JPH05289307A - Reticle and its production - Google Patents

Reticle and its production

Info

Publication number
JPH05289307A
JPH05289307A JP9251792A JP9251792A JPH05289307A JP H05289307 A JPH05289307 A JP H05289307A JP 9251792 A JP9251792 A JP 9251792A JP 9251792 A JP9251792 A JP 9251792A JP H05289307 A JPH05289307 A JP H05289307A
Authority
JP
Japan
Prior art keywords
reticle
resist
pattern
electron beam
excimer laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9251792A
Other languages
Japanese (ja)
Inventor
Takahiro Matsuo
隆弘 松尾
Masataka Endo
政孝 遠藤
Kazuhiro Yamashita
一博 山下
Yoshiyuki Tani
美幸 谷
Masaru Sasako
勝 笹子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9251792A priority Critical patent/JPH05289307A/en
Publication of JPH05289307A publication Critical patent/JPH05289307A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce a reticle with high precision in the lithography using vacuum UV. CONSTITUTION:An electron beam-sensitive resist 12 having almost 0% transmissivity to an ArF excimer laser (193nm) is applied on a quartz substrate 11, and a desired pattern is drawn on the resist 12 by an electron beam and developed to form a resist pattern. The resist pattern thus formed is used as a reticle in ArF excimer laser lithgraphy, and the reticle is easily produced with high precision. The reticle 16 is irradiated with an ArF excimer laser 15 to expose an ArF photosensitive resist 14 on an Si substrate 13, and a desired pattern is transferred with high contrast.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体デバイスの微細
加工のためのフォトリソグラフィ技術に関するものであ
り、特に、真空紫外光を光源とするフォトリソグラフィ
における、レチクルの構造とレチクルの製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photolithography technique for microfabrication of semiconductor devices, and more particularly to a reticle structure and a reticle manufacturing method in photolithography using vacuum ultraviolet light as a light source. Is.

【0002】[0002]

【従来の技術】フォトリソグラフィ技術は、レチクルを
用いて、ステップアンドリピートでパターンを縮小投影
するためスループットが高く、かつ微細パターン形成が
可能であることから、LSIの量産に不可欠な技術であ
る。光の波長をλ、レンズの開口数をNAとすると、フ
ォトリソグラフィの解像度Rは、R=k1λ/NAの関
係式が成り立つ。ただし、k1はレジスト材料、プロセ
スに依存する定数である。この関係式からわかるよう
に、微細化がすすむにつれ、より短波長の光源を用いた
フォトリソグラフィが必要とされている。現在、I線
(365nm)、KrFエキシマレーザ(248nm)
を光源にしたステッパを用いて、超LSIの開発が行わ
れている。さらに微細な超LSIを開発するためには、
より短波長の光源(真空紫外領域)を用いたステッパが
必要不可欠となる。例えば、ArFエキシマレーザ(1
93nm)のステッパが考えられる。一方、微細化がす
すむにつれて、パターンデータ量の増加に伴うレチクル
製造コストの増大、レチクルの加工精度の問題が生じて
くる。
2. Description of the Related Art A photolithography technique is an essential technique for mass production of LSIs because it uses a reticle to reduce and project a pattern by step-and-repeat and thus has high throughput and can form a fine pattern. When the wavelength of light is λ and the numerical aperture of the lens is NA, the resolution R of photolithography has a relational expression of R = k 1 λ / NA. However, k 1 is a constant depending on the resist material and process. As can be seen from this relational expression, as miniaturization progresses, photolithography using a light source of shorter wavelength is required. Currently, I line (365 nm), KrF excimer laser (248 nm)
A super LSI is being developed using a stepper that uses a light source. In order to develop a finer VLSI,
A stepper using a shorter wavelength light source (vacuum ultraviolet region) is indispensable. For example, ArF excimer laser (1
A 93 nm stepper is possible. On the other hand, as miniaturization progresses, the reticle manufacturing cost and the reticle processing accuracy increase as the amount of pattern data increases.

【0003】従来のレチクルの構造は、ガラス基板上の
遮光部にCrの薄膜を堆積したものである。従来のレチ
クルの製造方法を(図5)に示す。石英基板11上にC
r薄膜51を膜厚80nm堆積する。前記Cr薄膜51
上に電子線感光レジスト12を厚さ500nm塗布する
(図5(a))。電子線感光レジスト12上に任意のパ
ターンを電子ビームを用いて描画し、現像する(図5
(b))。硝酸第2セリウムアンモンと過塩素酸を溶解
したエッチング液を用いて、パターン形成した電子線感
光レジスト12をマスクにしてCr薄膜51をエッチン
グする(図5(c))。O2プラズマによる等方性ドラ
イエッチングにより、電子線感光レジスト12を除去し
てレチクルを形成する(図5(d))。
The structure of the conventional reticle is such that a thin film of Cr is deposited on a light shielding portion on a glass substrate. A conventional reticle manufacturing method is shown in FIG. C on the quartz substrate 11
An r thin film 51 is deposited to a thickness of 80 nm. The Cr thin film 51
An electron beam photosensitive resist 12 is applied thereon to a thickness of 500 nm (FIG. 5A). An arbitrary pattern is drawn on the electron beam photosensitive resist 12 using an electron beam and developed (FIG. 5).
(B)). The Cr thin film 51 is etched using the patterned electron beam photosensitive resist 12 as a mask, using an etching solution in which cerium ammonium nitrate and perchloric acid are dissolved (FIG. 5C). The electron beam photosensitive resist 12 is removed by isotropic dry etching using O 2 plasma to form a reticle (FIG. 5D).

【0004】[0004]

【発明が解決しようとする課題】上記のような構成で
は、レチクルの製造工程が、Cr薄膜堆積、電子ビーム
リソグラフィ、ウエットエッチング、レジスト除去と工
程数が多くなるため、コストが高くなるという問題点を
有していた。また、Cr薄膜のウエットエッチングの工
程において、等方性エッチングの性質上、レジストパタ
ーン寸法と最終的に形成されるCrパターンとの寸法シ
フトが生じるため、より微細化がすすむとレチクルの加
工精度が無視できなくなるという問題点を有していた。
In the above-mentioned structure, the reticle manufacturing process involves a large number of Cr thin film deposition, electron beam lithography, wet etching, and resist removal processes, resulting in a high cost. Had. Further, in the wet etching step of the Cr thin film, due to the property of isotropic etching, a dimension shift occurs between the resist pattern dimension and the finally formed Cr pattern, so that the further the miniaturization proceeds, the reticle processing accuracy becomes higher. It had a problem that it could not be ignored.

【0005】本発明は、上記課題を解決するもので、真
空紫外領域のフォトリソグラフィにおいて、工程数の少
ない、高精度なレチクルの製造方法を提供することを目
的としている。
An object of the present invention is to solve the above problems and to provide a highly accurate reticle manufacturing method with a small number of steps in vacuum ultraviolet photolithography.

【0006】[0006]

【課題を解決するための手段】本発明は、ガラス基板上
にレジストパターンを有する構造を備えて成ることを特
徴とするレチクルを提供するものである。特に、前記レ
ジストパターンは真空紫外光に対して透過しないことを
特徴とする上記のレチクルを提供する。さらに本発明
は、ガラス基板上にレジストを塗布する工程と、前記レ
ジストを露光する工程と、前記レジストを現像する工程
とを備えて成ることを特徴とするレチクル製造方法を提
供するものである。特に、前記レジストは真空紫外光に
対して透過しないことを特徴とする上記のレチクル製造
方法を提供する。また望ましくは、前記レジストを露光
する工程は電子ビームにより描画することを特徴とする
上記のレチクル製造方法を提供する。さらに本発明は、
前記レジストを現像する工程の後に、前記レジストを加
熱処理する工程を加えることを特徴とする上記のレチク
ル製造方法を提供する。
SUMMARY OF THE INVENTION The present invention provides a reticle comprising a structure having a resist pattern on a glass substrate. In particular, the reticle is provided in which the resist pattern is not transparent to vacuum ultraviolet light. Furthermore, the present invention provides a reticle manufacturing method characterized by comprising a step of applying a resist on a glass substrate, a step of exposing the resist, and a step of developing the resist. In particular, the above reticle manufacturing method is provided, wherein the resist does not transmit vacuum ultraviolet light. Further, preferably, the reticle manufacturing method is provided, wherein the step of exposing the resist is performed by drawing with an electron beam. Further, the present invention is
The above reticle manufacturing method is characterized in that a step of heat-treating the resist is added after the step of developing the resist.

【0007】[0007]

【作用】本発明では、ガラス基板上に真空紫外光に対し
て透過性を示さないレジストを塗布し、露光、現像し、
レジストパターンを形成して、レチクルを製造する。レ
ジストパターンが真空紫外光に対して透過性を示さない
から、真空紫外光を用いたフォトリソグラフィにおいて
は、このレジストパターンがレチクルの遮光部にそのま
ま成り得る。つまり、真空紫外光を透過しないレジスト
パターンで形成したレチクルは、従来におけるCr薄膜
で形成したレチクルと同様に、高コントラストのパター
ン転写が可能となる。従って、従来法の工程がCr薄膜
堆積、電子ビームリソグラフィ、ウエットエッチング、
レジスト除去の4工程であるのに対して、本発明のレチ
クルの製造方法は電子ビームリソグラフィの1工程のみ
であり、工程数を従来より少なくすることができる。ま
た、従来法ではCr薄膜のウエットエッチングの工程に
おいて、等方性エッチングの性質上、レジストパターン
寸法と最終的に形成されるCrパターンとの寸法シフト
が生じるため、加工精度が悪いという問題点があった
が、本発明ではエッチング工程がないため、より高精度
にレチクルを製造することができる。また本発明ではガ
ラス基板上に形成したレジストパターンを加熱処理する
ことによって、レジストパターンを硬化させるため、真
空紫外光の照射による損傷を防止することができる。
In the present invention, a resist that does not transmit vacuum ultraviolet light is applied on a glass substrate, exposed, and developed,
A resist pattern is formed to manufacture a reticle. Since the resist pattern does not transmit vacuum ultraviolet light, this resist pattern can be used as it is for the light-shielding portion of the reticle in photolithography using vacuum ultraviolet light. That is, the reticle formed of a resist pattern that does not transmit vacuum ultraviolet light can transfer a pattern with high contrast, similarly to a reticle formed of a conventional Cr thin film. Therefore, the steps of the conventional method are Cr thin film deposition, electron beam lithography, wet etching,
In contrast to the four steps of resist removal, the reticle manufacturing method of the present invention has only one step of electron beam lithography, and the number of steps can be reduced as compared with the conventional method. Further, in the conventional method, in the wet etching step of the Cr thin film, due to the property of isotropic etching, a dimension shift occurs between the resist pattern dimension and the finally formed Cr pattern, resulting in a problem of poor processing accuracy. However, in the present invention, since there is no etching step, the reticle can be manufactured with higher accuracy. In addition, in the present invention, the resist pattern formed on the glass substrate is heat-treated to cure the resist pattern, so that damage due to irradiation with vacuum ultraviolet light can be prevented.

【0008】従って、本発明を用いることによって、真
空紫外光を用いたフォトリソグラフィにおいて、簡易
で、高精度なレチクル製造に有効に作用する。
Therefore, by using the present invention, in photolithography using vacuum ultraviolet light, it is effective for simple and highly accurate reticle production.

【0009】[0009]

【実施例】以下本発明の一実施例のレチクル製造方法に
ついて、図面を参照しながら説明する。ここでは、真空
紫外光を用いた、特にArFエキシマレーザを用いたフ
ォトリソグラフィにおけるレチクルの構造とレチクル製
造方法について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A reticle manufacturing method according to an embodiment of the present invention will be described below with reference to the drawings. Here, a reticle structure and a reticle manufacturing method in photolithography using vacuum ultraviolet light, particularly using an ArF excimer laser will be described.

【0010】(図1)は本発明の実施例におけるレチク
ルの構造とArFエキシマレーザ露光方法の説明図を示
すものである。レチクルの構造は、石英基板11上に電
子線感光レジスト12をパターン形成したものである。
ArFエキシマレーザ露光方法は、上述した構造のレチ
クル16上にArFエキシマレーザ15を照射して、S
i基板13上に塗布したArF感光レジスト14上にパ
ターン転写を行う。(図2)に前記した電子線感光レジ
スト12とArF感光レジスト14の紫外透過特性を示
す。図に示すように、電子線感光レジスト12はArF
(193nm)に対して透過率がほぼ0%になるような
ものを用いて、ArF感光レジスト14は80%程度の
透過率のものを用いた。このようにして、電子線感光レ
ジスト12はArF(193nm)に対して透過しない
材料を選択することにより、ArFエキシマレーザリソ
グラフィにおいて高コントラストの転写が可能となる。
FIG. 1 is a diagram showing the structure of a reticle and an ArF excimer laser exposure method according to an embodiment of the present invention. The reticle has a structure in which an electron beam photosensitive resist 12 is patterned on a quartz substrate 11.
In the ArF excimer laser exposure method, the reticle 16 having the above-described structure is irradiated with the ArF excimer laser 15, and S
Pattern transfer is performed on the ArF photosensitive resist 14 applied on the i substrate 13. (FIG. 2) shows the ultraviolet transmission characteristics of the electron beam photosensitive resist 12 and the ArF photosensitive resist 14 described above. As shown in the figure, the electron beam photosensitive resist 12 is ArF.
An ArF photosensitive resist 14 having a transmittance of about 80% was used, and a resist having a transmittance of about 0% with respect to (193 nm) was used. In this way, by selecting a material that does not transmit ArF (193 nm) for the electron beam photosensitive resist 12, high-contrast transfer is possible in ArF excimer laser lithography.

【0011】(図3)は本発明の第1の実施例における
レチクル製造の工程断面図を示すものである。(図2)
に示すようにArF(193nm)に対して透過率がほ
ぼ0%になるような電子線感光レジスト12を石英基板
11上に膜厚500nm塗布し、90℃で60秒間電子
線感光レジスト12を加熱処理した(図3(a))。石
英基板11上に塗布した電子線感光レジスト12上に電
子線を照射し、所望のパターンを描画し、電子線感光レ
ジスト12を現像して、レジストパターンを形成し、レ
チクルを製造した(図3(b))。
FIG. 3 is a sectional view showing the steps of manufacturing a reticle according to the first embodiment of the present invention. (Figure 2)
As shown in (4), an electron beam photosensitive resist 12 having a transmittance of about 0% with respect to ArF (193 nm) is applied on the quartz substrate 11 to a film thickness of 500 nm, and the electron beam photosensitive resist 12 is heated at 90 ° C. for 60 seconds. It was processed (FIG. 3 (a)). The electron beam photosensitive resist 12 applied on the quartz substrate 11 was irradiated with an electron beam to draw a desired pattern, and the electron beam photosensitive resist 12 was developed to form a resist pattern, thereby manufacturing a reticle (FIG. 3). (B)).

【0012】以上のように、本実施例によれば、石英基
板上に形成したレジストパターンがArFエキシマレー
ザに対して透過性を示さないから、ArFエキシマレー
ザを用いたフォトリソグラフィにおいては、このレジス
トパターンがレチクルの遮光部にそのまま成り得る。つ
まり、本実施例におけるArFエキシマレーザを透過し
ないレジストパターンで形成したレチクルは、従来にお
けるCr薄膜で形成したレチクルと同様に、高コントラ
ストのパターン転写が可能となった。従って、従来法の
工程が石英基板上のCr薄膜堆積、電子ビームリソグラ
フィによるパターン形成、Cr薄膜のウエットエッチン
グ、レジスト除去の4工程であるのに対して、本実施例
のレチクルの製造方法は電子ビームリソグラフィによる
パターン形成の1工程のみであり、工程数を従来より少
なくすることができた。また、従来法ではCr薄膜のウ
エットエッチングの工程において、等方性エッチングの
性質上、レジストパターン寸法と最終的に形成されるC
rパターンとの寸法シフトが生じるため、加工精度が悪
いという問題点があったが、本実施例ではエッチング工
程がないため寸法シフトの問題がなく、より高精度にレ
チクルを製造することができた。
As described above, according to this embodiment, since the resist pattern formed on the quartz substrate does not show the transparency to the ArF excimer laser, this resist is used in the photolithography using the ArF excimer laser. The pattern can be left as it is on the light-shielding portion of the reticle. In other words, the reticle formed with the resist pattern that does not transmit the ArF excimer laser in this embodiment can transfer a pattern with high contrast, similarly to the reticle formed with the conventional Cr thin film. Therefore, the conventional method includes four steps of depositing a Cr thin film on a quartz substrate, pattern formation by electron beam lithography, wet etching of a Cr thin film, and resist removal, whereas the reticle manufacturing method of this embodiment uses an electronic method. Since there is only one step of pattern formation by beam lithography, the number of steps can be reduced as compared with the conventional method. Further, in the conventional method, in the step of wet etching of the Cr thin film, due to the property of isotropic etching, the resist pattern size and the C finally formed are formed.
There was a problem that the processing accuracy was poor due to the dimension shift from the r pattern, but in the present example, there was no etching step and the reticle could be manufactured with higher precision. ..

【0013】なお、本実施例において、真空紫外光、特
にArFエキシマレーザ(193nm)を光源にしたフ
ォトリソグラフィにおけるレチクルの構造と製造方法を
示したが、他の波長の光を光源にした場合においても同
様に石英基板上にパターン形成したレジストが光源とし
て用いる光に対して透過率がほぼ0%にさえなればよ
い。また、本実施例では石英基板上のレジストのパター
ン形成に電子ビームリソグラフィを用いたが、レジスト
が本レチクルのパターン転写の光源として用いる光に対
して透過率がほぼ0%になるという条件を満たしていれ
ばフォトリソグラフィを用いてもよい。また、本実施例
では基板に石英を用いたが、本レチクルのパターン転写
の光源として用いる光に対して透過率が十分に高ければ
他のガラス材料を用いてもよい。
In the present embodiment, the structure and manufacturing method of the reticle in photolithography using vacuum ultraviolet light, particularly ArF excimer laser (193 nm) as a light source have been shown, but in the case of using light of another wavelength as a light source, Similarly, it is sufficient that the resist patterned on the quartz substrate has a transmittance of almost 0% with respect to the light used as the light source. Further, although electron beam lithography was used to form the resist pattern on the quartz substrate in this embodiment, the condition that the resist has a transmittance of almost 0% with respect to the light used as the light source for pattern transfer of the present reticle is satisfied. If so, photolithography may be used. Although quartz is used for the substrate in this embodiment, another glass material may be used as long as it has a sufficiently high transmittance for the light used as the light source for pattern transfer of the present reticle.

【0014】(図4)は本発明の第2の実施例における
レチクル製造の工程断面図を示すものである。(図2)
に示すようにArF(193nm)に対して透過率がほ
ぼ0%になるような電子線感光レジスト12を石英基板
11上に膜厚500nm塗布し、90℃で60秒間電子
線感光レジスト12を加熱処理した(図4(a))。石
英基板11上に塗布した電子線感光レジスト12上に電
子線を照射し、所望のパターンを描画し、電子線感光レ
ジスト12を現像して、レジストパターンを形成した
(図4(b))。パターン形成した電子線感光レジスト
12上に遠紫外線41を照射して、電子線感光レジスト
12を200℃で120秒間加熱処理して、電子線感光
レジスト12を硬化させて、レチクルを製造した(図4
(c))。
FIG. 4 is a sectional view showing the steps of manufacturing a reticle in the second embodiment of the present invention. (Figure 2)
As shown in (4), an electron beam photosensitive resist 12 having a transmittance of about 0% with respect to ArF (193 nm) is applied on the quartz substrate 11 to a film thickness of 500 nm, and the electron beam photosensitive resist 12 is heated at 90 ° C. for 60 seconds. It was processed (FIG. 4 (a)). The electron beam photosensitive resist 12 coated on the quartz substrate 11 was irradiated with an electron beam to draw a desired pattern, and the electron beam photosensitive resist 12 was developed to form a resist pattern (FIG. 4B). A far ultraviolet ray 41 is irradiated on the patterned electron beam photosensitive resist 12, and the electron beam photosensitive resist 12 is heat-treated at 200 ° C. for 120 seconds to cure the electron beam photosensitive resist 12 to manufacture a reticle. Four
(C)).

【0015】以上のように、本実施例によれば、石英基
板上に形成したレジストパターンがArFエキシマレー
ザに対して透過性を示さないから、ArFエキシマレー
ザを用いたフォトリソグラフィにおいては、このレジス
トパターンがレチクルの遮光部にそのまま成り得る。つ
まり、本実施例におけるArFエキシマレーザを透過し
ないレジストパターンで形成したレチクルは、従来にお
けるCr薄膜で形成したレチクルと同様に、高コントラ
ストのパターン転写が可能となった。従って、従来法の
工程が石英基板上のCr薄膜堆積、電子ビームリソグラ
フィによるパターン形成、Cr薄膜のウエットエッチン
グ、レジスト除去の4工程であるのに対して、本実施例
のレチクルの製造方法は電子ビームリソグラフィによる
パターン形成の1工程のみであり、工程数を従来より少
なくすることができた。また、従来法ではCr薄膜のウ
エットエッチングの工程において、等方性エッチングの
性質上、レジストパターン寸法と最終的に形成されるC
rパターンとの寸法シフトが生じるため、加工精度が悪
いという問題点があったが、本実施例ではエッチング工
程がないため寸法シフトの問題がなく、より高精度にレ
チクルを製造することができた。また特に、本実施例で
は、レジストパターン形成した後、レジスト上に遠紫外
線を照射して、レジストを硬化したため、ArFエキシ
マレーザ照射による損傷がなく、レチクルの信頼性を向
上することができた。
As described above, according to this embodiment, since the resist pattern formed on the quartz substrate does not show the transparency to the ArF excimer laser, this resist is used in the photolithography using the ArF excimer laser. The pattern can be left as it is on the light-shielding portion of the reticle. In other words, the reticle formed with the resist pattern that does not transmit the ArF excimer laser in this embodiment can transfer a pattern with high contrast, similarly to the reticle formed with the conventional Cr thin film. Therefore, the conventional method includes four steps of depositing a Cr thin film on a quartz substrate, pattern formation by electron beam lithography, wet etching of a Cr thin film, and resist removal, whereas the reticle manufacturing method of this embodiment uses an electronic method. Since there is only one step of pattern formation by beam lithography, the number of steps can be reduced as compared with the conventional method. Further, in the conventional method, in the step of wet etching of the Cr thin film, due to the property of isotropic etching, the resist pattern size and the C finally formed are formed.
There was a problem that the processing accuracy was poor due to the dimension shift from the r pattern, but in the present example, there was no etching step and the reticle could be manufactured with higher precision. .. Further, in particular, in this example, after the resist pattern was formed, the resist was cured by irradiating the resist with deep ultraviolet rays, so that there was no damage due to ArF excimer laser irradiation, and the reliability of the reticle could be improved.

【0016】なお、本実施例において、真空紫外光、特
にArFエキシマレーザ(193nm)を光源にしたフ
ォトリソグラフィにおけるレチクルの構造と製造方法を
示したが、他の波長の光を光源にした場合においても同
様に石英基板上にパターン形成したレジストが光源とし
て用いる光に対して透過率がほぼ0%にさえなればよ
い。また、本実施例では石英基板上のレジストのパター
ン形成に電子ビームリソグラフィを用いたが、レジスト
が本レチクルのパターン転写の光源として用いる光に対
して透過率がほぼ0%になるという条件を満たしていれ
ばフォトリソグラフィを用いてもよい。また、本実施例
では基板に石英を用いたが、本レチクルのパターン転写
の光源として用いる光に対して透過率が十分に高ければ
他のガラス材料を用いてもよい。また、本実施例ではレ
ジストパターンの硬化に遠紫外線の照射を行ったが、基
板を直接加熱してレジストパターンを硬化させてもよ
い。
In this embodiment, the structure and manufacturing method of the reticle in photolithography using vacuum ultraviolet light, particularly ArF excimer laser (193 nm) as a light source, are shown. Similarly, it is sufficient that the resist patterned on the quartz substrate has a transmittance of almost 0% with respect to the light used as the light source. Further, although electron beam lithography was used to form the resist pattern on the quartz substrate in this embodiment, the condition that the resist has a transmittance of almost 0% with respect to the light used as the light source for pattern transfer of the present reticle is satisfied. If so, photolithography may be used. Although quartz is used for the substrate in this embodiment, another glass material may be used as long as it has a sufficiently high transmittance for the light used as the light source for pattern transfer of the present reticle. Further, in the present embodiment, the irradiation of deep ultraviolet rays was performed to cure the resist pattern, but the substrate may be directly heated to cure the resist pattern.

【0017】[0017]

【発明の効果】以上説明したように、本発明のレチクル
およびレチクル製造方法によれば、ガラス基板上に真空
紫外光に対して透過性を示さないレジストを塗布し、露
光、現像し、レジストパターンを形成し、パターン形成
したレジストをそのまま真空紫外光を光源に用いたフォ
トリソグラフィにおけるレチクルとして用いるため、従
来法のCr薄膜を用いたレチクルの製造工程より工程数
を減少させることできる。この工程数の減少によりレチ
クル製造コストの削減に大きく貢献する。また、従来法
ではCr薄膜のウエットエッチングの工程において、等
方性エッチングの性質上、レジストパターン寸法と最終
的に形成されるCrパターンとの寸法シフトが生じるた
め、加工精度が悪いという問題点があったが、本発明で
はレジストのパターン形成の工程のみで、エッチング工
程がないため寸法シフトの問題がなく、より高精度にレ
チクルを製造することができる。また特に、本発明にお
いて、パターン形成したレジストを加熱処理する工程
は、レジストを硬化させ、真空紫外光の照射による損傷
を防止することができ、信頼性の高いレチクルの製造に
寄与することができる。従って、本発明を用いることに
よって、真空紫外光を用いたフォトリソグラフィにおい
て、低コストで、高精度なレチクル製造に有効に作用す
るので、超高密度集積回路の製造に大きく寄与すること
ができる。
As described above, according to the reticle and the reticle manufacturing method of the present invention, a resist that does not transmit vacuum ultraviolet light is coated on a glass substrate, exposed, and developed to form a resist pattern. Since the patterned resist is used as it is as a reticle in photolithography using vacuum ultraviolet light as a light source, the number of steps can be reduced as compared with the conventional reticle manufacturing process using a Cr thin film. This reduction in the number of steps greatly contributes to the reduction in reticle manufacturing cost. Further, in the conventional method, in the wet etching step of the Cr thin film, due to the property of isotropic etching, a dimension shift occurs between the resist pattern dimension and the finally formed Cr pattern, resulting in a problem of poor processing accuracy. However, according to the present invention, since there is only a resist pattern forming step and no etching step, there is no problem of dimensional shift, and a reticle can be manufactured with higher accuracy. Further, in particular, in the present invention, the step of heat-treating the patterned resist can cure the resist and prevent damage due to irradiation with vacuum ultraviolet light, which can contribute to the production of a highly reliable reticle. .. Therefore, by using the present invention, in photolithography using vacuum ultraviolet light, it effectively works for low-cost, high-accuracy reticle production, and can greatly contribute to the production of ultra-high-density integrated circuits.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例におけるレチクルの構造
とArFエキシマレーザ露光方法の説明図
FIG. 1 is an explanatory diagram of a reticle structure and an ArF excimer laser exposure method according to a first embodiment of the present invention.

【図2】図1におけるArF感光レジストと電子線感光
レジストの紫外透過特性図
FIG. 2 is a UV transmission characteristic diagram of ArF photosensitive resist and electron beam photosensitive resist in FIG.

【図3】本発明の第1の実施例におけるレチクル製造の
工程断面図
FIG. 3 is a process sectional view of the reticle manufacturing in the first embodiment of the present invention.

【図4】本発明の第2の実施例におけるレチクル製造の
工程断面図
FIG. 4 is a process sectional view of the reticle manufacturing in the second embodiment of the present invention.

【図5】従来のレチクル製造の工程断面図FIG. 5 is a process sectional view of conventional reticle manufacturing.

【符号の説明】[Explanation of symbols]

11 石英基板 12 電子線感光レジスト 13 シリコン基板 14 ArF感光レジスト 15 ArFエキシマレーザ 16 レチクル 41 遠紫外線 51 Cr薄膜 11 Quartz Substrate 12 Electron Beam Photosensitive Resist 13 Silicon Substrate 14 ArF Photosensitive Resist 15 ArF Excimer Laser 16 Reticle 41 Far Ultraviolet Ray 51 Cr Thin Film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷 美幸 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 笹子 勝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Miyuki Tani 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ガラス基板上にレジストパターンを有する
構造を備えて成ることを特徴とするレチクル。
1. A reticle comprising a structure having a resist pattern on a glass substrate.
【請求項2】前記レジストパターンは真空紫外光に対し
て透過しないことを特徴とする請求項1記載のレチク
ル。
2. The reticle according to claim 1, wherein the resist pattern does not transmit vacuum ultraviolet light.
【請求項3】ガラス基板上にレジストを塗布する工程
と、前記レジストを露光する工程と、前記レジストを現
像する工程とを備えて成ることを特徴とするレチクル製
造方法。
3. A reticle manufacturing method, comprising: a step of applying a resist on a glass substrate; a step of exposing the resist; and a step of developing the resist.
【請求項4】前記レジストは真空紫外光に対して透過し
ないことを特徴とする請求項3記載のレチクル製造方
法。
4. The reticle manufacturing method according to claim 3, wherein the resist does not transmit vacuum ultraviolet light.
【請求項5】前記レジストを露光する工程は電子ビーム
により描画することを特徴とする請求項3記載のレチク
ル製造方法。
5. The reticle manufacturing method according to claim 3, wherein the step of exposing the resist is performed by drawing with an electron beam.
【請求項6】前記レジストを現像する工程の後に、前記
レジストを加熱処理する工程を加えることを特徴とする
請求項3記載のレチクル製造方法。
6. The reticle manufacturing method according to claim 3, wherein a step of heat-treating the resist is added after the step of developing the resist.
JP9251792A 1992-04-13 1992-04-13 Reticle and its production Pending JPH05289307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9251792A JPH05289307A (en) 1992-04-13 1992-04-13 Reticle and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9251792A JPH05289307A (en) 1992-04-13 1992-04-13 Reticle and its production

Publications (1)

Publication Number Publication Date
JPH05289307A true JPH05289307A (en) 1993-11-05

Family

ID=14056522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9251792A Pending JPH05289307A (en) 1992-04-13 1992-04-13 Reticle and its production

Country Status (1)

Country Link
JP (1) JPH05289307A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015242A1 (en) 2000-08-15 2002-02-21 Hitachi, Ltd. Method of producing semiconductor integrated circuit device and method of producing multi-chip module
JP2002196483A (en) * 2000-12-25 2002-07-12 Hitachi Ltd Photomask and manufacturing method of electronic device using it
US6432790B1 (en) 2000-10-30 2002-08-13 Hitachi, Ltd. Method of manufacturing photomask, photomask, and method of manufacturing semiconductor integrated circuit device
US6596656B2 (en) 2000-10-27 2003-07-22 Hitachi, Ltd. Manufacturing use of photomasks with an opaque pattern comprising an organic layer photoabsorptive to exposure light with wavelengths exceeding 200 NM
US6617265B2 (en) 2000-10-27 2003-09-09 Hitachi, Ltd. Photomask and method for manufacturing the same
US6653052B2 (en) 2000-04-25 2003-11-25 Hitachi, Ltd. Electron device manufacturing method, a pattern forming method, and a photomask used for those methods
US6656644B2 (en) 2000-07-07 2003-12-02 Hitachi Ltd. Manufacturing method of photomask and photomask
US6656646B2 (en) 2001-08-31 2003-12-02 Hitachi, Ltd. Fabrication method of semiconductor integrated circuit device
US6660438B2 (en) 2000-11-01 2003-12-09 Hitachi, Ltd. Method of manufacturing an electronic device and a semiconductor integrated circuit device
US6677107B1 (en) 1999-06-30 2004-01-13 Hitacji, Ltd. Method for manufacturing semiconductor integrated circuit device, optical mask used therefor, method for manufacturing the same, and mask blanks used therefor
US6703171B2 (en) 2000-12-28 2004-03-09 Hitachi, Ltd. Photomask, the manufacturing method, a patterning method, and a semiconductor device manufacturing method
US6703328B2 (en) 2001-01-31 2004-03-09 Renesas Technology Corporation Semiconductor device manufacturing method
US6706452B2 (en) 2000-12-27 2004-03-16 Hitachi, Ltd. Method of manufacturing photomask and method of manufacturing semiconductor integrated circuit device
US6780781B2 (en) 2002-05-31 2004-08-24 Renesas Technology Corporation Method for manufacturing an electronic device
US6794207B2 (en) 2000-07-07 2004-09-21 Renesas Technology Corp. Method of manufacturing integrated circuit
US6800421B2 (en) 2000-12-14 2004-10-05 Renesas Technology Corp. Method of fabrication of semiconductor integrated circuit device
US6824958B2 (en) 2000-12-26 2004-11-30 Renesas Technology Corp. Method of manufacturing photomask and method of manufacturing semiconductor integrated circuit device
US6841399B2 (en) 2002-01-24 2005-01-11 Renesas Technology Corp. Method of manufacturing mask and method of manufacturing semiconductor integrated circuit device
US6939649B2 (en) 2001-10-12 2005-09-06 Renesas Technology Corp. Fabrication method of semiconductor integrated circuit device and mask
US6979525B2 (en) * 2002-03-01 2005-12-27 Renesas Technology Corp. Method of manufacturing electronic device
US7005216B2 (en) 2001-12-28 2006-02-28 Renesas Technology Corp. Photo mask
US7040011B2 (en) 2001-01-29 2006-05-09 Renesas Technology Corp. Wiring substrate manufacturing method
US7252910B2 (en) 2003-01-23 2007-08-07 Renesas Technology Corp. Fabrication method of semiconductor integrated circuit device and mask fabrication method
KR100856167B1 (en) * 2001-08-17 2008-09-03 가부시키가이샤 히타치세이사쿠쇼 Manufacturing method of semiconductor apparatus
JP2013041202A (en) * 2011-08-19 2013-02-28 Dainippon Printing Co Ltd Resist mask and production method of patterned body

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7125651B2 (en) 1999-06-30 2006-10-24 Renesas Technology Corp. Method of manufacturing semiconductor integrated circuit device optical mask therefor, its manufacturing method, and mask blanks
US6677107B1 (en) 1999-06-30 2004-01-13 Hitacji, Ltd. Method for manufacturing semiconductor integrated circuit device, optical mask used therefor, method for manufacturing the same, and mask blanks used therefor
US6653052B2 (en) 2000-04-25 2003-11-25 Hitachi, Ltd. Electron device manufacturing method, a pattern forming method, and a photomask used for those methods
US6750000B2 (en) 2000-04-25 2004-06-15 Renesas Technology Corp. Electron device manufacturing method, a pattern forming method, and a photomask used for those methods
US6656644B2 (en) 2000-07-07 2003-12-02 Hitachi Ltd. Manufacturing method of photomask and photomask
US6902868B2 (en) 2000-07-07 2005-06-07 Renesas Technology Corp. Method of manufacturing integrated circuit
US6958292B2 (en) 2000-07-07 2005-10-25 Renesas Technology Corp. Method of manufacturing integrated circuit
US6936406B2 (en) 2000-07-07 2005-08-30 Renesas Technology Corp. Method of manufacturing integrated circuit
US6846598B2 (en) 2000-07-07 2005-01-25 Hitachi, Ltd. Manufacturing method of photomask and photomask
CN100334687C (en) * 2000-07-07 2007-08-29 株式会社日立制作所 Method of manufacturing integrated circuit
US6794207B2 (en) 2000-07-07 2004-09-21 Renesas Technology Corp. Method of manufacturing integrated circuit
CN100451841C (en) * 2000-08-15 2009-01-14 株式会社日立制作所 Method of producing semiconductor integrated circuit device and method of producing multi-chip module
EP1310987A4 (en) * 2000-08-15 2008-04-30 Hitachi Ltd Method of producing semiconductor integrated circuit device and method of producing multi-chip module
CN1295749C (en) * 2000-08-15 2007-01-17 株式会社日立制作所 Semiconductor integrated circuit device and mfg. method of multichip module
US7205222B2 (en) 2000-08-15 2007-04-17 Renesas Technology Corp. Method of fabricating a semiconductor integrated circuit that includes patterning a semiconductor substrate with a first photomask that uses metal for blocking light and patterning the same substrate with a second photomask that uses organic resin for blocking light
US7361530B2 (en) 2000-08-15 2008-04-22 Renesas Technology Corporation Method of fabricating a semiconductor integrated circuit that includes patterning a semiconductor substrate with a first photomask that uses metal for blocking light and patterning the same substrate with a second photomask that uses organic resin for blocking light
WO2002015242A1 (en) 2000-08-15 2002-02-21 Hitachi, Ltd. Method of producing semiconductor integrated circuit device and method of producing multi-chip module
EP1310987A1 (en) * 2000-08-15 2003-05-14 Hitachi, Ltd. Method of producing semiconductor integrated circuit device and method of producing multi-chip module
US6617265B2 (en) 2000-10-27 2003-09-09 Hitachi, Ltd. Photomask and method for manufacturing the same
US6596656B2 (en) 2000-10-27 2003-07-22 Hitachi, Ltd. Manufacturing use of photomasks with an opaque pattern comprising an organic layer photoabsorptive to exposure light with wavelengths exceeding 200 NM
US6432790B1 (en) 2000-10-30 2002-08-13 Hitachi, Ltd. Method of manufacturing photomask, photomask, and method of manufacturing semiconductor integrated circuit device
US6660438B2 (en) 2000-11-01 2003-12-09 Hitachi, Ltd. Method of manufacturing an electronic device and a semiconductor integrated circuit device
US6893785B2 (en) 2000-11-01 2005-05-17 Hitachi, Ltd. Method of manufacturing an electronic device and a semiconductor integrated circuit device
US6800421B2 (en) 2000-12-14 2004-10-05 Renesas Technology Corp. Method of fabrication of semiconductor integrated circuit device
US6790564B2 (en) 2000-12-25 2004-09-14 Renesas Technology Corporation Photomask and manufacturing method of an electronic device therewith
JP2002196483A (en) * 2000-12-25 2002-07-12 Hitachi Ltd Photomask and manufacturing method of electronic device using it
US6824958B2 (en) 2000-12-26 2004-11-30 Renesas Technology Corp. Method of manufacturing photomask and method of manufacturing semiconductor integrated circuit device
US6706452B2 (en) 2000-12-27 2004-03-16 Hitachi, Ltd. Method of manufacturing photomask and method of manufacturing semiconductor integrated circuit device
US6703171B2 (en) 2000-12-28 2004-03-09 Hitachi, Ltd. Photomask, the manufacturing method, a patterning method, and a semiconductor device manufacturing method
US6927002B2 (en) 2000-12-28 2005-08-09 Renesas Technology Corp. Photomask, the manufacturing method, a patterning method, and a semiconductor device manufacturing method
US7040011B2 (en) 2001-01-29 2006-05-09 Renesas Technology Corp. Wiring substrate manufacturing method
US6703328B2 (en) 2001-01-31 2004-03-09 Renesas Technology Corporation Semiconductor device manufacturing method
KR100856167B1 (en) * 2001-08-17 2008-09-03 가부시키가이샤 히타치세이사쿠쇼 Manufacturing method of semiconductor apparatus
US6656646B2 (en) 2001-08-31 2003-12-02 Hitachi, Ltd. Fabrication method of semiconductor integrated circuit device
US6939649B2 (en) 2001-10-12 2005-09-06 Renesas Technology Corp. Fabrication method of semiconductor integrated circuit device and mask
US7005216B2 (en) 2001-12-28 2006-02-28 Renesas Technology Corp. Photo mask
US6841399B2 (en) 2002-01-24 2005-01-11 Renesas Technology Corp. Method of manufacturing mask and method of manufacturing semiconductor integrated circuit device
US6979525B2 (en) * 2002-03-01 2005-12-27 Renesas Technology Corp. Method of manufacturing electronic device
US6780781B2 (en) 2002-05-31 2004-08-24 Renesas Technology Corporation Method for manufacturing an electronic device
US7252910B2 (en) 2003-01-23 2007-08-07 Renesas Technology Corp. Fabrication method of semiconductor integrated circuit device and mask fabrication method
JP2013041202A (en) * 2011-08-19 2013-02-28 Dainippon Printing Co Ltd Resist mask and production method of patterned body

Similar Documents

Publication Publication Date Title
JPH05289307A (en) Reticle and its production
US5275896A (en) Single-alignment-level lithographic technique for achieving self-aligned features
US6803160B2 (en) Multi-tone photomask and method for manufacturing the same
US5380609A (en) Method for fabricating photomasks having a phase shift layer comprising the use of a positive to negative resist, substrate imaging and heating
JP2953406B2 (en) Photomask and method of manufacturing the same
US5338626A (en) Fabrication of phase-shifting lithographic masks
US6376130B1 (en) Chromeless alternating reticle for producing semiconductor device features
JP2641362B2 (en) Lithography method and manufacturing method of phase shift mask
JPH06250376A (en) Phase shift mask and production of phase shift mask
JP3083551B2 (en) Exposure mask and method of manufacturing the same
JP3130777B2 (en) Photomask and method of manufacturing the same
JPH05289305A (en) Phase-shift photomask
US20030039892A1 (en) Method of optical proximity correction
JP3210705B2 (en) Phase shift photomask
JP3308021B2 (en) Phase shift photomask blank and phase shift photomask
JP3241793B2 (en) Phase shift photomask
JP2908649B2 (en) Phase shift mask and method of manufacturing the same
JP3215394B2 (en) Method for manufacturing electrode wiring conduction hole and method for manufacturing semiconductor device
JP3046631B2 (en) Method for manufacturing phase shift photomask
JP3207913B2 (en) Method for manufacturing phase shift photomask
JPH03235947A (en) Photomask having phase shift layer and production thereof
KR940008361B1 (en) Manufacturing method of lens type mask
JP3110122B2 (en) Pattern formation method
KR100249725B1 (en) Phase shift photo mask
JPH05281702A (en) Production of phase shift mask