JP2790752B2 - Inspection method of cam assembly - Google Patents

Inspection method of cam assembly

Info

Publication number
JP2790752B2
JP2790752B2 JP16881592A JP16881592A JP2790752B2 JP 2790752 B2 JP2790752 B2 JP 2790752B2 JP 16881592 A JP16881592 A JP 16881592A JP 16881592 A JP16881592 A JP 16881592A JP 2790752 B2 JP2790752 B2 JP 2790752B2
Authority
JP
Japan
Prior art keywords
cam
camshaft
rotation angle
cam assembly
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16881592A
Other languages
Japanese (ja)
Other versions
JPH0611325A (en
Inventor
秀樹 大高
了 菅澤
博幸 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Jidosha Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Jidosha Kogyo KK filed Critical Hino Jidosha Kogyo KK
Priority to JP16881592A priority Critical patent/JP2790752B2/en
Publication of JPH0611325A publication Critical patent/JPH0611325A/en
Application granted granted Critical
Publication of JP2790752B2 publication Critical patent/JP2790752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、カム組立体のカム軸に
対するカムの実際の組み付け精度を、光学的に得られた
データを数値処理することにより的確に合否判定できる
ようにしたカム組立体の検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cam assembly in which the actual assembling accuracy of a cam with respect to a cam shaft of the cam assembly can be accurately determined by numerically processing data obtained optically. The inspection method.

【0002】[0002]

【従来の技術】車載エンジンに用いるエンジン組立カム
シャフトなどのカム組立体は、カム軸にこれとは別体の
カムを嵌入固着することで組み立てられており、このた
めカム組立体自体のカムの組み付け精度が問題となる。
しかし、こうしたカム組立体は、単品ごとに実際のカム
組み付け精度を検査しなければならず、カム周面の形状
特にその生命であるカムローブのカム面の形状を調べる
ため、従来は、カム軸回転角と軸芯からカム面までの距
離の関係を接触子を使って実測し、実測結果にもとづい
て最大リフト量を与えるカム軸回転角を割り出すように
していた。
2. Description of the Related Art A cam assembly such as an engine assembly camshaft used for a vehicle-mounted engine is assembled by inserting and fixing a separate cam to a camshaft. The assembly accuracy becomes a problem.
However, with such a cam assembly, it is necessary to inspect the actual cam assembly accuracy for each individual product, and to examine the shape of the cam peripheral surface, especially the shape of the cam surface of the cam lobe, which is the life of the cam assembly, the conventional cam shaft rotation The relationship between the angle and the distance from the shaft center to the cam surface was actually measured using a contact, and the camshaft rotation angle giving the maximum lift was determined based on the result of the measurement.

【0003】すなわち、具体的には図4に示したよう
に、まずカム組立体1のカム軸2の両端を適宜支承し、
カム軸2及びカム3が一体的に軸周りにのみ回転できる
ようにする。次に、カム面3aに対し上下方向にのみ変
位可能な状態でローラ付き接触子4のローラ4aを圧し
当て、カム軸2をゆっくりと回転させる。そして、カム
軸回転角θと接触子4の変位量すなわちリフト量Lの関
係を逐次データにとって計測し、計測データを単品ごと
に一覧表示するか又は二次元座標平面上にグラフ表示す
る。最後に、一覧表又はグラフにもとづき、検査者自身
が最大リフト量を与えるカム軸回転角θoが規定の許容
誤差範囲内にあるかどうかを判断し、許容範囲を外れて
いる場合はそのカム組立体を不良品であると判定するよ
うにしていた。
More specifically, as shown in FIG. 4, first, both ends of a cam shaft 2 of a cam assembly 1 are appropriately supported,
The camshaft 2 and the cam 3 can be integrally rotated only around the axis. Next, the roller 4a of the contact 4 with a roller is pressed against the cam surface 3a in a state where it can be displaced only in the vertical direction, and the cam shaft 2 is slowly rotated. Then, the relationship between the camshaft rotation angle θ and the displacement amount of the contact 4, that is, the lift amount L is sequentially measured using data, and the measured data is displayed as a list on a single item basis or as a graph on a two-dimensional coordinate plane. Finally, based on the list or the graph, the inspector himself determines whether or not the camshaft rotation angle θo giving the maximum lift is within a specified allowable error range. The three-dimensional object was determined to be defective.

【0004】[0004]

【発明が解決しようとする課題】上記従来のカム組立体
の検査方法は、接触子4を圧し当てた状態でカム軸2を
ゆっくりと回転させるまでは、いわばデータ採取のため
の最低限必要な作業とも言える。しかし、カム軸回転角
θとリフト量Lの関係を逐一データにとって計測し、計
測データを単品ごとに一覧表示したり或いは二次元座標
平面上にグラフ表示したりする作業は、すべて検査者自
身が手作業によって行わなければならず、しかも作業内
容の良否が合否判定そのものを左右しかねないにも拘わ
らず、経験だけが頼りであった。通常、カム軸2はリフ
ト量の極大点に近づくほど微小角度をもって回転させる
必要があり、回転角を固定した状態で接触子4の変位量
が読み取れるにしても、接触子4の最大変位を与えるカ
ム軸回転角θoでカム軸2を止めるのは至難の技であ
り、実際には求めんとするカム軸回転角θoの前後の回
転角のデータしか得られないのが普通である。従って、
計測結果を一覧表にして見ただけではリフト量Lの最大
値を与えるカム軸回転角θoが正確に割り出せないこと
が多く、一方また判定精度を高めるため計測結果をグラ
フ化するにしても、離散するプロットを曲線で結ぶ作業
は検査者の熟練に負わねばならず、このためグラフから
読み取った極大点にもとづく合否判定といえども個人差
が避けられないといった課題があった。また、一覧表を
用いるにせよグラフを用いるにせよ、カム組立体1単品
の検査にかなりの時間がかかるのは事実であり、作業能
率向上のための様々な工夫を講じたにしても、判定精度
を維持するためにはどうしてもデータ処理に割く時間を
短縮するわけにいかず、従来の検査方法は本質的に作業
効率が悪いといった課題があった。
The above-described conventional method for inspecting a cam assembly requires a minimum necessary for data collection until the camshaft 2 is slowly rotated with the contact 4 pressed. It can be called work. However, the work of measuring the relationship between the camshaft rotation angle θ and the lift amount L one by one for each data, and displaying the measured data in a list for each item or displaying the graph on a two-dimensional coordinate plane is all performed by the inspector himself. Despite having to be done manually and the quality of the work being able to influence the pass / fail decision itself, only experience has relied on it. Normally, the camshaft 2 needs to be rotated with a smaller angle as it approaches the maximum point of the lift amount. Even if the displacement amount of the contact 4 can be read with the rotation angle fixed, the maximum displacement of the contact 4 is given. Stopping the camshaft 2 at the camshaft rotation angle θo is an extremely difficult technique, and in practice, usually only data of rotation angles before and after the desired camshaft rotation angle θo can be obtained. Therefore,
It is often not possible to accurately determine the camshaft rotation angle θo that gives the maximum value of the lift amount L just by looking at the measurement results in a list. The work of connecting the discrete plots with a curve must take the skill of the inspector. Therefore, there is a problem that individual differences cannot be avoided even in the pass / fail judgment based on the maximum point read from the graph. In addition, it is a fact that it takes a considerable amount of time to inspect the cam assembly 1 alone, whether using a list or a graph, and even if various measures are taken to improve the work efficiency, the judgment is made. In order to maintain the accuracy, the time taken for data processing cannot be reduced inevitably, and the conventional inspection method has a problem that the working efficiency is essentially low.

【0005】本発明は、これらの点に鑑みてなされたも
のであり、カム軸にこれとは別体のカムを組み付けたカ
ム組立体を、検査者の経験によらず機械的に検査し、カ
ム組み付け精度の合否を自動判定することを目的とす
る。
The present invention has been made in view of these points, and a cam assembly in which a separate cam is assembled to a cam shaft is mechanically inspected regardless of the experience of an inspector. The purpose is to automatically determine whether the cam assembly accuracy is acceptable or not.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、カム軸にこれとは別体のカムを組み付け
たカム組立体に、前記カムのカム面を縦断する平行光を
投射し、前記カム軸を軸周りに回転させて軸芯からカム
面までの投影長とカム軸回転角の関係を計測し、計測結
果から前記関係を近似する曲線を求め、得られた近似曲
線から最大の投影長を与える前記カム軸回転角を算定
し、算定結果から前記カム組立体のカム組み付け精度を
合否判定することを特徴とするものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is directed to a cam assembly in which a separate cam is assembled to a camshaft to project parallel light that vertically traverses the cam surface of the cam. Then, the relationship between the projection length from the axis to the cam surface and the camshaft rotation angle is measured by rotating the camshaft around the axis, a curve approximating the relationship is obtained from the measurement result, and the obtained approximate curve is obtained. The camshaft rotation angle that gives the maximum projection length is calculated, and the accuracy of the cam assembly of the cam assembly is determined based on the calculation result.

【0007】[0007]

【作用】上記検査方法は、カム組立体にカム面を縦断す
る平行光を投射し、カム軸を軸周りに回転させながら軸
芯からカム面までの投影長とカム軸回転角の関係を計測
し、計測結果から求められる前記関係を近似する曲線か
ら最大の投影長を与える前記カム軸回転角を算定し、算
定結果からカム組立体のカム組み付け精度を合否判定す
ることにより、カム組立体のカム組み付け不良を自動判
定する。
The above inspection method projects parallel light that traverses the cam surface onto the cam assembly, and measures the relationship between the projection length from the axis to the cam surface and the cam shaft rotation angle while rotating the cam shaft around the axis. Then, the cam shaft rotation angle that gives the maximum projection length is calculated from a curve approximating the relationship obtained from the measurement result, and the cam assembly accuracy of the cam assembly is determined based on the calculation result. Automatically determine cam assembly failure.

【0008】[0008]

【実施例】以下、本発明の実施例について、図1ないし
図3を参照して説明する。図1は、本発明のカム組立体
の検査方法を適用したカム検査装置の一実施例を示す概
略斜視図、図2は、図1に示した関数処理判定器の動作
を説明するためのフローチャート、図3は、軸芯からカ
ム面までの投影長とカム軸回転角の関係を近似した近似
曲線の一例を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic perspective view showing an embodiment of a cam inspection apparatus to which the inspection method of a cam assembly according to the present invention is applied, and FIG. 2 is a flowchart for explaining the operation of the function processing determiner shown in FIG. FIG. 3 is a diagram showing an example of an approximate curve that approximates the relationship between the projection length from the axis to the cam surface and the camshaft rotation angle.

【0009】図1に示すカム検査装置11は、検査対象
であるカム組立体1を保持して軸周りに回転させる回転
駆動器12と、レーザ光を用いてカム組立体1のカム3
の外形を計測するレーザ外形測定器13と、レーザ外形
測定器13の測定結果から最大リフト量を与えるカム回
転角θoを割り出し、規定に照らして合否判定する関数
処理判定器14からなる。回転駆動器12は、検査しよ
うとするカム組立体1のカム軸2を片持ち支持或いは両
端支持し、カム軸2を偏芯させることなく正確に軸周り
に回転させる働きをするものであり、カム軸回転角θは
電気信号として外部出力される。
A cam inspection apparatus 11 shown in FIG. 1 comprises a rotation driver 12 for holding a cam assembly 1 to be inspected and rotating it around an axis, and a cam 3 of the cam assembly 1 using laser light.
And a function processing determiner 14 that determines the cam rotation angle θo that gives the maximum lift amount from the measurement result of the laser outer shape measuring device 13 and determines whether or not the cam rotation angle is acceptable according to the regulations. The rotation drive unit 12 supports the cam shaft 2 of the cam assembly 1 to be inspected in a cantilever manner or both ends, and functions to rotate the cam shaft 2 around the axis accurately without eccentricity. The camshaft rotation angle θ is externally output as an electric signal.

【0010】レーザ外形測定器13は、レーザ光発生器
15とレーザ光受光器16を外形計測対象の配置空間を
挟んで離間対向させたものであり、レーザ光発生器15
は半導体レーザ、八面ポリゴンミラー、反射ミラー及び
コリメータレーザ等を装備して半導体レーザによって発
射したレーザ光を八面ポリゴンミラー及び反射ミラーで
反射した後、コリメータレンズを通してレーザ光を平行
レーザ光線にして出射し、また該レーザ光発生器15と
対向して配置されたレーザ光受光器16の前方に受光レ
ンズ(図示せず)を配置し、該受光レンズで平行レーザ
光線をレーザ光受光器16内の受光素子16a上で焦点
が合致するように収光するもので、発光素子15aと受
光素子16aとを縦一列に配置してある。なお、検査に
際しては、カム3のカム面3aを縦断する平行レーザ光
が投射されるよう、カム組立体1はレーザ光発生器15
とレーザ光受光器16を結ぶレーザ光の光路面に対して
直交するよう配置される。
The laser contour measuring device 13 comprises a laser light generator 15 and a laser light receiver 16 which are opposed to each other with a space for measuring the contour being interposed therebetween.
Is equipped with a semiconductor laser, an octahedral polygon mirror, a reflecting mirror, a collimator laser, etc., and after reflecting the laser light emitted by the semiconductor laser with an octahedral polygon mirror and a reflecting mirror, the laser light is converted into a parallel laser beam through a collimator lens. A light-receiving lens (not shown) is provided in front of a laser light receiver 16 that emits light and is arranged to face the laser light generator 15, and a parallel laser beam is emitted by the light-receiving lens into the laser light receiver 16. The light-emitting elements 15a and the light-receiving elements 16a are arranged in a vertical line. At the time of inspection, the cam assembly 1 is connected to the laser light generator 15 so that a parallel laser beam that traverses the cam surface 3a of the cam 3 is projected.
The laser light receiver 16 and the laser light receiver 16 are arranged so as to be orthogonal to the optical path surface of the laser light.

【0011】関数処理判定器14は、レーザ光受光器1
6が出力するリフト量Lと回転駆動器12が出力するカ
ム軸回転角θを一対の計測データとして格納するバッフ
ァメモリ17と、バッファメモリ17に格納された計測
データ(θ1,L1),(θ2,L2),...から、リフ
ト量Lとカム軸回転角θの関係を近似する曲線を求め、
得られた近似曲線から最大リフト量を与えるカム軸回転
角θoを算定し、算定結果を規定に照らしてカム組立体
1の合否判定を下す演算処理ユニット18を有する。近
似曲線には、ここでは係数aと定数θo,Loが未知の
2次曲線が用いられ、カム軸2の回転角θを横軸に投影
長Lを縦軸にとって計測データを2次元座標平面上にプ
ロットしたときに、プロットされた点を最小の誤差で曲
線近似するため、最小二乗法を使って未知の係数aと定
数θo,Loが決定される。
The function processing determining unit 14 is a laser light receiving device 1
A buffer memory 17 for storing the lift amount L output by the motor 6 and the camshaft rotation angle θ output by the rotary driver 12 as a pair of measurement data; measurement data (θ 1 , L 1 ) stored in the buffer memory 17; (Θ 2 , L 2 ),. . . A curve approximating the relationship between the lift amount L and the camshaft rotation angle θ is obtained from
It has an arithmetic processing unit 18 that calculates the camshaft rotation angle θo that gives the maximum lift amount from the obtained approximate curve, and determines whether or not the cam assembly 1 is acceptable based on the calculation result. Here, a quadratic curve whose coefficient a and constants θo and Lo are unknown is used as the approximate curve. Measurement data is plotted on a two-dimensional coordinate plane with the rotation angle θ of the camshaft 2 as the horizontal axis and the projection length L as the vertical axis. In order to approximate the plotted point with a minimum error, the unknown coefficient a and the constants θo and Lo are determined using the least squares method.

【0012】測定に際しては、まずカム組立体1をカム
軸2の軸線がレーザ光発生器15とレーザ光受光器16
を結ぶレーザ光の光路面に対して直交するよう、回転駆
動器12に取り付ける。次に、レーザ光を発生させた状
態で、回転駆動器12を作動させる。これにより、カム
組立体1は、カム軸2の回転に合わせレーザ光の光路面
内でゆっくりと回転する。カム組立体1が回転すると、
回転駆動器12からカム軸2の回転角θを示す信号が関
数処理判定器14に供給される。
At the time of measurement, first, the cam assembly 1 is connected to the laser light generator 15 and the laser light
Is attached to the rotary driver 12 so as to be orthogonal to the optical path surface of the laser light connecting the two. Next, the rotation driver 12 is operated in a state where the laser light is generated. As a result, the cam assembly 1 slowly rotates in the optical path plane of the laser light in accordance with the rotation of the cam shaft 2. When the cam assembly 1 rotates,
A signal indicating the rotation angle θ of the camshaft 2 is supplied from the rotation driver 12 to the function processing determination unit 14.

【0013】関数処理判定器14は、回転駆動器12か
ら送り込まれる回転角θとレーザ光受光器16から送り
込まれるリフト量Lを、図2のステップ(101)に示
したように、測定点ごとに対にして(θ1,L1),(θ
2,L2),..のごとくバッファメモリ17に格納す
る。そして、カム軸2が1回転し終えたときに、続くス
テップ(102)に示したように、バッファメモリ17
に格納されたn個の計測データ(θ1,L1)〜(θn
n)中のLo〜Lo−ΔLの範囲にもとづいて最小二
乗法による関数近似を実行する。
The function processing determiner 14 calculates the rotation angle θ sent from the rotary driver 12 and the lift amount L sent from the laser beam receiver 16 as shown in step (101) of FIG. (Θ 1 , L 1 ), (θ
2 , L 2 ),. . Is stored in the buffer memory 17 as shown in FIG. Then, when the camshaft 2 has completed one rotation, as shown in the following step (102), the buffer memory 17
N measurement data (θ 1 , L 1 ) to (θ n ,
A function approximation by the least squares method is executed based on the range of Lo to Lo−ΔL in L n ).

【0014】ここでは、前述したように、関数近似に用
いる曲線は、3個の未知数a,θo,Loをもつ2次曲
Here, as described above, the curve used for function approximation is a quadratic curve having three unknowns a, θo, and Lo.

【数1】L=−a(θ−θo)2+Lo を実験式として策定してある。[Number 1] are established the L = -a (θ-θo) 2 + Lo as empirical formula.

【0015】最小二乗法では、二乗誤差の総和を最小と
するような値として未知数a,θo,Loを決定する
が、そのための演算ソフトウェアは演算処理ユニット1
8に内蔵させてある。ただし、極大点付近での双曲線近
似の近似精度を高めるため、近似に用いるカム軸回転角
θを図3に示した一定範囲θo±Δθ内のデータに限定
するようにしてもよい。その場合、Δθには経験値を用
いるが、θoは設計データ値を用いればよい。
In the least square method, the unknowns a, θo, and Lo are determined as values that minimize the sum of the square errors.
8 is built in. However, in order to increase the approximation accuracy of the hyperbolic approximation near the local maximum point, the camshaft rotation angle θ used for the approximation may be limited to data within the fixed range θo ± Δθ shown in FIG. In this case, an empirical value is used for Δθ, but a design data value may be used for θo.

【0016】こうして、最小二乗法による近似により双
曲線の関数波形が決定されたならば、dL/dθ=0を
与える極大点を求める。ただし、ここでは実験式として
2次曲線を策定しているため、単純にθ=θoが求める
カム軸回転角となる。従って、最大リフト量を与えるカ
ム軸回転角θoはステップ(102)の段階で算定され
る。そこで、次にカム組立体1に設計段階で指定された
規定のカム軸回転角θsとカム軸回転角θoを比較する
ため、ステップ(103)において両者の差分θo−θ
sを演算する。そしてさらに、続くステップ(104)
において差分θo−θsの絶対値が所定の許容公差ε以
下であるかどうかを判定する。
When the hyperbolic function waveform is determined by the least square method approximation, the maximum point that gives dL / dθ = 0 is obtained. However, here, since a quadratic curve is formulated as an empirical formula, θ = θo is simply the camshaft rotation angle to be obtained. Therefore, the camshaft rotation angle θo giving the maximum lift amount is calculated in the step (102). Then, in order to compare the specified camshaft rotation angle θs and the camshaft rotation angle θo specified in the design stage for the cam assembly 1, in step (103), the difference θo−θ
Calculate s. And further, the following step (104)
It is determined whether or not the absolute value of the difference θo−θs is equal to or smaller than a predetermined allowable tolerance ε.

【0017】│θo−θs│<εである場合は、ステッ
プ(105)においてカム組立体1に対して合格判定が
なされる。しかし、そうでない場合はステップ(10
6)において不良品として不合格判定がなされる。
If | θo−θs | <ε, a pass determination is made for the cam assembly 1 in step (105). However, if not, step (10)
In 6), rejection is determined as a defective product.

【0018】一般に、カム面3aが連続的に変化するカ
ム3の投影長は、極大点の前後で滑らかに変化するた
め、近似曲線の係数aと定数θo,Loを決定する上
で、近似曲線上にすべての点をプロットする必要はな
く、数点の離散データにもとづいて決定された近似曲線
から求まる極大点から、最大リフト量を与えるカム軸回
転角θoを十分正確に算定することができる。このた
め、カム軸回転角θとリフト量Lの関係を示す計測デー
タのなかから、検査者の経験に頼って極大点を探し出す
従来の方法と異なり、合否判定を含め一貫して信頼のお
ける検査が可能である。
In general, the projection length of the cam 3 in which the cam surface 3a changes continuously changes smoothly before and after the maximum point, so that when determining the coefficient a of the approximate curve and the constants θo and Lo, the approximate curve It is not necessary to plot all points on the top, and the camshaft rotation angle θo giving the maximum lift can be calculated sufficiently accurately from the maximum point obtained from the approximate curve determined based on several discrete data. . Therefore, unlike the conventional method of finding the maximum point based on the experience of the inspector from the measurement data indicating the relationship between the camshaft rotation angle θ and the lift amount L, the inspection including the pass / fail judgment is consistently and reliably performed. Is possible.

【0019】また。上記カム検査装置11は、リフト量
Lとカム軸回転角θの関係を示す計測データを、あらか
じめ策定した未知の曲線により近似し、最小二乗法によ
り近似曲線を決定するようにしたので、曲線の漸近線の
交点を示す座標そのものが、最大リフト量を与えるカム
軸回転角θoとして曲線の関数式中に含まれ、従って求
めた近似曲線の極大値を微分演算等により求めるといっ
た手続きを踏むことなく、即座に合否判定に着手するこ
とができる。
Also, Since the cam inspection device 11 approximates the measurement data indicating the relationship between the lift amount L and the camshaft rotation angle θ with an unknown curve prepared in advance and determines an approximate curve by the least squares method, The coordinates themselves indicating the intersection of the asymptote are included in the function formula of the curve as the camshaft rotation angle θo that gives the maximum lift amount, and therefore, without having to take the procedure of finding the maximum value of the obtained approximate curve by differential operation or the like. , It is possible to immediately start the pass / fail judgment.

【0020】なお、近似曲線としては、二次曲線に限定
されず、最大リフト量を極大値として有する上に凸の曲
線であれば、楕円の一部或いは3次以上の関数曲線など
でもよく、カム3の設計資料を参考に予想される投影デ
ータを考慮して随意策定するとよい。
The approximate curve is not limited to a quadratic curve, and may be a part of an ellipse or a cubic or higher function curve as long as it is an upwardly convex curve having the maximum lift as a maximum value. It may be arbitrarily determined in consideration of projection data expected with reference to the design data of the cam 3.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
カム組立体にカム面を縦断する平行光を投射し、カム軸
を軸周りに回転させながら軸芯からカム面までの投影長
とカム軸回転角の関係を計測し、計測結果から求められ
る前記関係を近似する曲線から最大の投影長を与える前
記カム軸回転角を算定し、算定結果からカム組立体のカ
ム組み付け精度を合否判定するようにしたから、カム面
が連続的に変化するカムの投影長もまた極大点の前後で
滑らかに変化する点に着目すれば、近似曲線の係数と定
数を決定する上で数点の離散データがあればよく、決定
された近似曲線から算定される極大点から、最大リフト
量を与えるカム軸回転角を正確に割り出すことができ
る。仮に実際の極大点が2点のデータに中間に埋もれて
しまったとしても、近似曲線の精度の範囲で正確に極大
点を算定することができ、これによりこれまで検査者の
経験に頼って判定していたカム組立体単品の検査時間を
大幅に短縮し、検査効率を良好に向上させることができ
る等の優れた効果を奏する。
As described above, according to the present invention,
Projecting parallel light that traverses the cam surface to the cam assembly, measuring the relationship between the projection length from the axis center to the cam surface and the cam shaft rotation angle while rotating the cam shaft around the axis, and calculating the relationship from the measurement result. The cam shaft rotation angle that gives the maximum projection length is calculated from the curve approximating the relationship, and the cam assembly accuracy of the cam assembly is determined based on the calculation result. If attention is paid to the point where the projection length also changes smoothly before and after the maximum point, only a few points of discrete data are required to determine the coefficients and constants of the approximate curve, and the maximum calculated from the determined approximate curve is sufficient. From this point, it is possible to accurately determine the camshaft rotation angle that gives the maximum lift. Even if the actual maximum point is buried in the middle of the data of the two points, the maximum point can be calculated accurately within the range of the accuracy of the approximated curve, thereby making a decision based on the experience of the inspector. The present invention has excellent effects such as significantly shortening the inspection time of the cam assembly alone, which can improve the inspection efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のカム組立体の検査方法を適用したカム
検査装置の一実施例を示す概略斜視図である。
FIG. 1 is a schematic perspective view showing an embodiment of a cam inspection apparatus to which a cam assembly inspection method according to the present invention is applied.

【図2】図1に示した関数処理判定器の動作を説明する
ためのフローチャートである。
FIG. 2 is a flowchart for explaining the operation of the function processing determiner shown in FIG. 1;

【図3】軸芯からカム面までの投影長とカム軸回転角の
関係を近似した近似曲線の一例を示す図である。
FIG. 3 is a diagram illustrating an example of an approximate curve that approximates a relationship between a projection length from a shaft center to a cam surface and a cam shaft rotation angle.

【図4】従来のカム組立体の検査方法を説明するための
図である。
FIG. 4 is a view for explaining a conventional cam assembly inspection method.

【符号の説明】[Explanation of symbols]

1 カム組立体 2 カム軸 3 カム 3a カム面 11 カム検査装置 12 回転駆動器 14 関数処理判定器 REFERENCE SIGNS LIST 1 cam assembly 2 cam shaft 3 cam 3 a cam surface 11 cam inspection device 12 rotation driver 14 function processing judgment unit

フロントページの続き (56)参考文献 特開 昭56−103304(JP,A) 特開 平4−132906(JP,A) 実開 昭61−139409(JP,U) (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 F16H 51/00 - 55/30Continued on the front page (56) References JP-A-56-103304 (JP, A) JP-A-4-132906 (JP, A) JP-A-61-139409 (JP, U) (58) Fields investigated (Int) .Cl. 6 , DB name) G01B 11/00-11/30 F16H 51/00-55/30

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 カム軸にこれとは別体のカムを組み付け
たカム組立体に、前記カムのカム面を縦断する平行光を
投射し、前記カム軸を軸周りに回転させて軸芯からカム
面までの投影長とカム軸回転角の関係を計測し、計測結
果から前記関係を近似する曲線を求め、得られた近似曲
線から最大の投影長を与える前記カム軸回転角を算定
し、算定結果から前記カム組立体のカム組み付け精度を
合否判定することを特徴とするカム組立体の検査方法。
1. A cam assembly in which a separate cam is assembled to a camshaft. A parallel light projecting parallel to a cam surface of the cam is projected, and the camshaft is rotated around the axis to move the camshaft from the shaft center. Measure the relationship between the projection length to the cam surface and the camshaft rotation angle, determine a curve that approximates the relationship from the measurement results, calculate the camshaft rotation angle that gives the maximum projection length from the obtained approximate curve, A method for inspecting a cam assembly, comprising determining whether or not the cam assembly accuracy of the cam assembly is acceptable based on the calculation result.
【請求項2】 前記近似曲線は、前記軸芯からカム面ま
での投影長とカム軸回転角の関係を示す計測結果を、あ
らかじめ策定した係数及び定数が未知の実験式により近
似し、該未知の係数及び定数を最小二乗法により決定し
て求めることを特徴とする請求項1記載のカム組立体の
検査方法。
2. The approximate curve is obtained by approximating a measurement result indicating a relationship between a projection length from the axis center to a cam surface and a rotation angle of a cam shaft by an empirical formula whose coefficients and constants are determined in advance. 2. The method for inspecting a cam assembly according to claim 1, wherein the coefficient and the constant are determined by the least square method.
JP16881592A 1992-06-26 1992-06-26 Inspection method of cam assembly Expired - Fee Related JP2790752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16881592A JP2790752B2 (en) 1992-06-26 1992-06-26 Inspection method of cam assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16881592A JP2790752B2 (en) 1992-06-26 1992-06-26 Inspection method of cam assembly

Publications (2)

Publication Number Publication Date
JPH0611325A JPH0611325A (en) 1994-01-21
JP2790752B2 true JP2790752B2 (en) 1998-08-27

Family

ID=15875016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16881592A Expired - Fee Related JP2790752B2 (en) 1992-06-26 1992-06-26 Inspection method of cam assembly

Country Status (1)

Country Link
JP (1) JP2790752B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102281505B1 (en) * 2020-03-31 2021-07-26 텔스타홈멜 주식회사 System for checking fault assembling cam piece

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087824B2 (en) * 2018-08-23 2022-06-21 株式会社デンソー Angle detection device and angle detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102281505B1 (en) * 2020-03-31 2021-07-26 텔스타홈멜 주식회사 System for checking fault assembling cam piece

Also Published As

Publication number Publication date
JPH0611325A (en) 1994-01-21

Similar Documents

Publication Publication Date Title
US6559936B1 (en) Measuring angles of wheels using transition points of reflected laser lines
US8760666B2 (en) Method and apparatus for measuring spacings between optical surfaces of an optical system
US4898470A (en) Apparatus and method for testing circular cylindrical or conical surfaces
JPH08208376A (en) Method for measuring crucible
JP2790752B2 (en) Inspection method of cam assembly
JP2002257511A (en) Three dimensional measuring device
JP3127003B2 (en) Aspherical lens eccentricity measurement method
CN114858097B (en) Laser radar rotating mirror included angle measuring method and measuring device
US7321421B2 (en) Apparatus and methods for scanning conoscopic holography measurements
JPH07253304A (en) Multi-axial positioning unit and length measuring method therefor
US4595288A (en) Method and apparatus for measuring deep mirrors
JPH09196612A (en) Method for adjusting position of body to be inspected of optical interference device
JPH05223537A (en) Shape measuring method and shape measuring system
JP2002340535A (en) Method and apparatus for measuring tilt angle of mirror surface
JP4267781B2 (en) Interferometry apparatus and interference measurement method
CN113587845B (en) Large-aperture lens contour detection device and detection method
JP2891410B2 (en) Method and apparatus for measuring three-dimensional shape and normal vector of specular object
JPH02272308A (en) Non-contact type shape measuring instrument
JP4267780B2 (en) Interference measuring apparatus and interference measuring method
JP3041063B2 (en) Method and apparatus for measuring toroidal surface
JPH09189545A (en) Distance measuring device
JPS59147206A (en) Object shape inspecting apparatus
JPH10260012A (en) Inspecting device for hard disk surface
JP2847932B2 (en) Measuring method of angle deviation of polygon mirror
JPH06201344A (en) Measurement of surface to be inspected

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees