JP3215394B2 - Method for manufacturing electrode wiring conduction hole and method for manufacturing semiconductor device - Google Patents

Method for manufacturing electrode wiring conduction hole and method for manufacturing semiconductor device

Info

Publication number
JP3215394B2
JP3215394B2 JP2000007857A JP2000007857A JP3215394B2 JP 3215394 B2 JP3215394 B2 JP 3215394B2 JP 2000007857 A JP2000007857 A JP 2000007857A JP 2000007857 A JP2000007857 A JP 2000007857A JP 3215394 B2 JP3215394 B2 JP 3215394B2
Authority
JP
Japan
Prior art keywords
light
region
translucent
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000007857A
Other languages
Japanese (ja)
Other versions
JP2000147746A (en
Inventor
昇雄 長谷川
稔彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000007857A priority Critical patent/JP3215394B2/en
Publication of JP2000147746A publication Critical patent/JP2000147746A/en
Application granted granted Critical
Publication of JP3215394B2 publication Critical patent/JP3215394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置等の製
造に用いるホトマスク、特に照明光の位相を変える処理
を施したホトマスクを用いた半導体素子の電極配線導通
孔の製造方法および半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photomask used for manufacturing a semiconductor device and the like, and more particularly to a method for manufacturing an electrode wiring conductive hole of a semiconductor element using a photomask subjected to a process for changing the phase of illumination light, and a method for manufacturing a semiconductor device. About the method.

【0002】[0002]

【従来の技術】マスクパタンを転写する露光装置の解像
力を向上させる従来技術のひとつとして、マスク透過光
に位相を導入する方法がある。例えば特公昭62−50
811号公報では、不透明部をはさむ両側の光透過部の
少なくとも一方に位相を変える透明膜を形成している。
この方法によれば従来と同一のレンズで解像度を格段に
高めることが出来る。
2. Description of the Related Art As one of conventional techniques for improving the resolution of an exposure apparatus for transferring a mask pattern, there is a method of introducing a phase into light transmitted through a mask. For example, Japanese Patent Publication 62-50
In JP-A-81111, a transparent film for changing the phase is formed on at least one of the light transmitting portions on both sides sandwiching the opaque portion.
According to this method, the resolution can be remarkably increased by using the same lens as the conventional one.

【0003】また、特開昭62−67547号公報で
は、単一の光透過部の解像度向上手段として、前記単一
の光透過部の両側に透過光の位相を反転した解像限界以
下の光透過部を設けている。
In Japanese Patent Application Laid-Open No. 62-67547, as a means for improving the resolution of a single light transmitting portion, a light having a resolution lower than the resolution limit where the phase of the transmitted light is inverted on both sides of the single light transmitting portion. A transmission section is provided.

【0004】さらにまた、特開昭53−5572号公報
には、回析歪が低レベルの安定なホトマスクとして、光
透過部と半透明部とに位相差を与えたホトマスクが提案
されている。
Furthermore, Japanese Patent Application Laid-Open No. 53-5572 proposes a photomask having a phase difference between a light transmitting portion and a translucent portion as a stable photomask having a low level of diffraction distortion.

【0005】[0005]

【発明が解決しようとする課題】前記従来技術において
は、通常の透過型マスクを作成した後、透過光の位相を
変えるための透明膜、いわゆる位相シフタを形成する必
要がある。さらに、前記位相シフタは隣合った透過部を
透過する光の位相が互いに反転するように配置する必要
がある。従って、複雑な素子パタンへの位相シフタの配
置では、シフタの配置が困難な場合等が発生し、効率よ
くシフタを配置するには、試行錯誤や高度な検討が必要
であり、多大な労力が必要であった。
In the above prior art, it is necessary to form a transparent film for changing the phase of transmitted light, that is, a so-called phase shifter, after preparing a normal transmission type mask. Further, the phase shifters need to be arranged such that the phases of the light passing through the adjacent transmission sections are inverted from each other. Therefore, when arranging a phase shifter on a complex element pattern, it may be difficult to arrange the shifter. Trial and error and advanced study are required to efficiently arrange the shifter, and a great deal of labor is required. Was needed.

【0006】また、マスクの製造工程も従来に比べ倍増
しており、工程増に伴う欠陥の発生や歩留まり低下が大
きな問題となっていた。また、透明膜の欠陥の修正も多
くの労力が必要であり、実用化の大きな障害になってい
た。
Also, the number of mask manufacturing steps has been doubled as compared with the prior art, and the occurrence of defects and a decrease in yield accompanying the increase in the number of steps have been serious problems. In addition, the repair of the defect of the transparent film requires a lot of labor, which has been a major obstacle to practical use.

【0007】本発明の第1の目的は、小さい電極配線導
通孔を形成でき、あるいは微細なパタンが形成でき、解
像不良の発生率を減少できるホトマスクを用いた半導体
素子の電極配線導通孔の製造方法および半導体装置の製
造方法を提供することにある。
[0007] A first object of the present invention is to form a small through hole for an electrode wiring or to form a fine pattern and reduce the rate of occurrence of poor resolution. It is to provide a manufacturing method and a method for manufacturing a semiconductor device.

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】[0011]

【課題を解決するための手段】本発明の電極配線導通孔
の製造方法は、露光光の透過率が30%以下の半透明な
領域及び位置合わせマーク部又は検出窓パタンを形成す
る遮光領域を有する基板を使用し、前記半透明な領域を
透過した第1の光と、前記半透明な領域内に設けられた
開口部を透過した前記第1の光と位相が逆相である第2
の光とをレンズを通して投影することにより、電極配線
導通孔用のホールパタンをウエハ上の感光性材料の薄膜
に転写するものである。
According to the present invention, there is provided a method of manufacturing a conductive hole for an electrode wiring, comprising the steps of: forming a translucent region having a transmittance of exposure light of 30% or less and a light shielding region for forming an alignment mark portion or a detection window pattern; A first light transmitted through the translucent area, and a second light having a phase opposite to that of the first light transmitted through an opening provided in the translucent area.
Is projected through a lens to transfer a hole pattern for an electrode wiring conduction hole to a thin film of a photosensitive material on a wafer.

【0012】本発明の半導体装置の製造方法は、露光光
の透過率が30%以下の半透明な領域及び位置合わせマ
ーク部又は検出窓パタンを形成する遮光領域を有する基
板を使用し、前記半透明な領域を透過した第1の光と、
前記半透明な領域内に設けられた開口部を透過した前記
第1の光と位相が逆相である第2の光とをレンズを通し
て投影することにより、電極配線導通孔用のホールパタ
ンをウエハ上の感光性材料の薄膜に転写するものであ
る。
A method of manufacturing a semiconductor device according to the present invention uses a substrate having a translucent region having a transmittance of exposure light of 30% or less and a light shielding region for forming an alignment mark portion or a detection window pattern. A first light transmitted through a transparent area;
By projecting, through a lens, the first light transmitted through the opening provided in the translucent region and the second light having the opposite phase through a lens, a hole pattern for an electrode wiring conduction hole is formed on the wafer. This is to be transferred to a thin film of the photosensitive material above.

【0013】また、本発明の半導体装置の製造方法は、
露光光に対して透明な領域と、前記透明な領域の露光光
の透過率を100%としたとき、透過率が30%以下で
ある半透明な領域と、位置合わせマーク部又は検出窓パ
タンが形成された遮光領域とを有し、前記透明な領域を
透過した光と前記半透明な領域を透過した光とが互いに
反転する第1の基板に光を透過させて、レンズを通して
投影することにより、電極配線導通孔用のホールパタン
をウエハ上の感光性薄膜に転写するものである。
Further, a method of manufacturing a semiconductor device according to the present invention
Assuming that a region transparent to exposure light, a translucent region having a transmittance of 30% or less when the transmittance of the transparent region is 100%, and a positioning mark portion or a detection window pattern. By forming a light-shielding region, the light transmitted through the transparent region and the light transmitted through the translucent region are transmitted through a first substrate, which is inverted with respect to the light, and projected through a lens. And transferring a hole pattern for an electrode wiring conduction hole to a photosensitive thin film on a wafer.

【0014】さらに、本発明の半導体装置の製造方法
は、露光光に対する透過率が30%以下の半透明な領域
と、前記半透明な領域内に設けられている透明な領域
と、位置合わせマーク部又は検出窓パタンを形成する遮
光領域とを有し、前記透明な領域を透過した光の位相が
前記半透明な領域を透過した光の位相と反転する第1の
基板に光を透過させて、前記第1の基板に形成された電
極配線導通孔用のホールパタンを第2の基板にレンズを
通して投影しホールパタンを形成する工程を有するもの
である。
Further, in the method of manufacturing a semiconductor device according to the present invention, there is provided a method of manufacturing a semiconductor device, comprising: a translucent region having a transmittance to exposure light of 30% or less; a transparent region provided in the translucent region; Part or a light-shielding region forming a detection window pattern, and transmitting light to the first substrate in which the phase of light transmitted through the transparent region is inverted with respect to the phase of light transmitted through the translucent region. Forming a hole pattern by projecting a hole pattern for an electrode wiring conduction hole formed on the first substrate through a lens onto a second substrate.

【0015】また、本発明の半導体装置の製造方法は、
第1の基板に感光性材料の薄膜を形成する工程、第1の
領域と、該第1の領域の光の透過率を100%としたと
き、透過率が30%以下である第2の領域と、位置合わ
せマーク部又は検出窓パタンを形成する遮光領域とを有
し、前記第1の領域を透過した光の位相は前記第2の領
域を透過した光の位相と反転するように形成されている
第2の基板に光を照射し、前記第1の領域と前記第2の
領域を用いて電極配線導通孔用のホールパタンを、前記
第1の基板にレンズを通して投影する工程、及び、前記
第1の基板を現像し、ホールパタンを形成する工程、を
有するものである。
Further, a method of manufacturing a semiconductor device according to the present invention
A step of forming a thin film of a photosensitive material on a first substrate; a first region; and a second region having a transmittance of 30% or less, where the transmittance of light in the first region is 100%. And a light-shielding region forming an alignment mark portion or a detection window pattern, wherein a phase of light transmitted through the first region is formed to be inverted from a phase of light transmitted through the second region. Irradiating the second substrate with light, and projecting a hole pattern for an electrode wiring conduction hole through the lens on the first substrate using the first region and the second region; and Developing the first substrate to form a hole pattern.

【0016】本発明において、半透明層とは、半透明な
膜の少なくとも一層を有するものであり、他にさらに透
明な膜を含む複合膜であってもよい。すなわち、この半
透明層全体として半透明であり、かつ透明な領域との間
に位相差を生じさせるものであればよい。
In the present invention, the translucent layer has at least one translucent film, and may be a composite film further including a transparent film. That is, any material may be used as long as it is translucent as a whole and generates a phase difference between the translucent layer and the transparent region.

【0017】半透明膜から通過した光は、光透過部を通
過した光に対して位相が反転しているため、その境界部
で位相が反転し、境界部での光強度が0に近づく。これ
により、相対的に光透過部を通過した光の強度と、パタ
ン境界部の光強度の比は大きくなり従来法に比べコント
ラストの高い光強度分布が得られる。
Since the light passing through the translucent film has a phase inverted with respect to the light passing through the light transmitting portion, the phase is inverted at the boundary, and the light intensity at the boundary approaches zero. As a result, the ratio of the intensity of the light that has passed through the light transmitting portion and the intensity of the light at the pattern boundary becomes relatively large, and a light intensity distribution with a higher contrast than that of the conventional method can be obtained.

【0018】これについて図面を用いて説明する。まず
従来法を図2を用いて説明する。図2(a)は従来法の
ホトマスクの断面図を示し、1はガラス基板、2は遮光
膜のCr膜である。光透過部3を透過した光の振幅分布
は、図2(b)に示すように同一符号である。この光を
レンズを通しウエハ上に投影すると、図2(c)に示す
ように、遮光部直下まで光強度が広がった分布となる。
従って、従来法では微細なパタンを形成することが困難
であった。
This will be described with reference to the drawings. First, the conventional method will be described with reference to FIG. FIG. 2A is a cross-sectional view of a conventional photomask, wherein 1 is a glass substrate, and 2 is a Cr film as a light shielding film. The amplitude distribution of the light transmitted through the light transmitting portion 3 has the same reference numeral as shown in FIG. When this light is projected on a wafer through a lens, the light intensity is distributed to a position immediately below the light shielding portion as shown in FIG. 2C.
Therefore, it has been difficult to form a fine pattern by the conventional method.

【0019】これに対比して本発明を図1で説明する。
図1(a)は本発明のホトマスクの一例の断面図であ
る。1はガラス基板、4は半透明膜である。半透明膜4
の膜厚tは、 t=λ/a(n−1) (ただし、λは露光光の波長、nは半透明膜の屈折率、
a は1.3≦a≦4の範囲の値である)の関係となるよ
うに調整する。このマスクを透過した光の振幅分布は、
図1(b)に示すように光透過部3を通過した光が正の
符号であるのに対し、半透明膜4を通過した光の位相は
反転し負の符号となる。この光をレンズを通しウエハ上
に投影すると、図1(c)に示すように、光透過部3と
半透明膜4の境界で位相反転しているため、その直下で
光強度はほぼ0となる。そのため光強度分布の広がりが
押さえられ、コントラストの高い微細なパタンを形成す
ることができる。
The present invention will be described with reference to FIG.
FIG. 1A is a cross-sectional view of an example of the photomask of the present invention. 1 is a glass substrate and 4 is a translucent film. Translucent film 4
T = λ / a (n−1) (where λ is the wavelength of the exposure light, n is the refractive index of the translucent film,
a is a value in the range of 1.3 ≦ a ≦ 4). The amplitude distribution of the light transmitted through this mask is
As shown in FIG. 1B, while the light passing through the light transmitting portion 3 has a positive sign, the phase of the light passing through the translucent film 4 is inverted to have a negative sign. When this light is projected on the wafer through a lens, the phase is inverted at the boundary between the light transmitting part 3 and the translucent film 4 as shown in FIG. Become. Therefore, the spread of the light intensity distribution is suppressed, and a fine pattern with high contrast can be formed.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0021】(実施の形態1)本発明の第1の実施の形
態のホトマスクとして図1で示す構造のものを製造し
た。図1(a)はホトマスクの断面図を示す。1はガラ
ス基板、4は半透明膜である。半透明膜4の膜厚は、 t=λ/a(n−1) (ただし、λは露光光の波長、nは半透明膜の屈折率、
a は1.3≦a≦4の範囲の値である)の関係となるよ
うに調整した。露光波長は水銀ランプのi線(365n
m)を用いた。ここで半透明膜4には塗布ガラスに吸光
剤を添加したものを用いた。このガラスの露光光に対す
る屈折率は約1.45であったので、塗布ガラスの膜厚
は約420nmとした。また、この時露光光の透過率が
15%となるよう吸光剤の添加量を調整した。なお、前
記透過率の設定は、使用するレジストの感度、感光特性
を考慮し、決定する必要があり、15%に限らないが本
発明の効果を得るには1%以上が望ましい。さらに、透
過率の上限は実用的なプロセスのばらつき等を考慮する
と50%程度が望ましいが、これ以上でも効果は得られ
る。より効果的なのは5から30%の範囲である。透明
な領域のパタンは、単一なホール、ドット、スペース又
はラインのパタンをそれぞれ形成した。
(Embodiment 1) A photomask having the structure shown in FIG. 1 was manufactured as a photomask according to a first embodiment of the present invention. FIG. 1A is a sectional view of a photomask. 1 is a glass substrate and 4 is a translucent film. The thickness of the translucent film 4 is t = λ / a (n−1) (where λ is the wavelength of the exposure light, n is the refractive index of the translucent film,
a is a value in the range of 1.3 ≦ a ≦ 4). The exposure wavelength is i-line (365n) of a mercury lamp.
m) was used. Here, the translucent film 4 was formed by adding a light absorbing agent to coated glass. Since the refractive index of the glass to exposure light was about 1.45, the thickness of the applied glass was about 420 nm. At this time, the addition amount of the light absorbing agent was adjusted so that the transmittance of the exposure light became 15%. The setting of the transmittance needs to be determined in consideration of the sensitivity and the photosensitive characteristics of the resist used, and is not limited to 15%, but is preferably 1% or more to obtain the effect of the present invention. Further, the upper limit of the transmittance is desirably about 50% in consideration of the practical process variation and the like, but the effect can be obtained with more than this value. More effective is in the range of 5 to 30%. The transparent area pattern formed a single hole, dot, space or line pattern, respectively.

【0022】また、本発明の効果を得るには半透明膜の
膜厚tは、 t=λ/a(n−1) におけるaが1.3≦a≦4の範囲が望ましいが、この
範囲以外でも僅かながらコントラスト向上効果は得られ
る。また、半透明膜4の材料は塗布ガラスに限らず、有
機膜、無機膜等、所望の透過率が得られ、かつ透過した
光の位相が光透過部3を透過した光の位相に対しほぼ反
転できれば、如何なる材料でも適用可能である。また、
マスクの構造は前記実施の形態では半透明膜4を単一の
膜で構成したが、これに限らない。
In order to obtain the effect of the present invention, the thickness t of the translucent film is desirably in the range of 1.3 ≦ a ≦ 4 where t = λ / a (n−1). Other than the above, a slight contrast improvement effect can be obtained. Further, the material of the translucent film 4 is not limited to coated glass, and a desired transmittance can be obtained, such as an organic film or an inorganic film, and the phase of the transmitted light is substantially equal to the phase of the light transmitted through the light transmitting portion 3. Any material that can be inverted can be used. Also,
Although the structure of the mask is such that the translucent film 4 is formed of a single film in the above embodiment, the present invention is not limited to this.

【0023】このホトマスクを用いることにより、透過
光の光強度は、図1(c)に示すように、光透過部3と
半透明膜4の境界の直下で光強度はほぼ0となり、その
ため光強度分布の広がりを押さえられ、コントラストの
高い微細なパタンが形成できた。
By using this photomask, the light intensity of the transmitted light becomes almost 0 immediately below the boundary between the light transmitting portion 3 and the translucent film 4, as shown in FIG. 1 (c). The spread of the intensity distribution was suppressed, and a fine pattern with high contrast was formed.

【0024】(実施の形態2)第2の実施の形態は、図
3に示すように半透明層の構成を多層膜とした。ガラス
基板1上に薄いCr膜6と塗布ガラス膜7を被着し、所
望のパタン部を除去した。この場合は、薄いCr膜6で
透過率を1%に調整し、塗布ガラス7で透過部との位相
差を調整した。薄いCr膜6の露光光に対する透過率は
1から50%の範囲であればよい。塗布ガラス膜7の膜
厚は前記第1の実施の形態で示した半透明膜4の膜厚制
限とほぼ同じでもよいが、さらに高精度に180°の位
相差を設定するため、薄いCr膜6を透過する光の位相
ずれも考慮した。即ち、この実施の形態では半透明層は
薄いCr膜6と塗布ガラス膜7とよりなり、薄いCr膜
6の厚みは透過率を1%となるように定め、塗布ガラス
膜7の厚みを
(Embodiment 2) In the second embodiment, the structure of the translucent layer is a multilayer film as shown in FIG. A thin Cr film 6 and a coated glass film 7 were deposited on the glass substrate 1, and a desired pattern portion was removed. In this case, the transmittance was adjusted to 1% with the thin Cr film 6 and the phase difference with the transmission portion was adjusted with the coated glass 7. The transmittance of the thin Cr film 6 to exposure light may be in the range of 1 to 50%. The thickness of the coating glass film 7 may be substantially the same as the thickness limitation of the translucent film 4 shown in the first embodiment, but a thin Cr film is used in order to set the phase difference of 180 ° more precisely. The phase shift of the light passing through No. 6 was also considered. That is, in this embodiment, the translucent layer is composed of the thin Cr film 6 and the coated glass film 7, the thickness of the thin Cr film 6 is determined so that the transmittance is 1%, and the thickness of the coated glass film 7 is reduced.

【0025】[0025]

【数1】 (Equation 1)

【0026】(ただし、di 及びni は半透明層を構成
するi番目の膜の厚さ及び屈折率、mは半透明層を構成
する膜の数でこの実施の形態では2、λは露光光の波
長、φは1/4≦φ≦3/4の範囲の値である)の関係
を満たすようにした。この構造でも実施の形態1と同じ
効果が得られた。
(Where d i and n i are the thickness and refractive index of the i-th film constituting the translucent layer, m is the number of the films constituting the translucent layer, 2 in this embodiment, and λ is The wavelength of exposure light, φ is a value in the range of 1/4 ≦ φ ≦ 3/4). With this structure, the same effect as in the first embodiment was obtained.

【0027】(実施の形態3)第3の実施の形態では、
図4に示すように、ガラス基板1上に、薄いCr膜6を
形成し、この薄いCr膜6を所望のパタンに除去し、し
かる後ガラス基板1を所望の深さにエッチングした。薄
いCr膜6の膜厚は40nm以下とし、露光光に対する
透過率を第1の実施の形態で示したように1から50%
の範囲に調整することが好ましい。この実施の形態では
1%とした。エッチング深さは、前記第2の実施の形態
で示した塗布ガラス膜7の膜厚制限と同じく、高精度に
180°の位相差を設定するために、薄いCr膜6を透
過する光の位相ずれを考慮して定めた。
(Embodiment 3) In the third embodiment,
As shown in FIG. 4, a thin Cr film 6 was formed on the glass substrate 1, the thin Cr film 6 was removed in a desired pattern, and then the glass substrate 1 was etched to a desired depth. The thin Cr film 6 has a thickness of 40 nm or less, and has a transmittance for exposure light of 1 to 50% as described in the first embodiment.
It is preferable to adjust the range. In this embodiment, it is 1%. The etching depth is the same as the film thickness limitation of the coating glass film 7 shown in the second embodiment, and the phase of light transmitted through the thin Cr film 6 is set in order to set the phase difference of 180 ° with high accuracy. It was determined in consideration of the deviation.

【0028】また、ガラス基板1のエッチング深さの制
御が困難な場合には、図5に示すような構造にすれば良
い。ガラス基板1上に、ITOからなる透明なエッチン
グストッパ8を設け、その上に透明膜9、その上に薄い
Cr膜6を設けてある。図4及び図5の構造でも実施の
形態1と同じ効果が得られた。
When it is difficult to control the etching depth of the glass substrate 1, a structure as shown in FIG. 5 may be used. A transparent etching stopper 8 made of ITO is provided on a glass substrate 1, a transparent film 9 is provided thereon, and a thin Cr film 6 is provided thereon. The same effects as in the first embodiment were obtained with the structures of FIGS.

【0029】(実施の形態4)第4の実施の形態は、第
1の実施の形態の加工上の問題点を対策した構造であ
る。図1の半透明膜4は塗布ガラスを用いたが、この材
料とガラス基板1はほぼ同じ材質であり、半透明膜4を
フッ化水素酸系の溶液等でエッチングする場合や、CF
4 系のガス等を用いたドライエッチングで加工する場
合、十分な選択性がとれない。従って、高度なエッチン
グ制御が必要となる。これに対し、本実施の形態は、図
6に示すように、ガラス基板1と半透明膜4の間にエッ
チングストッパ8を配置した。ここでは、シリコン窒化
膜を用いたがこれに限らない。
(Embodiment 4) The fourth embodiment has a structure in which the problems in processing of the first embodiment are solved. Although the translucent film 4 in FIG. 1 uses coated glass, this material and the glass substrate 1 are almost the same, and the translucent film 4 is etched with a hydrofluoric acid-based solution or the like.
In the case of processing by dry etching using a four- system gas or the like, sufficient selectivity cannot be obtained. Therefore, advanced etching control is required. On the other hand, in the present embodiment, as shown in FIG. 6, an etching stopper 8 is arranged between the glass substrate 1 and the translucent film 4. Here, a silicon nitride film is used, but the present invention is not limited to this.

【0030】また、ガラス基板上に導電材料がない場合
は、電子線でのパタン形成でチャージアップ現象が発生
し、パタンの位置ずれ等の問題が生じるので、エッチン
グストッパ8をITO膜等の導電膜とすることも有効で
ある。その他の方法でチャージアップを防止する場合
は、導電膜を用いる必要はない。半透明膜4の膜厚につ
いては前記と同様にした。
Further, when there is no conductive material on the glass substrate, a charge-up phenomenon occurs due to the pattern formation by the electron beam, and a problem such as a displacement of the pattern occurs. It is also effective to form a film. When charge-up is prevented by other methods, it is not necessary to use a conductive film. The thickness of the translucent film 4 was the same as described above.

【0031】以上のように本発明のマスク構造は、光透
過部と半透明部を通過する光の位相が反転するように調
整されている事が必要である。また、通常のマスク又は
従来の位相シフト型マスクと同一基板内に本発明の構造
を組合せることも有効である。即ち、露光装置とマスク
の位置を整合するために用いる合わせマーク部やマスク
とウエハの位置を整合するため用いる検出窓パタンを通
常の遮光膜で形成したところ、半透明膜を用いたときよ
りも検出信号は高いSN比が得られた。
As described above, the mask structure of the present invention needs to be adjusted so that the phases of the light passing through the light transmitting portion and the translucent portion are inverted. It is also effective to combine the structure of the present invention in the same substrate as a normal mask or a conventional phase shift mask. That is, when the alignment mark portion used for aligning the position of the exposure apparatus and the mask and the detection window pattern used for aligning the position of the mask and the wafer are formed of a normal light-shielding film, compared with the case where a translucent film is used. As the detection signal, a high SN ratio was obtained.

【0032】また、本発明の効果はホールパタンの形成
に有効であり、従来0.5μm径のホールパタンの形成
が限界だった光学系で0.4μm径のホールパタンが形
成できた。さらに、焦点位置ずれによる解像度劣化も小
さいことも確認できた。
Further, the effect of the present invention is effective for forming a hole pattern, and a 0.4 μm diameter hole pattern can be formed in an optical system in which the conventional formation of a 0.5 μm diameter hole pattern has been limited. Furthermore, it was also confirmed that the resolution degradation due to the focal position shift was small.

【0033】また、前記各実施の形態で示した本発明の
ホトマスクを半導体素子の電極配線導通孔の形成に用い
たところ、今までより0.1μm小さい導通孔が形成で
きた。さらに焦点深度の向上に伴い、解像不良の発生率
も大幅に改善できた。
Further, when the photomask of the present invention described in each of the above embodiments was used for forming the electrode wiring conductive hole of the semiconductor element, a conductive hole smaller by 0.1 μm than before could be formed. Further, with the improvement in the depth of focus, the occurrence rate of the resolution failure was also significantly improved.

【0034】また、言うまでもないが、本発明の効果は
露光波長によらない。前記実施の形態では露光波長にi
線(365nm)を用いた例を示したが、この波長に限
らない。g線(436nm)、KrFエキシマレーザ
光、ArFエキシマレーザ光等でも同様の結果が得られ
た。
Needless to say, the effect of the present invention does not depend on the exposure wavelength. In the above embodiment, the exposure wavelength is i
Although the example using the line (365 nm) is shown, the wavelength is not limited to this. Similar results were obtained with g-line (436 nm), KrF excimer laser light, ArF excimer laser light, and the like.

【0035】[0035]

【発明の効果】本発明によれば、半導体素子に小さい電
極配線導通孔を形成できた。
According to the present invention, a small electrode wiring hole can be formed in a semiconductor device.

【0036】本発明によれば、従来の透過型マスクに比
べて微細なパタンが形成できた。またホトマスクの作成
工程も従来の透過型マスクとほぼ同じであり、従来の位
相シフトマスクに比べ大幅に工程の簡略化が計れた。
According to the present invention, a finer pattern can be formed as compared with a conventional transmission mask. Also, the manufacturing process of the photomask is almost the same as that of the conventional transmissive mask, and the process is greatly simplified as compared with the conventional phase shift mask.

【0037】また、本発明のホトマスクを用いて半導体
素子を作成した結果、従来型のホトマスクに比べてパタ
ンの微細化が実現でき、素子面積の縮小化が実現でき
た。さらに焦点深度の向上に伴い、解像不良の発生も大
幅に改善できた。
Further, as a result of fabricating a semiconductor device using the photomask of the present invention, a pattern can be made finer and a device area can be reduced as compared with a conventional photomask. Further, with the increase in the depth of focus, the occurrence of poor resolution was also significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a),(b),(c)はそれぞれ本発明の一
実施の形態のホトマスクの断面図、透過光の振幅分布図
及び光強度図である。
FIGS. 1A, 1B, and 1C are a cross-sectional view, a transmission light amplitude distribution diagram, and a light intensity diagram of a photomask according to an embodiment of the present invention, respectively.

【図2】(a),(b),(c)はそれぞれ従来のホト
マスクの断面図、透過光の振幅分布図及び光強度図であ
る。
FIGS. 2A, 2B, and 2C are a cross-sectional view of a conventional photomask, an amplitude distribution diagram of transmitted light, and a light intensity diagram, respectively.

【図3】本発明の他の実施の形態の断面図である。FIG. 3 is a cross-sectional view of another embodiment of the present invention.

【図4】本発明の他の実施の形態の断面図である。FIG. 4 is a cross-sectional view of another embodiment of the present invention.

【図5】本発明の他の実施の形態の断面図である。FIG. 5 is a cross-sectional view of another embodiment of the present invention.

【図6】本発明の他の実施の形態の断面図である。FIG. 6 is a cross-sectional view of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 Cr膜 3 光透過部 4 半透明膜 6 薄いCr膜 7 塗布ガラス膜 8 エッチングストッパ 9 透明膜 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Cr film 3 Light transmission part 4 Translucent film 6 Thin Cr film 7 Coated glass film 8 Etching stopper 9 Transparent film

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G03F 1/00 - 1/16 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) G03F 1/00-1/16

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 露光光の透過率が30%以下の半透明な
領域及び位置合わせマーク部又は検出窓パタンを形成す
る遮光領域を有する基板を使用し、前記半透明な領域
透過した第1の光と、前記半透明な領域内に設けられた
開口部を透過した前記第1の光と位相が逆相である第2
の光とをレンズを通して投影することにより、電極配線
導通孔用のホールパタンをウエハ上の感光性材料の薄膜
に転写することを特徴とする電極配線導通孔の製造方
法。
1. A translucent area having a transmittance of exposure light of 30% or less and an alignment mark portion or a detection window pattern.
A substrate having a light-shielding region, the first light having passed through the translucent region and the first light having passed through an opening provided in the translucent region having phases opposite to each other. A certain second
A hole pattern for an electrode wiring conductive hole is transferred to a thin film of a photosensitive material on a wafer by projecting the light through a lens.
【請求項2】 前記第1および第2の光は、エキシマレ
ーザ光であることを特徴とする請求項1記載の電極配線
導通孔の製造方法。
2. The method according to claim 1, wherein the first and second lights are excimer laser light.
【請求項3】 前記半透明な領域は、ガラス基板上に設
けられた単一の膜であることを特徴とする請求項1また
は2に記載の電極配線導通孔の製造方法。
3. The method according to claim 1, wherein the translucent region is a single film provided on a glass substrate.
【請求項4】 前記半透明な領域は、多層膜であること
を特徴とする請求項1または2に記載の電極配線導通孔
の製造方法。
4. The method according to claim 1, wherein the translucent region is a multilayer film.
【請求項5】 前記開口部は、ガラス基板をエッチング
して形成されていることを特徴とする請求項1ないし4
の何れかに記載の電極配線導通孔の製造方法。
5. The method according to claim 1, wherein the opening is formed by etching a glass substrate.
The method for producing an electrode wiring conduction hole according to any one of the above.
【請求項6】 露光光の透過率が30%以下の半透明な
領域及び位置合わせマーク部又は検出窓パタンを形成す
る遮光領域を有する基板を使用し、前記半透明な領域
透過した第1の光と、前記半透明な領域内に設けられた
開口部を透過した前記第1の光と位相が逆相である第2
の光とをレンズを通して投影することにより、電極配線
導通孔用のホールパタンをウエハ上の感光性材料の薄膜
に転写することを特徴とする半導体装置の製造方法。
6. A translucent area having a transmittance of exposure light of 30% or less and an alignment mark portion or a detection window pattern.
A substrate having a light-shielding region, the first light having passed through the translucent region and the first light having passed through an opening provided in the translucent region having phases opposite to each other. A certain second
A hole pattern for an electrode wiring conductive hole is transferred to a thin film of a photosensitive material on a wafer by projecting the light through a lens.
【請求項7】 露光光に対して透明な領域と、前記透明
な領域の露光光の透過率を100%としたとき、透過率
が30%以下である半透明な領域と、位置合わせマーク
部又は検出窓パタンが形成された遮光領域とを有し、前
記透明な領域を透過した光と前記半透明な領域を透過し
た光とが互いに反転する第1の基板に光を透過させて、
レンズを通して投影することにより、電極配線導通孔用
のホールパタンをウエハ上の感光性薄膜に転写する工程
を有することを特徴とする半導体装置の製造方法。
7. An area that is transparent to exposure light, a translucent area having a transmittance of 30% or less when the transmittance of the transparent area is 100%, and an alignment mark.
Having a light-shielding region in which a portion or a detection window pattern is formed, and transmitting light to a first substrate in which light transmitted through the transparent region and light transmitted through the translucent region are inverted from each other,
A method for manufacturing a semiconductor device, comprising a step of transferring a hole pattern for an electrode wiring conduction hole to a photosensitive thin film on a wafer by projecting through a lens.
【請求項8】 露光光に対する透過率が30%以下の半
透明な領域と、前記半透明な領域内に設けられている透
明な領域と、位置合わせマーク部又は検出窓パタンを形
成する遮光領域とを有し、前記透明な領域を透過した光
の位相が前記半透明な領域を透過した光の位相と反転す
る第1の基板に光を透過させて、前記第1の基板に形成
された電極配線導通孔用のホールパタンを第2の基板に
レンズを通して投影しホールパタンを形成する工程を有
することを特徴とする半導体装置の製造方法。
8. A translucent area having a transmittance to exposure light of 30% or less, a transparent area provided in the translucent area, an alignment mark portion or a detection window pattern.
A light-shielding region formed, and transmitting light to a first substrate in which a phase of light transmitted through the transparent region is inverted with respect to a phase of light transmitted through the translucent region; Forming a hole pattern by projecting a hole pattern for an electrode wiring conduction hole formed on the second substrate through a lens onto a second substrate.
【請求項9】 第1の基板に感光性材料の薄膜を形成す
る工程、 第1の領域と、該第1の領域の光の透過率を100%と
したとき、透過率が30%以下である第2の領域と、
置合わせマーク部又は検出窓パタンを形成する遮光領域
とを有し、前記第1の領域を透過した光の位相は前記第
2の領域を透過した光の位相と反転するように形成され
ている第2の基板に光を照射し、前記第1の領域と前記
第2の領域を用いて電極配線導通孔用のホールパタン
を、前記第1の基板にレンズを通して投影する工程、及
び、 前記第1の基板を現像し、ホールパタンを形成する工
程、 を有することを特徴とする半導体装置の製造方法。
9. A step of forming a thin film of a photosensitive material on a first substrate, wherein the first region and the first region have a transmittance of 30% or less, where the transmittance of light is 100%. and a second region, place
A light-shielding region forming an alignment mark portion or a detection window pattern , wherein a phase of light transmitted through the first region is inverted from a phase of light transmitted through the second region. Irradiating a second substrate with light, projecting a hole pattern for an electrode wiring conduction hole through the lens on the first substrate using the first region and the second region; and Developing a substrate and forming a hole pattern.
JP2000007857A 1990-09-28 2000-01-17 Method for manufacturing electrode wiring conduction hole and method for manufacturing semiconductor device Expired - Lifetime JP3215394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000007857A JP3215394B2 (en) 1990-09-28 2000-01-17 Method for manufacturing electrode wiring conduction hole and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000007857A JP3215394B2 (en) 1990-09-28 2000-01-17 Method for manufacturing electrode wiring conduction hole and method for manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25698390A Division JP3105234B2 (en) 1990-09-28 1990-09-28 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2000147746A JP2000147746A (en) 2000-05-26
JP3215394B2 true JP3215394B2 (en) 2001-10-02

Family

ID=18536216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000007857A Expired - Lifetime JP3215394B2 (en) 1990-09-28 2000-01-17 Method for manufacturing electrode wiring conduction hole and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3215394B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10591786B2 (en) 2017-06-22 2020-03-17 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Mask structure and manufacturing method for array substrate
CN107153324B (en) * 2017-06-22 2019-09-13 深圳市华星光电半导体显示技术有限公司 Photomask structure and manufacturing method of array base plate

Also Published As

Publication number Publication date
JP2000147746A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
JP3105234B2 (en) Method for manufacturing semiconductor device
KR100263900B1 (en) Mask and the manufacturing method
JP3104284B2 (en) Pattern formation method
US5840447A (en) Multi-phase photo mask using sub-wavelength structures
US5888677A (en) Exposure mask, method of fabricating same, and method of manufacturing semiconductor device
US5876878A (en) Phase shifting mask and process for forming comprising a phase shift layer for shifting two wavelengths of light
JP2003524201A (en) Novel chromeless alternating reticle for manufacturing semiconductor device morphology
KR20020074546A (en) Phase shifting mask for manufacturing semiconductor device and fabricating method thereof
JP2641362B2 (en) Lithography method and manufacturing method of phase shift mask
JP3215394B2 (en) Method for manufacturing electrode wiring conduction hole and method for manufacturing semiconductor device
JPH10254122A (en) Photomask for exposure
JPS63216052A (en) Exposing method
JPH1115128A (en) Photomask and pattern formation using the same
JP3238921B2 (en) Method for manufacturing semiconductor device
JP2798796B2 (en) Pattern formation method
JP3110855B2 (en) Method of manufacturing projection exposure substrate and pattern forming method using this substrate
JP3110801B2 (en) Photomask manufacturing method and photomask
JPH08106151A (en) Phase shift mask and its production
JP3178516B2 (en) Phase shift mask
JP3469570B2 (en) Manufacturing method of exposure mask
JP2693805B2 (en) Reticle and pattern forming method using the same
JP3273986B2 (en) Light exposure mask plate and method of manufacturing the same
JPH0566554A (en) Photomask
JPH04368947A (en) Formation of phase shift mask
KR100523646B1 (en) Phase shifting mask with an assist pattern and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10