CN100347608C - Method for forming a micro-pattern on a substrate by using capillary force - Google Patents

Method for forming a micro-pattern on a substrate by using capillary force Download PDF

Info

Publication number
CN100347608C
CN100347608C CN 01823662 CN01823662A CN100347608C CN 100347608 C CN100347608 C CN 100347608C CN 01823662 CN01823662 CN 01823662 CN 01823662 A CN01823662 A CN 01823662A CN 100347608 C CN100347608 C CN 100347608C
Authority
CN
China
Prior art keywords
mold
polymer
material
portion
polymeric material
Prior art date
Application number
CN 01823662
Other languages
Chinese (zh)
Other versions
CN1633523A (en
Inventor
李弘熙
徐甲亮
金然祥
刘弼珍
Original Assignee
米卢塔技术株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 米卢塔技术株式会社 filed Critical 米卢塔技术株式会社
Priority to PCT/KR2001/001599 priority Critical patent/WO2003035932A1/en
Priority to US09/967,081 priority patent/US20030062334A1/en
Publication of CN1633523A publication Critical patent/CN1633523A/en
Application granted granted Critical
Publication of CN100347608C publication Critical patent/CN100347608C/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00444Surface micromachining, i.e. structuring layers on the substrate
    • B81C1/0046Surface micromachining, i.e. structuring layers on the substrate using stamping, e.g. imprinting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning

Abstract

在使用带有预定图案结构的模具在基体上形成微型图案的方法中,制备一个模具,该模具带有包括凹陷部分和突起部分的预定图案结构。 In the method using a mold having a predetermined micro-pattern structure formed on the substrate in a pattern to prepare a mold, the mold having the predetermined pattern includes a recessed portion and projecting portion of the structure. 在基体上沉积聚合物材料。 Depositing a polymeric material on a substrate. 然后,控制模具的突起部分与聚合物材料接触,且利用聚合物材料的毛细作用力,使与模具的突出部分接触的聚合物材料渗入到其凹陷部分的敞空部分,从而去除与模具的突起部分接触的聚合物材料。 Then, the control protrusion portion of the mold in contact with the polymeric material, by capillary force and the polymeric material, the polymeric material is contacted with the protruding portion of the mold which penetrates into the open space portion of the recessed portion, so as to remove the mold projections polymeric material portion of the contact. 之后,拆除该模具使基体的顶表面的部分暴露出来,从而在基体上形成聚合物微型图案。 Thereafter, the removal of the mold so that part of the top surface of the substrate exposed, so that the micro pattern is formed on a polymer substrate.

Description

利用毛细作用力在基体上形成微型图案的方法 The method of using the capillary force microscopic pattern formed on a base body

发明领域本发明涉及一种在基体如硅片、陶瓷、金属或聚合物层上形成微型图案的方法;尤其涉及一种在制造集成电路、电子设备、光学仪器、表面消声器等时利用毛细作用力形成尺寸为1μm至数十纳米的超微型图案的方法。 Field of the Invention The present invention relates to a method of forming a microscopic pattern on a substrate such as silicon, ceramic, metal or polymer layer; in particular, relates to a capillary force in the manufacture of integrated circuits, electronic devices, optical instruments, the surface of muffler a size of a pattern formed pico method 1μm to several tens of nanometers.

发明背景在基体上形成微型图案以制造如半导体、电子、光电子和磁显示设备,是本领域众所周知的。 BACKGROUND OF THE INVENTION microscopic pattern is formed on the substrate to produce a display, such as a semiconductor, electronic, optoelectronic and magnetic device, is well known in the art. 传统的微型图案形成方法之一就是利用光的光刻技术。 One conventional micropattern forming method is using optical lithography.

在光刻技术中,将可与光反应的聚合材料如光致抗蚀剂涂覆在基体上,在该基体上层压或沉积有待形成图案的材料。 In lithography, the polymeric material can be reacted with light, such as a photoresist is coated on the substrate, on the substrate to be laminated or deposited material forms a pattern. 然后,该聚合物材料暴露给通过已设计好的分划板而照射在其上面的光线,以得到所需的图案。 Then, the polymer material is exposed to light is irradiated thereon by the reticle has been designed to obtain a desired pattern. 其后,清除掉已曝光的聚合物材料并进行显影步骤,使得带有目标图案的图案形成掩膜(或蚀刻掩膜)形成在待形成图案的材料上。 Thereafter, clear away the exposed polymeric material and the developing step, so that the target pattern is formed with a pattern mask (or an etching mask) is formed on the material to be patterned. 接下来,通过使用图案形成掩膜,利用蚀刻步骤使沉积或层压在基体上的材料形成图案,从而具有所需的图案。 Next, a pattern is formed by using a mask, by etching or depositing step of laminating a pattern forming material on a substrate to have a desired pattern.

在传统的光刻技术中,线宽或图案宽度是由曝光步骤中照射在聚合物材料上的光的波长决定的。 In conventional lithographic techniques, a pattern line width or width is determined by the wavelength of the light exposure step of irradiating the polymer material. 因此,鉴于相关领域的现有技术,很难通过光刻技术在基体上制作超微型如小于100nm的图案。 Thus, in view of the prior art in the relevant art, it is difficult to produce a pattern such as less than 100nm ultra-miniature on a substrate by a photolithography technique.

作为另一种利用光的微型图案形成方法,通过多步骤过程在大面积基体上形成三维形状图案。 As another micropattern forming method using light, a three-dimensional shape pattern is formed on a large area substrate by a multi-step process. 然而,该多步骤过程由于需要多个步骤,包括图案形成、蚀刻和清洗步骤,因此耗时过多且较为复杂。 However, since the multi-step process requires multiple steps including patterning, etching and cleaning steps, and therefore time-consuming and too complicated. 因此,其制造费用较高,且其生产率较低。 Thus, higher manufacturing costs and lower productivity.

此外,传统的使用光的微型图案形成方法存在一个缺点,即当形成图案的基体表面不平整时,该生产过程可能由于光的反射、折射和强度变化而变得异常复杂。 In addition, conventional micro-pattern forming method using the light there is a disadvantage that the pattern formed when the substrate surface is not flat, the manufacturing process may be due to reflection, refraction and the intensity variation becomes complicated.

为了改善上述问题,已经开发出很多形成低于100nm的超微型图案的方法。 In order to improve the above problems, many methods have been developed ultra-micro patterns formed below the 100nm. 作为新的方法,微接触印刷法(micro-contactprinting method)和压印法(imprinting method)得到了广泛的应用。 As a new method, a microcontact printing method (micro-contactprinting method), and an imprinting method (imprinting method) has been widely used.

在微接触印刷法中,将带有目标图案的聚合物模具压印到基体上以获得所需的图案。 In the microcontact printing method, a polymer mold having a pattern embossed on the target substrate to obtain a desired pattern. 聚合物模具如PDMS(聚二甲基硅氧烷)印模,使用合适浓度的链烷硫醇(alkanethiol)溶液进行上墨,并与基体表面进行接触,从而将油墨分子转移到与印模接触的基体的区域。 The polymeric mold PDMS (polydimethylsiloxane) stamp, using a suitable alkanethiol concentration (alkanethiol) was performed on ink, and in contact with the substrate surface, so that the ink is transferred to the molecules in contact with the stamp region of the base body. 然后,进行蚀刻过程或沉积过程以得到所需的图案。 Then, an etching process or a deposition process to obtain a desired pattern. 该传统的微接触印刷法有一个优点就是不需要特殊的外力。 The conventional microcontact printing method has the advantage that no special external force. 然而,因为在微接触印刷法的完成阶段中需要进行化学蚀刻过程,因此得到的图案比较粗糙。 However, since the micro-contact printing process completion stage of the need for chemical etching process, thus resulting pattern rough. 最终,得不到所需的微型图案。 Finally, the micropattern are not required.

同时,压印方法是对在聚合物层上带有目标图案的硬模具施加物理压力,从而如使用反应离子蚀刻技术将微型图案转移到聚合物层上,以在聚合物层上形成微型图案。 Meanwhile, the imprint method is to apply a physical pressure on the mold with a hard target pattern on the polymer layer, such as reactive ion etching technique using the micro-pattern is transferred to the polymer layer, to form a microscopic pattern on the polymer layer. 然而,在传统的压印方法中,因为使用高压,聚合物层或基体易于变形,甚至可能被损坏。 However, in the conventional imprinting method, since the high pressure, or a matrix polymer layer is easily deformed and may even be damaged.

发明概述因此,本发明的一个目的就是提供一种能够通过使用毛细作用力很容易地形成所需微型图案的微型图案形成方法。 Summary of the Invention It is therefore an object of the present invention is to provide a way to easily form a desired pattern by using a micro capillary force micropattern forming method.

本发明的一个优选实施方案提供了一种使用带有预定图案结构的模具在基体上形成微型图案的方法,该方法包括以下步骤:制备一个模具,该模具带有包括凹陷部分和突起部分的预定图案结构;在基体上沉积聚合物材料;使模具的突起部分与聚合物材料接触;利用聚合物材料的毛细作用力,使与模具的突出部分接触的聚合物材料渗入到其凹陷部分的敞空部分,从而去除与模具的突起部分接触的聚合物材料;和通过拆除该模具使基体的顶表面的部分暴露出来,从而在基体上形成聚合物微型图案。 A preferred embodiment of the present invention provides a method of using a mold having a predetermined micro-pattern structure is formed on a substrate in a pattern, the method comprising the steps of: preparing a mold which includes a mold having a recess portion and a protruding portion of predetermined pattern structure; depositing a polymeric material on the substrate; contacting the protruding portion of the mold with the polymeric material; a polymer material using a capillary force, the polymeric material is contacted with the protruding portion of the mold penetrate to the open space of the recessed portion thereof portion, thereby removing the polymeric material in contact with the protrusion portion of the mold; and by removing the portion of the top surface of the die so that the substrate exposed, so that the micro pattern is formed on a polymer substrate.

本发明的另一优选实施方案提供了一种使用带有预定图案结构的模具在基体上形成微型图案的方法,该方法包括以下步骤:制备一个模具,该模具带有包括凹陷部分和突起部分的预定图案结构;在基体上沉积薄膜层;在薄膜层的整个表面上形成聚合物材料;使模具的突起部分与聚合物材料接触;通过使用聚合物材料的毛细作用力,使与模具的突起部分接触的聚合物材料进入到其凹陷部分的敞空部分中,以去除与模具的突起部分接触的聚合物材料,从而形成具有预定形状的聚合物图案;通过使用作为掩膜的聚合物图案来蚀刻薄膜层,从而选择性去除薄膜层的一部分;和去除聚合物图案,从而形成所需的薄膜微型图案。 Another preferred embodiment of the present invention provides a method of using a mold having a predetermined micro-pattern structure is formed on a substrate in a pattern, the method comprising the steps of: preparing a mold which includes a mold having a recess portion and a protruding portion predetermined pattern structure; depositing a layer on a base film; a polymer material is formed on the entire surface of the film layer; the protruding portion contacting the mold with the polymeric material; a polymer material by use of capillary force of the protruding portion of the mold contacting the polymeric material into the open space portion of the recessed portion thereof, to remove the polymeric material in contact with the protrusion portion of the mold to form a pattern having a predetermined shape is a polymer; the polymer by using the pattern as a mask to etch a thin film layer, thereby selectively removing a portion of the thin film layer; patterning and removal of the polymer, thereby forming a desired pattern of thin film microstructure.

附图说明 BRIEF DESCRIPTION

通过以下结合附图的描述,本发明的上述和其他目的和特征将变得明显,其中:图1A到1I显示了按照本发明第一优选实施方案通过使用毛细作用力在基体上形成薄膜微型图案的方法的顺序步骤;图2A到2F描述了按照本发明第二优选实施方案通过使用毛细作用力在基体上形成薄膜微型图案的方法的顺序步骤;图3提供了一个示意图,显示将流化材料渗透到制备在密封容器中的基体上的聚合物材料中,从而使聚合物材料具有流动性,该密封容器包括位于其中且充满流化材料的槽。 Following description in conjunction with the accompanying drawings, the above and other objects and features of the invention will become apparent, wherein: Figures 1A to 1I shows a microscopic pattern forming a thin film on the substrate by using the capillary force in accordance with a first preferred embodiment of the present invention order of the steps of the method; Figs. 2A to 2F described in the order of the steps by using a micro capillary force is formed a thin film pattern on a substrate according to a second preferred embodiment of the present invention; FIG. 3 provides a schematic diagram showing the fluidized material penetrate into the polymeric matrix material was prepared in a sealed container, so that the polymer material has fluidity, the sealed container includes a groove therein and filled with the fluidized material.

具体实施方式 detailed description

本发明的技术要点在于使用毛细作用力在基体上形成微型图案。 Techniques of the present invention is a micro pattern is formed on a substrate using a capillary force. 首先,制备带有所需图案的聚合物模具。 First, a polymer mold having a desired pattern. 然后,将该聚合物模具与涂覆在基体上的聚合物材料相接触,以使得通过使用毛细作用力使聚合物材料进入到聚合物模具的敞空部分即凹陷部分,从而在基体上形成目标微型图案。 Then, the polymer coating the polymer material in the mold and the substrate in contact, by using a capillary force such that the polymer material into the open space portion of the recessed portion, i.e., a polymer mold, thereby forming a target on the substrate micropattern.

以下介绍按照本发明的、使用毛细作用力的各种微型图案形成方法。 It described below, using a variety of capillary force micropattern forming method according to the present invention.

首先,当基体上的聚合物材料如聚苯乙烯具有流动性时,将聚合物模具与在基体上制备的聚合物材料相接触,从而诱导出毛细作用力,并在基体上形成目标图案。 First, when a polymeric material such as polystyrene matrix having flowability, the polymeric mold into contact with the polymeric material on a substrate is prepared so as to induce a capillary force, and a target pattern is formed on the substrate.

第二步,当聚合物材料变成缺乏流动性的材料时,使聚合物模具与该聚合物材料接触,然后在预定温度范围内对聚合物材料进行热处理如加热,从而诱导出毛细作用力并在其上得到所需的微型图案。 The second step, when the polymer material becomes illiquid material, the polymer contacting the mold with the polymer material and then the polymeric material is a heat treatment such as heating at a temperature within a predetermined range so as to induce a capillary force and to give the desired microscopic pattern thereon.

第三步,当聚合物材料变成缺乏流动性的材料时,在基体上制备的聚合物材料中渗透或吸收一种溶剂如PGMEA(丙二醇单甲醚酸酯),从而使该聚合物材料具有流动性。 The third step, when the polymeric material becomes illiquid materials, polymeric materials prepared in the absorbent matrix permeability or a solvent such as PGMEA (propylene glycol monomethyl ether acetate), so that the polymer material has fluidity. 之后,使聚合物材料与聚合物模具相接触,从而引发毛细作用力并得到目标的微型图案。 Thereafter, the mold the polymer material into contact with the polymer, causing the micro pattern and the capillary force resulting target. 也可以使用无机模具如SiO2模具来代替聚合物模具(PDMS聚合物模具)。 The mold may also be an inorganic SiO2 die mold instead of the polymer (PDMS polymer mold).

图1A到1I显示了按照本发明第一优选实施方案通过使用毛细作用力在基体上形成薄膜微型图案的方法的顺序步骤。 1A to 1I shows the sequence of steps by forming a thin film using a capillary force of the micro pattern on a substrate according to first preferred embodiment of the present invention.

参照图1A,在含有三氯乙烯溶液102的槽100里以预定的时间如5分钟超声清洗硅基体104。 1A, a groove 102 of a solution containing trichlorethylene at 100 in a predetermined time such as 5 minutes ultrasonic cleaning in a silicon substrate 104. 然后,如图1B所示,将该硅基体102放入到含有甲醇溶液的槽106中,再次以预定的时间如5分钟进行超声清洗。 Then, as shown in FIG. 1B, the silicon substrate 102 into the groove 106 in a methanol solution, again at a predetermined time such as 5 minutes ultrasonic washing. 之后,甲醇清洗过的硅基体104最终使用蒸馏水进行清洗。 Thereafter, the methanol was cleaned silicon substrate 104 finally washed with distilled water. 虽然该优选实施方案中示例性使用硅基体作为形成图案的基体,但也可以使用由其他材料如陶瓷、金属和聚合物制成的基体。 Although the preferred embodiments exemplary embodiment using silicon as the substrate to form a pattern, but may be used by other base material such as ceramics, metals and polymers.

接下来,如图1C所示,利用本领域公知的旋涂技术将溶于甲苯中的聚合物材料108'如聚苯乙烯涂覆在硅基体104上,其中涂覆在基体104上的聚合物材料108'的厚度控制在如大约100nm。 Next, 1C, using art-known spin coating technique was dissolved in 108 ', such as polystyrene-coated on a silicon substrate 104, wherein the polymeric material coating the polymer in toluene on a base 104 the thickness of material 108 'is controlled such as about 100nm.

如图1D中所描述,将带有所需微型图案的聚二甲基硅氧烷(PDMS)模具110与聚合物材料108'接触。 As described in FIG. 1D, the desired microscopic pattern with polydimethylsiloxane (PDMS) polymer material 108 and the die 110 'contacts. 图1D中的标记110'代表PDMS聚合物模具110的敞空部分即凹陷部分。 FIG. 1D numeral 110 'represents a PDMS polymer mold open hollow portion 110, i.e. the recessed portion.

如果在硅基体104上形成的聚合物材料108'如聚苯乙烯具有流动性,则聚合物模具110与聚合物材料108'进行保形接触,同时保持了聚合物材料的流动性。 If the polymeric material is formed on the silicon 104 108 'having fluidity, such as polystyrene, the polymer mold 110 with the polymer material 108' for conformal contact, while maintaining the flowability of the polymer material. 然后,产生了毛细现象,使得聚合物材料108'渗透到聚合物模具110的敞空部分110'。 Then, the capillary phenomenon is generated, such that the polymer material 108 'penetrates into the polymer mold 110 open space portion 110'. 结果使得,聚合物模具110的突起部分与硅基体104进行了直接接触。 Such a result, the projection portion of the polymer and the silicon mold 110, 104 were in direct contact. 需要指出的是,聚合物模具110上的敞空部分110'需要足够大以容纳在硅基体104上形成的所有聚合物材料108'。 It should be noted that the open space on the polymeric mold portion 110 110 'sufficiently large to accommodate all of the polymer material 108 is formed on a silicon substrate 104'.

然而,当聚合物材料108'如所谓酚醛清漆树脂是不具有流动性的材料时,需要额外的步骤使聚合物具有流动性,从而诱导出毛细作用力。 However, when the polymer material 108 ', such as the so-called novolac resin is a material having no fluidity, it requires an extra step polymer having fluidity, thereby inducing a capillary force. 本优选实施方案提出了两种使非流动性的聚合物材料产生流动性的方法。 The present embodiment presents two preferred embodiments of the non-flowable polymeric material flowability generating method.

第一种方法,如图1E中所示,通过在炉中约110℃下对与聚合物模具110接触的硅基体104热处理约3小时,使非流动性聚合物材料具有流动性,并进入到聚合物模具110的敞空部分110'。 The first method, shown in FIG. 1E, through an oven at about 110 deg.] C heat treatment on the silicon substrate 104 in contact with the polymer mold 110 for about 3 hours, so that non-flowable polymeric material having fluidity, and into polymeric mold part 110 open space 110 '.

如本领域所公知,大部分聚合物材料具有其玻璃化转变温度。 As is known in the art, most of the polymer material having a glass transition temperature. 当加热到玻璃化转变温度以上时,聚合物材料是流化的。 When heated above the glass transition temperature of the polymeric material is fluidized. 相应地,如果模具具有能够牵引聚合物材料的一个形状且与聚合物材料进行保形接触,则该聚合物材料会移到聚合物模具的敞空部分中。 Accordingly, if a mold having a shape capable of pulling a polymer material and for conformal contact with the polymeric material, the polymeric material is moved to open the hollow portion of the polymer in the mold.

图3提供了一个示意图,其显示以下情况,即流化材料渗透到在密封容器中制备的基体上的聚合物材料中,从而使聚合物材料获得流动性,其中在该密封容器中带有一个充满流化材料的槽。 Figure 3 provides a schematic diagram showing the case where the fluidized polymer material to penetrate the base body in a sealed vessel made of material, such that the polymeric material obtained flowability, which has a sealed container in which fluidized material filled grooves.

在图3中,将流化材料如PGMEA等溶剂放入到密封容器300中的槽302内,以使流化材料渗透到在基体104上形成的非流化聚合物材料108'中。 In Figure 3, the fluidized material into a solvent such as PGMEA sealed container 300 into the groove 302, so that the flow of material to the non-permeate stream of the polymer material is formed on a base 104 of 108 'in. 当从槽302中蒸发的流化材料被聚合物材料108'吸收时,聚合物材料108'具有了流动性。 When the flow of material from the evaporation tank 302 is a polymer material 108 'when the absorbent polymer material 108' having flowability. 结果使得,聚合物材料108'是流化的。 Such a result, the polymer material 108 'is fluidized.

虽然在图3中并没有显示,但密封容器300还进一步包括一个用于加热该槽302的加热装置,用以加快槽302中的流化材料蒸发,并促进流化材料被聚合物材料108'吸收。 Although not shown in FIG. 3, the sealed container 300 further comprises a heating means for heating the tank 302 to tank 302 to accelerate the flow of evaporated material, and facilitate the flow of the material is a polymer material 108 ' absorb. 相应地,使聚合物材料108'具有流动性所需要的时间也大大地减少,其反过来减少了在基体上形成图案的整体处理时间。 Accordingly, the polymer material 108 'having flowability required time is also greatly reduced, which in turn reduces the overall processing time for forming a pattern on the substrate.

如上所述,通过使用上述各种方法诱导出的毛细作用力,使聚合物材料108'可以进入聚合物模具110的敞空部分110'。 As described above, by using the above various methods induce capillary force, the polymeric material 108 'may enter the open space 110 polymeric mold portion 110'.

如图1F所示,当聚合物材料108'利用毛细作用力全部进入到聚合物模具110的敞空部分110'中时,移去聚合物模具110,在硅基体104上可得到所需的聚合物图案108即微型图案。 FIG. 1F, when the polymer material 108 'using capillary force all air into the polymeric mold 110 open portion 110' is, the mold 110 is removed the polymer, on a silicon substrate 104 to obtain desired polymerization i.e., the pattern 108 was micropattern.

通过使用上述方法得到的聚合物图案,可以在基体上制备如金属布线的微型图案。 By using a polymer pattern obtained as described above, a micro pattern such as a metal wiring may be prepared on a substrate.

例如,在图1G中所示,将其上形成有聚合物图案108的硅基体104放入含有化学镀溶液112的反应器120中。 For example, as shown in FIG. 1G, on which the pattern 108 is formed in the silicon polymer 104 into a reactor containing an electroless plating solution 112 120 结果如图1H所示,在硅基体104表面的某些不具有聚合物图案的部分上面,产生例如由Al或Cu组成且具有所需厚度的薄膜微型图案114'。 Results As shown, in some parts of the above polymer having no pattern surface of the silicon body 104, generated for example of Al or Cu and a film having a desired thickness micropattern 114 1H '. .

其后,使用溶剂去除硅基体104上的聚合物图案108。 Thereafter, the solvent was removed using a polymer pattern on the silicon substrate 104,108. 然后通过使用吹入氮气来干燥硅基体104,在由如导体、绝缘体、半导体或有机材料制成的基体上形成目标薄膜微型图案。 The silicon substrate 104 is then dried by using a blowing nitrogen to form a thin film microstructure target pattern on a substrate made of, such as conductors, insulators, semiconductors, or an organic material.

相应地,不像传统的微接触印刷法和压印方法一样,按照本发明的、通过使用毛细作用力的简单方法,可以在基体上容易并精确地形成所需的微型图案。 Accordingly, unlike the conventional microcontact printing method, and the same imprint method, by a simple method using capillary force, according to the invention may be readily on a substrate, and the desired accurate micropattern formation.

图2A到2F描述了按照本发明第二个优选实施方案、利用毛细作用力在基体上形成薄膜微型图案的方法的顺序步骤。 2A to 2F described in the order of steps according to a second preferred embodiment of the present invention, a method using a micro capillary force forming a thin film pattern on the substrate.

在第一个实施方案中,通过使用带有所需图案和毛细作用力的聚合物模具在硅基体上形成聚合物图案,来获得薄膜微型图案。 In a first embodiment, the polymer is formed by a pattern on a silicon substrate using a mold having a desired pattern and the polymer capillary forces, to obtain a film micropattern. 在基体表面某些没有形成聚合物图案的部分处生长出薄膜层,然后从基体上去除聚合物图案。 Grown thin film layer portion of the substrate surface is not certain pattern to form a polymer, the polymer pattern is then removed from the substrate.

与此形成对比,在本发明第二个实施方案中,通过使用带有所需图案的聚合物模具和毛细作用力在硅基体上形成聚合物图案,使所需微型图案形成在硅基体上。 In contrast, in the second embodiment of the present invention, a polymer is formed by a pattern on a silicon substrate using a mold and a polymer having a desired pattern capillary forces, so that a desired micropattern is formed on a silicon substrate. 然后,通过使用所需微型图案作为蚀刻掩膜来进行蚀刻过程。 Then, etching is performed by using as an etching mask during a desired micropattern.

在按照本发明第二个实施方案的微型图案形成方法中,硅基体清洗方法与图1A到1B描述的第一个实施方案中使用的那些清洗方法基本上相同。 In the method of forming micropatterns according to a second embodiment of the present invention, a method of cleaning a silicon substrate 1A to 1B those cleaning method of the first embodiment described using substantially the same.

参照图2A,通过沉积方法将具有预定厚度的薄膜层204'形成在硅基体202上。 2A, a thin film by a deposition method having a predetermined thickness of the layer 204 'is formed on the silicon substrate 202. 然后,如图2B所示,通过使用如旋涂技术,将具有预定厚度的聚合物材料206'涂覆在薄膜层204'的整个表面上。 Then, as shown in FIG. 2B, by using a technique such as spin coating, a polymer material having a predetermined thickness 206 'is coated on the thin film layer 204' over the entire surface. 需要指出的是,虽然在第二个实施方案中以硅基体作为最佳实施例,但是本发明也可以应用到由陶瓷、金属、聚合物及其类似物制成的基体。 It is noted that, although in the second embodiment to the silicon substrate as a preferred embodiment, the present invention may also be applied to a substrate made of ceramic, metal, polymer and the like.

然后,如果聚合物材料206'具有流动性,使聚合物模具208与聚合物材料206'进行保形接触;如果聚合物材料206'不具有流动性,对聚合物材料采用如第一个实施方案中所述的另一方法如热处理步骤或溶剂渗透步骤,以使聚合物材料在与聚合物模具208进行保形接触前具有流动性。 Then, if the polymer material 206 'having flowability, the polymer mold 208 with the polymer material 206' for conformal contact; if the polymer material 206 'does not have flowability, the polymeric material is employed as in the first embodiment another method as described in the heat treatment step or infiltration step solvent, so that the polymer material 208 having fluidity prior conformal contact with the polymer mold. 然后,使聚合物材料206'进入到聚合物模具208的敞空部分208'。 Then, the polymer material 206 'into the open space portion 208 polymer mold 208'.

在这里,所有聚合物材料206'均可以进入到聚合物模具208的敞空部分208',或者通过调整聚合物材料206'的厚度使部分聚合物材料206'可以留在薄膜层204'上。 Here, all of the polymer material 206 'can be a polymer into the mold 208 open space portion 208', or by adjusting the polymer material 206 'so that the thickness of the portion of the polymer material 206' may be left on the thin film layer 204 '.

一些聚合物材料206'保留在薄膜层204'上而没有进入到聚合物模具208的敞空部分208'中,以控制以下所述蚀刻过程中的蚀刻速度。 Some polymeric material 206 'remains in the thin film layer 204' without entering the open space 208 to the polymer mold portion 208 'in order to control the etching rate of the etching process.

当所有的或部分的聚合物材料206'进入到聚合物模具208的敞空部分208'后,使聚合物模具208从基体202上面的薄膜层204'拆除,从而在薄膜层204'上形成带有所需图案结构的聚合物图案206。 When all or part of the polymeric material 206 'into the open space portion 208 polymer mold 208', the polymer mold 208 above the thin film layer 202 from the substrate 204 'removed, so that the thin film layer 204' is formed on the belt desired polymer pattern has a pattern structure 206. 接下来,使用聚合物图案206作为蚀刻掩膜来进行蚀刻过程。 Next, a polymer pattern 206 as an etching mask during etching. 相应地,如图2E所示,有选择性地去除薄膜层204'的某些部分,并因此有选择性地使硅基体202的某些部分暴露。 Accordingly, as shown in FIG 2E selectively removing certain portions of the thin film layer 204 ', and thus selectively some portions of the silicon body 202 is exposed.

之后,通过使用溶剂去除形成在薄膜层204'上的聚合物图案206,并且使用吹入的氮气来干燥带有薄膜层204'的硅基体202,从而最终在硅基体202上获得导体、绝缘体、半导体或有机体的目标微型图案204。 Thereafter, the solvent was removed by using a thin film layer 204 is formed in the '206 pattern on the polymer, and dried using nitrogen gas was blown into the thin film layer 204 with a' body 202 of the silicon, thereby finally obtaining a conductor, an insulator 202 on the silicon substrate, semiconductor micro-organism or target pattern 204.

相应地,按照本发明第二个实施方案的微型图案形成方法可以得到与第一个实施方案相同的效果。 Accordingly, a method of forming micropatterns according to a second embodiment of the present invention can be obtained with the first embodiment the same effect.

如上所述,不像传统微接触印刷法和压印方法,通过使用按照本发明的聚合物模具(或无机模具)和毛细作用力的简单方法,可以容易并精确地在基体上形成聚合物微型图案。 As described above, unlike the conventional microcontact printing method and an imprint method, the mold according to the simple method of the present invention is a polymer (or inorganic dies) and capillary forces can be easily and precisely formed on a substrate polymer microparticles by using pattern. 进一步,通过使用在基体上制备的聚合物微型图案来作为薄膜层生长抑制体或蚀刻掩膜,可以成功地在由如硅、陶瓷、金属、聚合物等等制成的基体上形成目标微型图案。 Further, by using the polymer prepared in the microscopic pattern on the base film layer as an etching mask or growth inhibition, the target successfully micropattern formed by the upper, such as silicon, ceramic, metal, polymers and the like made of a matrix .

本发明已经通过优选实施方案进行了说明和描述,可以理解在不违背以下权利要求中所限定的本发明精神和范围的情况下,本领域普通技术人员可以做出多种变化和修改。 The present invention has been explained by preferred embodiments and description, be understood that the spirit and scope of the present invention without departing from the following claims as defined by those of ordinary skill in the art can make various changes and modifications.

Claims (23)

1.一种使用带有预定图案结构的模具在基体上形成微型图案的方法,该方法包括以下步骤:a)制备一个模具,该模具带有包括凹陷部分和突起部分的预定图案结构;b)在基体上沉积聚合物材料;c)使模具的突起部分与聚合物材料接触;d)利用聚合物材料的毛细作用力,使与模具的突出部分接触的聚合物材料渗入到其凹陷部分的敞空部分,从而去除与模具的突起部分接触的聚合物材料;和e)通过拆除该模具使基体的顶表面的部分暴露出来,从而在基体上形成聚合物微型图案。 1. A method for forming a micropattern on a substrate using a mold structure having a predetermined pattern, the method comprising the steps of: a) preparing a mold which includes a recessed portion having a predetermined pattern and structure of the projecting portion; b) depositing a polymeric material on a substrate; c) the projection of the mold portion in contact with the polymeric material; D) using the capillary force of the polymeric material, the polymeric material is contacted with the protruding portion of the mold which penetrates into the recessed portion of the open the hollow portion, so as to remove the polymeric material in contact with the protrusion portion of the mold; and e) by removing the portion of the top surface of the die so that base body is exposed, thereby forming a microscopic pattern on a polymer substrate.
2.根据权利要求1的方法,其进一步包括步骤:c1)在所述步骤c)之后但在所述步骤d)之前,在预定温度范围内对聚合物材料进行热处理。 2. The method according to claim 1, further comprising the step of: prior c1) in said step c) but after the step d), heat treated polymeric material within a predetermined temperature range.
3.根据权利要求1的方法,其进一步包括步骤:b1)在所述步骤b)之后但在所述步骤c)之前,将流化材料渗透到聚合物材料中,以使聚合物材料具有流动性。 3. The method of claim 1, further comprising the step of: b1) after step b) but in step c) before the polymeric material to penetrate into the fluidized material to the polymer material having a flow sex.
4.根据权利要求1的方法,其中模具是聚合物模具。 4. A method according to claim 1, wherein the mold is a polymeric mold.
5.根据权利要求1的方法,其中模具是无机模具。 The method according to claim 1, wherein the mold die is inorganic.
6.根据权利要求1的方法,其中通过旋涂技术将聚合物材料形成在基体上。 6. The method according to claim 1, by a spin coating technique wherein the polymeric material is formed on the substrate.
7.根据权利要求1的方法,其进一步包括以下步骤:f)在基体的顶部的暴露部分上沉积薄膜层;和g)去除聚合物微型图案,从而形成所需的薄膜微型图案。 7. The method of claim 1, further comprising the step of: f) depositing a thin film layer on the exposed portion of the top of the substrate; and g) removing the polymer micropattern, thereby forming a desired pattern of thin film microstructure.
8.根据权利要求3的方法,其中所述步骤b1)包括加热流化材料以促使其蒸发的步骤,从而增强流化材料对聚合物材料的渗透。 8. The method according to claim 3, wherein said step b1) comprises heating the fluidized material to cause evaporation step, thereby enhancing the permeation of the fluidized polymer material.
9.根据权利要求7的方法,其中通过使用溶剂来去除聚合物微型图案。 9. The method according to claim 7, wherein the polymer is removed by using a solvent micropattern.
10.根据权利要求7的方法,其中基体选自导体、绝缘体、半导体或有机材料。 10. The method according to claim 7, wherein the matrix is ​​selected from a conductor, an insulator, a semiconductor or an organic material.
11.根据权利要求8的方法,其中聚合物材料是酚醛清漆树脂,流化材料是丙二醇单甲醚酸酯(PGMEA)。 11. The method according to claim 8, wherein the polymeric material is a novolac resin, a fluidized material is a propylene glycol monomethyl ether acetate (PGMEA).
12.一种使用带有预定图案结构的模具在基体上形成微型图案的方法,该方法包括以下步骤:a)制备一个模具,该模具带有包括凹陷部分和突起部分的预定图案结构;b)在基体上沉积薄膜层;c)在薄膜层的整个表面上形成聚合物材料;d)使模具的突起部分与聚合物材料接触;e)通过使用聚合物材料的毛细作用力,使与模具的突起部分接触的聚合物材料进入到其凹陷部分的敞空部分中,以去除与模具的突起部分接触的聚合物材料,从而形成具有预定形状的聚合物图案;f)通过使用作为掩膜的聚合物图案来蚀刻薄膜层,从而选择性去除薄膜层的一部分;和g)去除聚合物图案,从而形成所需的薄膜微型图案。 12. A method of forming a micropattern on a substrate using a mold structure having a predetermined pattern, the method comprising the steps of: a) preparing a mold which includes a recessed portion having a predetermined pattern and structure of the projecting portion; b) thin film deposited on the substrate layer; c) forming a polymer material layer on the entire surface of the film; D) projections of the mold portion in contact with the polymeric material; E) by using the capillary force of the polymer material, so that the mold polymeric material into contact with the protrusion portion of the open space portion of the recessed portion thereof, to remove the polymeric material in contact with the protrusion portion of the mold, thereby forming a polymer having a predetermined shape pattern; F) by using as a polymerization mask patterning the thin film layer was etched to selectively remove a portion of the thin film layer; and g) removing the patterned polymer, thereby forming a desired pattern of thin film microstructure.
13.根据权利要求12的方法,其进一步包括步骤:h)在所述步骤d)之后但在所述步骤e)之前,在预定的温度范围内对聚合物材料进行热处理。 13. The method of claim 12, further comprising the step: h) but said step e) before heat-treating the polymer material after step d) within a predetermined temperature range.
14.根据权利要求12的方法,其进一步包括步骤:h)在所述步骤c)之后但在所述步骤d)之前,使流化材料渗透到聚合物材料中,以便在模具与聚合物材料接触之前使聚合物材料具有流动性。 14. The method of claim 12, further comprising the step: h) in said step c) but before step d), the flow of the material penetrates into the polymeric material, with the polymeric material to the mold polymeric material having fluidity prior to contacting.
15.根据权利要求12的方法,其中模具是聚合物模具。 15. The method of claim 12, wherein the mold is a polymeric mold.
16.根据权利要求12的方法,其中模具是无机模具。 16. The method of claim 12, wherein the mold die is inorganic.
17.根据权利要求12的方法,其中通过使用旋涂技术使聚合物材料形成在基体上。 17. The method of claim 12, wherein by using a spin coating technique the polymer material is formed on the substrate.
18.根据权利要求12的方法,其中通过使用溶剂去除聚合物图案。 18. The method of claim 12, wherein the solvent is removed by using a polymer pattern.
19.根据权利要求12的方法,其中基体选自导体、绝缘体、半导体或有机材料。 19. The method of claim 12, wherein the matrix is ​​selected from a conductor, an insulator, a semiconductor or an organic material.
20.根据权利要求13的方法,其中通过热处理使部分聚合物材料进入到模具的敞空部分中,从而使聚合物的保留部分留在薄膜层的顶部上。 20. The method according to claim 13, wherein the polymer material by heat treatment into the open portion of the hollow portion of the mold, so that the remaining portion is left on top of the polymer film layer.
21.根据权利要求14的方法,其中所述步骤h)包括加热流化材料以促使其蒸发的步骤,从而增强流化材料对聚合物材料的渗透。 21. The method according to claim 14, wherein said step h) comprises heating the fluidized material to cause evaporation step, thereby enhancing the permeation of the fluidized polymer material.
22.根据权利要求17的方法,其中聚合物材料是酚醛清漆树脂,流化材料是丙二醇单甲醚酸酯(PGMEA)。 22. The method according to claim 17, wherein the polymeric material is a novolac resin, a fluidized material is a propylene glycol monomethyl ether acetate (PGMEA).
23.根据权利要求20的方法,其中留在薄膜层顶部上的聚合物材料的保留部分通过蚀刻过程进行去除。 23. The method of claim 20, wherein the remaining portions remain on top of the thin film layer of polymeric material is removed by etching process.
CN 01823662 2001-09-25 2001-09-25 Method for forming a micro-pattern on a substrate by using capillary force CN100347608C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2001/001599 WO2003035932A1 (en) 2001-09-25 2001-09-25 Method for forming a micro-pattern on a substrate by using capillary force
US09/967,081 US20030062334A1 (en) 2001-09-25 2001-09-28 Method for forming a micro-pattern on a substrate by using capillary force

Publications (2)

Publication Number Publication Date
CN1633523A CN1633523A (en) 2005-06-29
CN100347608C true CN100347608C (en) 2007-11-07

Family

ID=43413360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 01823662 CN100347608C (en) 2001-09-25 2001-09-25 Method for forming a micro-pattern on a substrate by using capillary force

Country Status (4)

Country Link
US (1) US20030062334A1 (en)
CN (1) CN100347608C (en)
TW (1) TW509976B (en)
WO (1) WO2003035932A1 (en)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432634B2 (en) 2000-10-27 2008-10-07 Board Of Regents, University Of Texas System Remote center compliant flexure device
JP4511786B2 (en) * 2000-07-16 2010-07-28 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Method for aligning a substrate and a template remote from the substrate
JP4740518B2 (en) 2000-07-17 2011-08-03 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Automated liquid dispensing method and system for transfer lithography process
CN100365507C (en) * 2000-10-12 2008-01-30 德克萨斯州大学系统董事会 Template for room temperature, low pressure micro-and nano-imprint lithography
US6964793B2 (en) * 2002-05-16 2005-11-15 Board Of Regents, The University Of Texas System Method for fabricating nanoscale patterns in light curable compositions using an electric field
US7179079B2 (en) * 2002-07-08 2007-02-20 Molecular Imprints, Inc. Conforming template for patterning liquids disposed on substrates
US7077992B2 (en) 2002-07-11 2006-07-18 Molecular Imprints, Inc. Step and repeat imprint lithography processes
MY144124A (en) * 2002-07-11 2011-08-15 Molecular Imprints Inc Step and repeat imprint lithography systems
US6743740B2 (en) * 2002-10-18 2004-06-01 Intel Corporation Using sonic energy in connection with laser-assisted direct imprinting
US7019819B2 (en) * 2002-11-13 2006-03-28 Molecular Imprints, Inc. Chucking system for modulating shapes of substrates
US8215946B2 (en) 2006-05-18 2012-07-10 Molecular Imprints, Inc. Imprint lithography system and method
US7641840B2 (en) * 2002-11-13 2010-01-05 Molecular Imprints, Inc. Method for expelling gas positioned between a substrate and a mold
US20040112862A1 (en) * 2002-12-12 2004-06-17 Molecular Imprints, Inc. Planarization composition and method of patterning a substrate using the same
US20040168613A1 (en) * 2003-02-27 2004-09-02 Molecular Imprints, Inc. Composition and method to form a release layer
US7179396B2 (en) * 2003-03-25 2007-02-20 Molecular Imprints, Inc. Positive tone bi-layer imprint lithography method
US7396475B2 (en) * 2003-04-25 2008-07-08 Molecular Imprints, Inc. Method of forming stepped structures employing imprint lithography
TWI223725B (en) * 2003-06-10 2004-11-11 Chunghwa Picture Tubes Ltd Polarizer manufacturing method
US7157036B2 (en) * 2003-06-17 2007-01-02 Molecular Imprints, Inc Method to reduce adhesion between a conformable region and a pattern of a mold
US7150622B2 (en) * 2003-07-09 2006-12-19 Molecular Imprints, Inc. Systems for magnification and distortion correction for imprint lithography processes
US7442336B2 (en) * 2003-08-21 2008-10-28 Molecular Imprints, Inc. Capillary imprinting technique
US20050064344A1 (en) * 2003-09-18 2005-03-24 University Of Texas System Board Of Regents Imprint lithography templates having alignment marks
US8268446B2 (en) 2003-09-23 2012-09-18 The University Of North Carolina At Chapel Hill Photocurable perfluoropolyethers for use as novel materials in microfluidic devices
US7090716B2 (en) * 2003-10-02 2006-08-15 Molecular Imprints, Inc. Single phase fluid imprint lithography method
US8211214B2 (en) * 2003-10-02 2012-07-03 Molecular Imprints, Inc. Single phase fluid imprint lithography method
US20050106321A1 (en) * 2003-11-14 2005-05-19 Molecular Imprints, Inc. Dispense geometery to achieve high-speed filling and throughput
US9040090B2 (en) 2003-12-19 2015-05-26 The University Of North Carolina At Chapel Hill Isolated and fixed micro and nano structures and methods thereof
WO2005101466A2 (en) 2003-12-19 2005-10-27 The University Of North Carolina At Chapel Hill Methods for fabricating isolated micro- and nano- structures using soft or imprint lithography
KR101050292B1 (en) * 2003-12-27 2011-07-19 엘지디스플레이 주식회사 Method of manufacturing thin film transistor array substrate
US20050156353A1 (en) * 2004-01-15 2005-07-21 Watts Michael P. Method to improve the flow rate of imprinting material
US20050160934A1 (en) * 2004-01-23 2005-07-28 Molecular Imprints, Inc. Materials and methods for imprint lithography
EP1737574A4 (en) * 2004-02-13 2009-09-16 Univ North Carolina Functional materials and novel methods for the fabrication of microfluidic devices
US8076386B2 (en) * 2004-02-23 2011-12-13 Molecular Imprints, Inc. Materials for imprint lithography
US20050189676A1 (en) * 2004-02-27 2005-09-01 Molecular Imprints, Inc. Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography
US7140861B2 (en) * 2004-04-27 2006-11-28 Molecular Imprints, Inc. Compliant hard template for UV imprinting
JP2007536107A (en) * 2004-05-04 2007-12-13 ミヌタ・テクノロジー・カンパニー・リミテッド Mold using non-crystalline fluororesin and method for producing the same
US7186656B2 (en) * 2004-05-21 2007-03-06 Molecular Imprints, Inc. Method of forming a recessed structure employing a reverse tone process
WO2005119802A2 (en) * 2004-05-28 2005-12-15 Board Of Regents, The University Of Texas System Adaptive shape substrate support system and method
US20050276919A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method for dispensing a fluid on a substrate
US7785526B2 (en) * 2004-07-20 2010-08-31 Molecular Imprints, Inc. Imprint alignment method, system, and template
US7309225B2 (en) * 2004-08-13 2007-12-18 Molecular Imprints, Inc. Moat system for an imprint lithography template
US7939131B2 (en) * 2004-08-16 2011-05-10 Molecular Imprints, Inc. Method to provide a layer with uniform etch characteristics
US7205244B2 (en) * 2004-09-21 2007-04-17 Molecular Imprints Patterning substrates employing multi-film layers defining etch-differential interfaces
US7547504B2 (en) * 2004-09-21 2009-06-16 Molecular Imprints, Inc. Pattern reversal employing thick residual layers
US20060062922A1 (en) * 2004-09-23 2006-03-23 Molecular Imprints, Inc. Polymerization technique to attenuate oxygen inhibition of solidification of liquids and composition therefor
EP1657070B1 (en) * 2004-11-10 2008-04-23 Sony Deutschland GmbH A stamp for soft lithography, in particular micro contact printing and a method of preparing the same
US7307118B2 (en) * 2004-11-24 2007-12-11 Molecular Imprints, Inc. Composition to reduce adhesion between a conformable region and a mold
US7292326B2 (en) * 2004-11-30 2007-11-06 Molecular Imprints, Inc. Interferometric analysis for the manufacture of nano-scale devices
US7630067B2 (en) 2004-11-30 2009-12-08 Molecular Imprints, Inc. Interferometric analysis method for the manufacture of nano-scale devices
US7357876B2 (en) * 2004-12-01 2008-04-15 Molecular Imprints, Inc. Eliminating printability of sub-resolution defects in imprint lithography
US20060115999A1 (en) * 2004-12-01 2006-06-01 Molecular Imprints, Inc. Methods of exposure for the purpose of thermal management for imprint lithography processes
US7281919B2 (en) 2004-12-07 2007-10-16 Molecular Imprints, Inc. System for controlling a volume of material on a mold
US7636999B2 (en) * 2005-01-31 2009-12-29 Molecular Imprints, Inc. Method of retaining a substrate to a wafer chuck
US7635263B2 (en) * 2005-01-31 2009-12-22 Molecular Imprints, Inc. Chucking system comprising an array of fluid chambers
JP2008529102A (en) * 2005-02-03 2008-07-31 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒルThe University Of North Carolina At Chapel Hill Low surface energy polymer materials used in liquid crystal displays
US20060177535A1 (en) * 2005-02-04 2006-08-10 Molecular Imprints, Inc. Imprint lithography template to facilitate control of liquid movement
US20060266916A1 (en) * 2005-05-25 2006-11-30 Molecular Imprints, Inc. Imprint lithography template having a coating to reflect and/or absorb actinic energy
US7759407B2 (en) * 2005-07-22 2010-07-20 Molecular Imprints, Inc. Composition for adhering materials together
US8557351B2 (en) 2005-07-22 2013-10-15 Molecular Imprints, Inc. Method for adhering materials together
US8808808B2 (en) 2005-07-22 2014-08-19 Molecular Imprints, Inc. Method for imprint lithography utilizing an adhesion primer layer
WO2007133235A2 (en) * 2005-08-08 2007-11-22 Liquidia Technologies, Inc. Micro and nano-structure metrology
WO2007021762A2 (en) 2005-08-09 2007-02-22 The University Of North Carolina At Chapel Hill Methods and materials for fabricating microfluidic devices
US20070074635A1 (en) * 2005-08-25 2007-04-05 Molecular Imprints, Inc. System to couple a body and a docking plate
US7665981B2 (en) * 2005-08-25 2010-02-23 Molecular Imprints, Inc. System to transfer a template transfer body between a motion stage and a docking plate
US20070064384A1 (en) * 2005-08-25 2007-03-22 Molecular Imprints, Inc. Method to transfer a template transfer body between a motion stage and a docking plate
US7316554B2 (en) 2005-09-21 2008-01-08 Molecular Imprints, Inc. System to control an atmosphere between a body and a substrate
US7803308B2 (en) * 2005-12-01 2010-09-28 Molecular Imprints, Inc. Technique for separating a mold from solidified imprinting material
US7906058B2 (en) 2005-12-01 2011-03-15 Molecular Imprints, Inc. Bifurcated contact printing technique
WO2007067488A2 (en) * 2005-12-08 2007-06-14 Molecular Imprints, Inc. Method and system for double-sided patterning of substrates
US7670530B2 (en) * 2006-01-20 2010-03-02 Molecular Imprints, Inc. Patterning substrates employing multiple chucks
US7456044B2 (en) * 2005-12-28 2008-11-25 Dongbu Electronics Co., Ltd. Method for manufacturing image sensor
JP4872373B2 (en) 2006-02-15 2012-02-08 株式会社日立製作所 Site-selectively modified microstructure and manufacturing method thereof
DE102006007800B3 (en) 2006-02-20 2007-10-04 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Structuring method and component with a structured surface
US7802978B2 (en) 2006-04-03 2010-09-28 Molecular Imprints, Inc. Imprinting of partial fields at the edge of the wafer
US8142850B2 (en) * 2006-04-03 2012-03-27 Molecular Imprints, Inc. Patterning a plurality of fields on a substrate to compensate for differing evaporation times
US20070231421A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Enhanced Multi Channel Alignment
TW200801794A (en) 2006-04-03 2008-01-01 Molecular Imprints Inc Method of concurrently patterning a substrate having a plurality of fields and a plurality of alignment marks
US20070228608A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Preserving Filled Features when Vacuum Wiping
US20070228593A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Residual Layer Thickness Measurement and Correction
US8850980B2 (en) 2006-04-03 2014-10-07 Canon Nanotechnologies, Inc. Tessellated patterns in imprint lithography
JP4958614B2 (en) * 2006-04-18 2012-06-20 キヤノン株式会社 Pattern transfer apparatus, imprint apparatus, pattern transfer method, and alignment apparatus
US8012395B2 (en) * 2006-04-18 2011-09-06 Molecular Imprints, Inc. Template having alignment marks formed of contrast material
US7547398B2 (en) * 2006-04-18 2009-06-16 Molecular Imprints, Inc. Self-aligned process for fabricating imprint templates containing variously etched features
US7854867B2 (en) * 2006-04-21 2010-12-21 Molecular Imprints, Inc. Method for detecting a particle in a nanoimprint lithography system
WO2008011051A1 (en) * 2006-07-17 2008-01-24 Liquidia Technologies, Inc. Nanoparticle fabrication methods, systems, and materials
US20080110557A1 (en) * 2006-11-15 2008-05-15 Molecular Imprints, Inc. Methods and Compositions for Providing Preferential Adhesion and Release of Adjacent Surfaces
WO2008118861A2 (en) * 2007-03-23 2008-10-02 The University Of North Carolina At Chapel Hill Discrete size and shape specific organic nanoparticles designed to elicit an immune response
KR100999377B1 (en) * 2008-06-18 2010-12-09 한국과학기술원 Organic Solar Cells and Method for Preparing the Same
FR2934709B1 (en) * 2008-08-01 2010-09-10 Commissariat Energie Atomique Thermal exchange structure and cooling device having such a structure.
DE102013107833A1 (en) 2013-07-23 2015-01-29 Christian-Albrechts-Universität Zu Kiel Polymer laminate and process for its preparation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091651A2 (en) * 1982-04-12 1983-10-19 Nippon Telegraph And Telephone Corporation Method for forming micropattern
JP2793251B2 (en) * 1989-05-09 1998-09-03 株式会社東芝 The pattern forming method
WO2000065408A1 (en) * 1999-04-21 2000-11-02 Minuta Technology Co., Ltd. Method for forming a micro-pattern on a substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769610B2 (en) * 1987-03-19 1995-07-31 株式会社日立製作所 The pattern forming method
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
US6355198B1 (en) * 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091651A2 (en) * 1982-04-12 1983-10-19 Nippon Telegraph And Telephone Corporation Method for forming micropattern
JP2793251B2 (en) * 1989-05-09 1998-09-03 株式会社東芝 The pattern forming method
WO2000065408A1 (en) * 1999-04-21 2000-11-02 Minuta Technology Co., Ltd. Method for forming a micro-pattern on a substrate

Also Published As

Publication number Publication date
TW509976B (en) 2002-11-11
WO2003035932A1 (en) 2003-05-01
US20030062334A1 (en) 2003-04-03
CN1633523A (en) 2005-06-29

Similar Documents

Publication Publication Date Title
Brittain et al. Soft lithography and microfabrication
Haisma et al. Mold‐assisted nanolithography: A process for reliable pattern replication
US6818139B1 (en) Method for forming a micro-pattern on a substrate
TWI320874B (en) Novel planarization method for multi-layer lithography processing
US6517977B2 (en) Lithographic template and method of formation and use
JP5102809B2 (en) Replication and transfer of microstructures and nanostructures
US6380101B1 (en) Method of forming patterned indium zinc oxide and indium tin oxide films via microcontact printing and uses thereof
US7862989B2 (en) Method for fabricating dual damascene structures using photo-imprint lithography, methods for fabricating imprint lithography molds for dual damascene structures, materials for imprintable dielectrics and equipment for photo-imprint lithography used in dual damascene patterning
US20050236739A1 (en) Step and flash imprint lithography
US6964793B2 (en) Method for fabricating nanoscale patterns in light curable compositions using an electric field
US7914693B2 (en) Stamp for micro/nano imprint lithography using diamond-like carbon and method of fabricating the same
US20050199584A1 (en) Decal transfer microfabrication
CN1960855B (en) Compliant hard template for UV imprinting
US7931819B2 (en) Method for pattern formation
US7690910B2 (en) Mold for imprint, process for producing minute structure using the mold, and process for producing the mold
EP1594002A2 (en) Method for manufacturing large area stamp for nanoimprint lithography
JP2008068611A (en) Imprint lithography
CN1215528C (en) A substrate and a process in connection with the product of structures
CN1236359C (en) Method in connection with the production of template and the template thus produced
JP3372258B2 (en) Stamps for lithography processes
US4707218A (en) Lithographic image size reduction
JP2004071587A (en) Stamper, method of transferring pattern using it, and method of forming structure by transferring pattern
US20050064344A1 (en) Imprint lithography templates having alignment marks
US4871630A (en) Mask using lithographic image size reduction
US6656398B2 (en) Process of making a pattern in a film

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071107

Termination date: 20160925