difficult to form fine patterns with high aspect ratios required for microfabrication of high-density integrated circuits. For these reasons, the PM
It is conceivable to form a pattern with a high aspect ratio by using MA resist as an upper layer resist in a two-layer resist process. However, since the PMMA resist does not have oxygen RIE resistance, the lower resist cannot be etched and transferred by oxygen RIE using the upper layer pattern of the PMMA as a mask, and it cannot be practically applied to the two-layer resist process. .

(発明が解決しようとする問題点) 本発明は、上記従来の問題点を解決するためになされた
もので、湿式の現像工程を省略したドライプロセスによ
って高アスペクト比の微細パターンを形成し得るパター
ン形成方法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned conventional problems. The purpose of this paper is to provide a method for forming the same.

[発明の構成] (問題点を解決するための手段) 本発明は、基板上に有機高分子からなる下層薄膜及び下
記一般式(1)にて表されるシリコン含有オレフィンス
ルフォン系高分子の1種又は2以上からなる上層薄膜を
順次形成する工程と、この上層薄膜に波長3000−以
下の電磁放射線をパターン状に照射し、該薄膜の照射部
分を選択的に除去して微細な上層パターンを形成する工
程と、この上層パターンをマスクとして酸素ガスによる
反応性イオンエツチング法により下層薄膜を選択的に異
方性エツチングして上層パターンを下層薄膜に転写する
工程とを具備したことを特徴とするパターン形成方法で
ある。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a lower thin film made of an organic polymer on a substrate and a silicon-containing olefin sulfone polymer represented by the following general formula (1). A step of sequentially forming an upper layer thin film consisting of a seed or two or more, irradiating this upper layer thin film with electromagnetic radiation having a wavelength of 3000 nm or less in a pattern, and selectively removing the irradiated portion of the thin film to form a fine upper layer pattern. and a step of selectively anisotropically etching the lower layer thin film using the upper layer pattern as a mask using a reactive ion etching method using oxygen gas to transfer the upper layer pattern to the lower layer thin film. This is a pattern forming method.

R(1) 但し、式中のRはシリコン原子を有するアルキル基を示
す。
R(1) However, R in the formula represents an alkyl group having a silicon atom.

上記基板としては、例えば不純物をドープしたシリコン
基板単独、又はこのシリコン基板を母材として酸化シリ
コン層を介して多結晶シリコン膜やAIsMoなどの金
属膜を被覆したものなどの半導体基板、ガリウム砒素な
どの化合物半導体基板、透明ガラス板上にクロム膜や酸
化クロム膜を単独もしくは積層して被覆したマスク基板
等を挙げることができる。
Examples of the above-mentioned substrate include a single silicon substrate doped with impurities, a semiconductor substrate such as one in which this silicon substrate is used as a base material and is coated with a polycrystalline silicon film or a metal film such as AIsMo via a silicon oxide layer, gallium arsenide, etc. Examples include a compound semiconductor substrate, a mask substrate in which a transparent glass plate is coated with a chromium film or a chromium oxide film alone or in a stacked manner.

上記下層薄膜の形成に用いられる有機高分子は、sl、
Go −Sn s Fc等の金属原子を含まない通常の
有機高分子である。具体的には、東京応化社製の0FP
R−800、ヘキスト社製のAZ−2400などのノボ
ラック系フォトレジスト、又はポリスチレン、ポリビニ
ルトルエン、クロロメチル化ポリスチレン、ポリアリル
スチレン、ポリクロロスチレン、塩素化ポリスチレン、
塩素化ポリビニルトルエン、塩素化ポリジメチルスチレ
ン、ポリビニルフェノール、ポリイソプロペニルフェノ
ールなどのスチレン系高分子を主成分とするレジスト、
或いはポリイミド、ポリビニルナフタレン、クロロメチ
ル化ポリビニルナフタレン、ポリビニルピリジン、ポリ
ビニルカルバゾールなどのポリマーを主成分とするレジ
スト等を使用することができる。
The organic polymer used to form the lower layer thin film is sl,
It is a normal organic polymer that does not contain metal atoms, such as Go-Sn s Fc. Specifically, 0FP manufactured by Tokyo Ohka Co., Ltd.
R-800, novolac photoresist such as Hoechst AZ-2400, or polystyrene, polyvinyltoluene, chloromethylated polystyrene, polyallylstyrene, polychlorostyrene, chlorinated polystyrene,
Resists whose main components are styrenic polymers such as chlorinated polyvinyltoluene, chlorinated polydimethylstyrene, polyvinylphenol, and polyisopropenylphenol;
Alternatively, a resist whose main component is a polymer such as polyimide, polyvinylnaphthalene, chloromethylated polyvinylnaphthalene, polyvinylpyridine, or polyvinylcarbazole can be used.

上記一般式(1)のオレフィンスルフォン系高分子に導
入されるRであるシリコン含有アルキル基としては、例
えば−8i (CH3) 3、−CH2−81(CH3
)  3 、 −(CH2)  2 −8i  (C1
13)  3  、 −5t(CH3)  2 Si 
 (CH3)  3 、 −CII2 −3l  (C
H3)  2Sl  (C113)  3  、 −(
CH2)  2 −31   (C113)  2] 
 (CH3)  3  、 −81  (CII3  
)  2  CH2Si  (CH3)  3 、−9
1 (CH3) 2  (CH2) 2 Sl (CL
 ) 3等を挙げることができる。
Examples of the silicon-containing alkyl group R introduced into the olefin sulfone polymer of general formula (1) above include -8i (CH3) 3, -CH2-81 (CH3
) 3 , -(CH2) 2 -8i (C1
13) 3, -5t(CH3)2Si
(CH3) 3 , -CII2 -3l (C
H3) 2Sl (C113) 3, -(
CH2) 2 -31 (C113) 2]
(CH3) 3, -81 (CII3
) 2 CH2Si (CH3) 3 , -9
1 (CH3) 2 (CH2) 2 Sl (CL
) 3 etc. can be mentioned.

上記一般式(1)にて表される高分子の分子量は、特に
制限されないが、塗膜性等の実用性の点から、3000
〜106の範囲することが望ましい。また、かかる高分
子のシリコン含を率はその含有率を低くし過ぎると下層
薄膜のエツチングを行なう時の耐酸素RIE性を充分に
高められないことから、7重量%以上にすることが好ま
しい。
The molecular weight of the polymer represented by the above general formula (1) is not particularly limited, but from the viewpoint of practicality such as coating properties, 3000
It is desirable to range from 106 to 106. Further, the silicon content of the polymer is preferably 7% by weight or more, since if the silicon content is too low, the oxygen RIE resistance during etching of the underlying thin film cannot be sufficiently enhanced.

上記波長300 nm以下の電磁放射線としては、例え
ばKrFエキシマレーザ(波長248 nm)、ArF
エキシマレーザ(波長193 nff1) 、F2エキ
シマレーザ(波長153 nm)又はシンクロトロン放
射光から得られる波長50〜200 nmの真空紫外線
、或いは波長5人〜50nmの軟X線等を挙げることが
できる。
Examples of the electromagnetic radiation with a wavelength of 300 nm or less include KrF excimer laser (wavelength 248 nm), ArF
Eximer laser (wavelength 193nff1), F2 excimer laser (wavelength 153 nm), vacuum ultraviolet rays with a wavelength of 50 to 200 nm obtained from synchrotron radiation, or soft X-rays with a wavelength of 5 to 50 nm can be used.

(作用) 本発明によれば、特定の高分子中により上層薄膜を形成
する二層レジストプロセスを採用することによって湿式
の現像処理工程を省略でき、かつ高アスペクト比の微細
なレジストパターンの形成が可能となる。即ち、上記一
般式(I)で表されるシリコン含をオレフィンスルフォ
ン系高分子を有機高分子からなる下層薄膜上に上層薄膜
(厚さ0.1〜0.5μm)として形成するため、波長
300 nm以下の電離放射線の選択的な照射すること
によって、照射部分が選択的に除去されれて容易にサブ
ミクロン水準の微細でかつ耐酸素RIE性に優れた上層
パターンを形成できる。その結果、該上層パターンをマ
スクとして下層薄膜を酸素ガスによるRIE法で異方性
エツチングを行なうことによって上層パターンを下層薄
膜に忠実に転写できるため、現像処理工程を省略したプ
ロセスで高アスペクト比の微細パターンの形成が可能と
なる。また、こうした高アスペクト比のパターンをマス
クとして露出する基板部分を任意のエツチング法でエツ
チングすることによって、基板に高密度のパターンを形
成できる。
(Function) According to the present invention, by employing a two-layer resist process in which an upper thin film is formed in a specific polymer, a wet development process can be omitted, and a fine resist pattern with a high aspect ratio can be formed. It becomes possible. That is, in order to form a silicon-containing olefin sulfone polymer represented by the above general formula (I) as an upper layer thin film (thickness 0.1 to 0.5 μm) on a lower layer thin film consisting of an organic polymer, a wavelength of 300 μm is used. By selectively irradiating with ionizing radiation of nm or less, the irradiated portions are selectively removed and an upper layer pattern with submicron level fineness and excellent oxygen RIE resistance can be easily formed. As a result, the upper layer pattern can be faithfully transferred to the lower layer thin film by anisotropically etching the lower layer thin film using the RIE method using oxygen gas using the upper layer pattern as a mask. It becomes possible to form fine patterns. Further, by using such a high aspect ratio pattern as a mask and etching the exposed portion of the substrate using any etching method, a high density pattern can be formed on the substrate.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

実施例1 まず、多結晶シリコン基板上に下層薄膜としての厚さ1
.5μmのポジ型レジスト層(東京応化社製商品名; 
0FPR−800)を塗布した後、200℃、1時間加
熱処理した。つづいて、このフォトレジスト層上に上層
薄膜としての厚さ0.3μmのポリ(3−ブテニルトリ
メチルシランスルフォン)層を塗布した後、100℃、
20分間加熱処理して二層レジスト層を形成した。ひき
つづき、波長193 nmのArFエキシマレーザを光
源とする縮小投影露光装置によって、パルス当り100
mJ/c1jの照度でパルスを3回上層レジスト層にパ
ターン状に照射し、該上層レジスト層の照射部分を選択
的に除去した。これにより、湿式の現像処理工程を行な
うことなくサブミクロン水準の微細な上層パターンが形
成された。
Example 1 First, a layer with a thickness of 1 as a lower layer thin film was deposited on a polycrystalline silicon substrate.
.. 5 μm positive resist layer (trade name manufactured by Tokyo Ohka Co., Ltd.;
After applying 0FPR-800), heat treatment was performed at 200° C. for 1 hour. Subsequently, a poly(3-butenyltrimethylsilanesulfone) layer with a thickness of 0.3 μm was applied as an upper thin film on this photoresist layer, and then heated at 100°C.
A two-layer resist layer was formed by heat treatment for 20 minutes. Subsequently, a reduction projection exposure device using an ArF excimer laser with a wavelength of 193 nm as a light source was used to produce 100 images per pulse.
The upper resist layer was irradiated with pulses three times in a pattern at an illumination intensity of mJ/c1j, and the irradiated portions of the upper resist layer were selectively removed. As a result, a fine upper layer pattern on the submicron level was formed without performing a wet development process.

次いで、上層パターンをマスクとして酸素ガスによるR
IE法(RF小出力 100 W、圧力;5110rr
s酸素ガス流量40secm+)で下層レジスト層を1
6分間異方性エツチングを行なった。この時、上層パタ
ーンはシリコンを含有する高分子からなり、耐酸素RI
E性に優れているため、該パターンが下層レジスト層に
忠実に転写されて高アスペクト比の微細レジストパター
ンが形成された。この後、二層のレジストパターンをマ
スクとして露出する多結晶シリコン基板を四塩化炭素ガ
スによるRIE法でエツチングしたところ、該基板表面
にサブミクロン水準の高密度のパターン(蝕刻パターン
)を転写できた。
Next, using the upper layer pattern as a mask, R is applied using oxygen gas.
IE method (RF small output 100 W, pressure; 5110rr
s Oxygen gas flow rate 40sec+) to remove the lower resist layer 1
Anisotropic etching was performed for 6 minutes. At this time, the upper layer pattern is made of a polymer containing silicon and has an oxygen-resistant RI.
Because of the excellent E properties, the pattern was faithfully transferred to the lower resist layer to form a fine resist pattern with a high aspect ratio. After this, when the exposed polycrystalline silicon substrate was etched using the RIE method using carbon tetrachloride gas using the two-layer resist pattern as a mask, a submicron-level high-density pattern (etched pattern) could be transferred to the substrate surface. .

実施例2 まず、8102基板上に実施例1と同様なポジ型レジス
ト層を塗布し、加熱処理した後、該フォトレジスト層上
に上層薄膜としての厚さ0.3μmのポリ(3−ブテニ
ルへブタメチルジシランスルフォン)層を塗布し、10
0℃、20分間加熱処理して二層レジスト層を形成した
。ひきつづき、波長193 nll1のArFエキシマ
レーザを光源とする縮小投影露光装置によって、パルス
当りloomJ/dの照度でパルスを5回上層レジスト
層にパターン状に照射し、該上層レジスト層の照射部分
を選択的に除去した。これにより、湿式の現像処理工程
を行なうことなくサブミクロン水準の微細な上層パター
ンが形成された。
Example 2 First, a positive resist layer similar to that in Example 1 was coated on an 8102 substrate, and after heat treatment, a 0.3 μm thick poly(3-butenyl) film was deposited on the photoresist layer as an upper thin film. butamethyldisilane sulfone) layer, 10
A two-layer resist layer was formed by heat treatment at 0° C. for 20 minutes. Subsequently, using a reduction projection exposure device using an ArF excimer laser with a wavelength of 193 nll1 as a light source, the upper resist layer was irradiated with pulses five times in a pattern at an illuminance of room J/d per pulse, and the irradiated portions of the upper resist layer were selected. removed. As a result, a fine upper layer pattern on the submicron level was formed without performing a wet development process.

次いで、上層パターンをマスクとして酸素ガスによるR
IE法(RF出力; 100 W、圧力;5mjOrr
s酸素ガス流量40secm)で下層レジスト層を16
分間異方性エツチングを行なった。この時、上層パター
ンはシリコンを含有する高分子からなり、耐酸素RIE
性に優れているため、該パターンが下層レジスト層に忠
実に転写されて高アスペクト比の微細レジストパターン
が形成された。この後、二層のレジストパターンをマス
クとして露出するSIO基板をCF4−H2混合ガスに
よるRIE法でエツチングしたところ、該基板表面にサ
ブミクロン水準の高密度のパターン(蝕刻パターン)を
転写できた。
Next, using the upper layer pattern as a mask, R is applied using oxygen gas.
IE method (RF output; 100 W, pressure; 5 mjOrr
s Oxygen gas flow rate 40 sec) to coat the lower resist layer 16
Anisotropic etching was performed for minutes. At this time, the upper layer pattern is made of a silicon-containing polymer and is resistant to oxygen RIE.
Because of its excellent properties, the pattern was faithfully transferred to the lower resist layer to form a fine resist pattern with a high aspect ratio. Thereafter, when the exposed SIO substrate was etched by RIE using a CF4-H2 mixed gas using the two-layer resist pattern as a mask, a submicron-level high-density pattern (etched pattern) could be transferred onto the surface of the substrate.

[発明の効果] 以上詳述した如く、本発明によれば特定の高分子により
上層薄膜を形成する二層レジストプロセスを採用するこ
とによって欠陥が発生し易い湿式の現像処理工程を省略
でき、かつ高アスペクト比の微細なパターンを形成でき
、ひいては高密度半導体装置などの微細加工工程に有効
に適用できる等顕著な効果を奏する。
[Effects of the Invention] As detailed above, according to the present invention, by employing a two-layer resist process in which an upper thin film is formed using a specific polymer, a wet development process that is likely to cause defects can be omitted, and It has remarkable effects such as being able to form fine patterns with high aspect ratios and being effectively applicable to microfabrication processes for high-density semiconductor devices and the like.

出願人代理人 弁理士  鈴江武彦Applicant's agent: Patent attorney: Takehiko Suzue

Claims (1)

【特許請求の範囲】  基板上に有機高分子からなる下層薄膜及び下記一般式
( I )にて表されるシリコン含有オレフィンスルフォ
ン系高分子の1種又は2以上からなる上層薄膜を順次形
成する工程と、この上層薄膜に波長300nm以下の電
磁放射線をパターン状に照射し、該薄膜の照射部分を選
択的に除去して微細な上層パターンを形成する工程と、
この上層パターンをマスクとして酸素ガスによる反応性
イオンエッチング法により下層薄膜を選択的に異方性エ
ッチングして上層パターンを下層薄膜に転写する工程と
を具備したことを特徴とするパターン形成方法。 ▲数式、化学式、表等があります▼( I ) 但し、式中のRはシリコン原子を有するアルキル基を示
す。
[Claims] A step of sequentially forming on a substrate a lower thin film made of an organic polymer and an upper thin film made of one or more silicon-containing olefin sulfone polymers represented by the following general formula (I). irradiating the upper layer thin film with electromagnetic radiation having a wavelength of 300 nm or less in a pattern, and selectively removing the irradiated portion of the thin film to form a fine upper layer pattern;
A pattern forming method comprising the step of selectively anisotropically etching the lower layer thin film using the upper layer pattern as a mask using a reactive ion etching method using oxygen gas to transfer the upper layer pattern to the lower layer thin film. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (I) However, R in the formula represents an alkyl group containing a silicon atom.
JP62312659A 1987-12-10 1987-12-10 Pattern forming method Pending JPH01154050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62312659A JPH01154050A (en) 1987-12-10 1987-12-10 Pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312659A JPH01154050A (en) 1987-12-10 1987-12-10 Pattern forming method

Publications (1)

Publication Number Publication Date
JPH01154050A true JPH01154050A (en) 1989-06-16

Family

ID=18031876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312659A Pending JPH01154050A (en) 1987-12-10 1987-12-10 Pattern forming method

Country Status (1)

Country Link
JP (1) JPH01154050A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147155A1 (en) 2009-06-19 2010-12-23 日産化学工業株式会社 Carbazole novolak resin
WO2012077640A1 (en) 2010-12-09 2012-06-14 日産化学工業株式会社 Composition for forming resist underlayer film containing hydroxyl group-containing carbazole novolac resin
JP2012126113A (en) * 2010-12-17 2012-07-05 Tohoku Univ Method for manufacturing nanoimprint mold using metal deposition
KR20140069163A (en) 2011-09-29 2014-06-09 닛산 가가쿠 고교 가부시키 가이샤 Diarylamine novolac resin
KR20140122225A (en) 2012-02-01 2014-10-17 닛산 가가쿠 고교 가부시키 가이샤 Resist underlayer film forming composition containing copolymer resin having heterocyclic ring
KR20140144207A (en) 2012-03-27 2014-12-18 닛산 가가쿠 고교 가부시키 가이샤 Resist underlayer film-forming composition which contains phenylindole-containing novolac resin
KR20150045998A (en) 2012-08-21 2015-04-29 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming resist underlayer film, which contains novolac resin having polynuclear phenol
KR20160006663A (en) 2013-05-13 2016-01-19 닛산 가가쿠 고교 가부시키 가이샤 Novolac-resin-containing composition for forming resist underlayer film using bisphenol aldehyde
KR20160140596A (en) 2014-03-31 2016-12-07 닛산 가가쿠 고교 가부시키 가이샤 Composition for resist underlayer film formation containing novolak resin into which aromatic vinyl compound was incorporated through addition
KR20170042500A (en) 2014-08-08 2017-04-19 닛산 가가쿠 고교 가부시키 가이샤 Resist underlayer film forming composition containing novolac resin reacted with aromatic methylol compound

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8674052B2 (en) 2009-06-19 2014-03-18 Nissan Chemical Industries, Ltd. Carbazole novolak resin
WO2010147155A1 (en) 2009-06-19 2010-12-23 日産化学工業株式会社 Carbazole novolak resin
US8722841B2 (en) 2009-06-19 2014-05-13 Nissan Chemical Industries, Ltd. Carbazole novolak resin
US9263285B2 (en) 2010-12-09 2016-02-16 Nissan Chemical Industries, Ltd. Composition for forming a resist underlayer film including hydroxyl group-containing carbazole novolac resin
WO2012077640A1 (en) 2010-12-09 2012-06-14 日産化学工業株式会社 Composition for forming resist underlayer film containing hydroxyl group-containing carbazole novolac resin
JP2012126113A (en) * 2010-12-17 2012-07-05 Tohoku Univ Method for manufacturing nanoimprint mold using metal deposition
US9263286B2 (en) 2011-09-29 2016-02-16 Nissan Chemical Industries, Ltd. Diarylamine novolac resin
KR20140069163A (en) 2011-09-29 2014-06-09 닛산 가가쿠 고교 가부시키 가이샤 Diarylamine novolac resin
KR20140122225A (en) 2012-02-01 2014-10-17 닛산 가가쿠 고교 가부시키 가이샤 Resist underlayer film forming composition containing copolymer resin having heterocyclic ring
US9261790B2 (en) 2012-02-01 2016-02-16 Nissan Chemical Industries, Ltd. Resist underlayer film-forming composition containing copolymer resin having heterocyclic ring
KR20140144207A (en) 2012-03-27 2014-12-18 닛산 가가쿠 고교 가부시키 가이샤 Resist underlayer film-forming composition which contains phenylindole-containing novolac resin
US8993215B2 (en) 2012-03-27 2015-03-31 Nissan Chemical Industries, Ltd. Resist underlayer film forming composition containing phenylindole-containing novolac resin
KR20150045998A (en) 2012-08-21 2015-04-29 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming resist underlayer film, which contains novolac resin having polynuclear phenol
US9469777B2 (en) 2012-08-21 2016-10-18 Nissan Chemical Industries, Ltd. Resist underlayer film forming composition that contains novolac resin having polynuclear phenol
KR20160006663A (en) 2013-05-13 2016-01-19 닛산 가가쿠 고교 가부시키 가이샤 Novolac-resin-containing composition for forming resist underlayer film using bisphenol aldehyde
US10017664B2 (en) 2013-05-13 2018-07-10 Nissan Chemical Industries, Ltd. Novolac resin-containing resist underlayer film-forming composition using bisphenol aldehyde
KR20160140596A (en) 2014-03-31 2016-12-07 닛산 가가쿠 고교 가부시키 가이샤 Composition for resist underlayer film formation containing novolak resin into which aromatic vinyl compound was incorporated through addition
KR20170042500A (en) 2014-08-08 2017-04-19 닛산 가가쿠 고교 가부시키 가이샤 Resist underlayer film forming composition containing novolac resin reacted with aromatic methylol compound
US11650505B2 (en) 2014-08-08 2023-05-16 Nissan Chemical Industries, Ltd. Resist underlayer film-forming composition containing novolac resin reacted with aromatic methylol compound

Similar Documents

Publication Publication Date Title
US7655568B2 (en) Method for manufacturing underlying pattern of semiconductor device
US6120974A (en) Pattern forming material and pattern forming method
JPH02293850A (en) Pattern forming method
JPH01154050A (en) Pattern forming method
JPS6313035A (en) Pattern forming method
US4543319A (en) Polystyrene-tetrathiafulvalene polymers as deep-ultraviolet mask material
JPS5949536A (en) Formation of micropattern
JPS63187237A (en) Formation of patterned resist image
JPH0128368B2 (en)
US7807336B2 (en) Method for manufacturing semiconductor device
WO1999052018A1 (en) Thin layer imaging process for microlithography using radiation at strongly attenuated wavelengths
US5543252A (en) Method for manufacturing exposure mask and the exposure mask
JPH03132760A (en) Resist pattern forming method
US20020187434A1 (en) Process for device fabrication in which the size of lithographically produced features is subsequently reduced
JPH07134413A (en) Device manufacturing process using resist material containing fullerene
EP0113034B1 (en) A method for producing a resist image involving the use of polystyrene-tetrathiafulvalene polymer as a deep-ultraviolet printing mask
JPS61294433A (en) High resolution photosensitive resin composition and manufacture of submicron pattern using the same
JPH0334053B2 (en)
JPH09292707A (en) Pattern forming material and pattern forming method
Bousaba et al. Plasma resistant modified I-line, deep UV, and e-beam resists
JP3645112B2 (en) Developer, rinse solution, and pattern forming method using the same
JPS61289345A (en) Resist for lithography
KR20050038125A (en) Forming method of fine contact hole
JPH09171951A (en) Formation of resist pattern
JP3563138B2 (en) Pattern forming method using photosensitive resin composition