JPS59147206A - Object shape inspecting apparatus - Google Patents

Object shape inspecting apparatus

Info

Publication number
JPS59147206A
JPS59147206A JP58022285A JP2228583A JPS59147206A JP S59147206 A JPS59147206 A JP S59147206A JP 58022285 A JP58022285 A JP 58022285A JP 2228583 A JP2228583 A JP 2228583A JP S59147206 A JPS59147206 A JP S59147206A
Authority
JP
Japan
Prior art keywords
object shape
light beam
light
data
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58022285A
Other languages
Japanese (ja)
Other versions
JPH023447B2 (en
Inventor
Masahito Nakajima
雅人 中島
Hiroyuki Tsukahara
博之 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58022285A priority Critical patent/JPS59147206A/en
Publication of JPS59147206A publication Critical patent/JPS59147206A/en
Publication of JPH023447B2 publication Critical patent/JPH023447B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/859Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10161Shape being a cuboid with a rectangular active surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain automation and improvement in accuracy by an apparatus wherein an irradiation angle of a light beam is varied relative to the image picked-up surface, and three-dimensional address of the focused point is detected from a moving angle signal of the light beam and an X-Y address signal of an image pickup device. CONSTITUTION:A light irradiation angle of a light projector 7 for irradiating a light beam to an inspected object 6 is varied by a light projector driving unit 8 to a minute extent. With this, a contour map of the surface of the inspected object 6 is depicted in the form of bright lines and read by an image pickup device 9. Individual reading points are scanned by an image pickup device driver of a bright point position detecting circuit 10, and X, Y scanning clock pulses as well as binary-coded brightness signal pulses at that time are input to an object shape detecting circuit 11. Meanwhile, drive control clock pulses for driving the light projector 7 are input from the light projector driving unit 8 to the object shape detecting circuit 11. The position on Z-axis is determined from those data, and the detected position data and the content of an object shape reference data memory 12 are inspected in a comparative inspection circuit 13.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は非接触方式の物体形状検査装置に係り、とくに
物体の3次元形状を光学的手法を用い”ζ自動的に検査
する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a non-contact object shape inspection device, and more particularly to a device that automatically inspects the three-dimensional shape of an object using an optical method.

(b)技術の背景 従来、集積回路等のワイヤーボンダ加工後におけるワイ
ヤーループのような物体に対する非接触方式の形状検査
は、一般に光学顕微鏡を用いる目視検査によって行われ
ていたのであるが、検査の迅速化、正確化のために自動
検査の導入が要望されていた。
(b) Background of the technology Conventionally, non-contact shape inspection of objects such as wire loops after wire bonding processing of integrated circuits etc. was generally performed by visual inspection using an optical microscope. There was a demand for the introduction of automatic testing for speed and accuracy.

(C)従来技術と問題点 上記従来の光学顕微鏡を用いる検査においては、検査能
率が低いことおよび人為的誤差を伴いやすいこと等の問
題の他に、前記ループ形状を定量的に把握するのが困難
であるという欠点があった。
(C) Prior art and problems In the inspection using the conventional optical microscope described above, in addition to problems such as low inspection efficiency and easy to be accompanied by human error, it is difficult to quantitatively understand the loop shape. The drawback was that it was difficult.

すなわち、数100μm程度の高低差を以て湾曲して張
られた前記ワイヤーループの高さ方向の位置を、光学I
fi微鏡を用いて数10μm程度の詳しさで測定しよう
としても、光学系の焦点深度方向においては十分な測定
精度を得ることが困難であるからである。
That is, the position in the height direction of the wire loop, which is curved and stretched with a height difference of about several hundred micrometers, is determined using an optical I.
This is because even if an attempt is made to measure with a precision of several tens of micrometers using an FI microscope, it is difficult to obtain sufficient measurement accuracy in the depth of focus direction of the optical system.

このように、従来の方法においては検査の自動化゛以前
に解決すべき問題点を有していたのである。
As described above, the conventional methods had problems that needed to be solved before testing could be automated.

(d)発明の目的 本発明は、高精度かつ自動的に、例えばワイヤーループ
のような物体の3次元方向の寸法測定が可能な装置を提
供することを目的とする。
(d) Object of the Invention The object of the present invention is to provide an apparatus capable of measuring the three-dimensional dimensions of an object, such as a wire loop, with high precision and automatically.

(e)発明の構成 本発明は、光線投射器と撮像装置と光点位置検出回路と
から成る物体形状検出回路置において、撮像面に対する
光線の投射角を変えるための光線投射型駆動装置と、該
光線投射型駆動装置の移動角度信号と前記撮像装置のX
−Yアドレス信号とから光点の3次元アドレスを検出す
る物体形状検出回路とを設け、必要に応じて物体形状基
準データを格納したメモリー装置と、前記物体形状検出
回路からのデータを該メモリー装置のデータとを比較す
るための比較検査回路とを設け、該比較検査回路により
比較データの差を許容値と比較し、さらにまた必要に応
じて撮像装置のXおよびYアドレスそれぞれの範囲によ
って前記許容値を変えることを特徴とする。
(e) Structure of the Invention The present invention provides a light projection drive device for changing the projection angle of the light beam with respect to the imaging surface in an object shape detection circuit device comprising a light beam projector, an imaging device, and a light spot position detection circuit; The movement angle signal of the light beam projection drive device and the X of the imaging device
- an object shape detection circuit that detects the three-dimensional address of the light spot from the Y address signal, and a memory device that stores object shape reference data as necessary; The comparison test circuit compares the difference in the comparison data with the tolerance value, and if necessary, the tolerance value is determined according to the respective ranges of the X and Y addresses of the imaging device. Characterized by changing values.

(f)発明の実施例 以下に本発明の実施例を集積回路におけるワイヤールー
プの形状検査を例に採り、図面を参照して説明する。
(f) Embodiments of the Invention Embodiments of the present invention will be described below with reference to the drawings, taking shape inspection of a wire loop in an integrated circuit as an example.

第1図は集積回路パッケージ内におけるワイヤーループ
の配線状態の例を示す図であって、パッケージ1上の1
3−ド電極2とICチップ3上のバンド電極4との間に
は、直径20〜30μm程度のワイヤー51が、1辺あ
たり数〜IO本程度の割合で配線されている。
FIG. 1 is a diagram showing an example of the wiring state of wire loops in an integrated circuit package, in which
Between the third electrode 2 and the band electrode 4 on the IC chip 3, wires 51 having a diameter of about 20 to 30 μm are wired at a ratio of several to IO wires per side.

ワイヤー51は、第2図(断面図)に示すように、その
中央部が両端のボンディング部から所定の高さを以て湾
曲するループ状を成すようにして、ワイヤーボンダによ
って自動的に配線される。以下該ワイヤー51をワイヤ
ーループ5と呼ぶ。
As shown in FIG. 2 (cross-sectional view), the wire 51 is automatically wired by a wire bonder so that its central portion forms a loop shape curved at a predetermined height from the bonding portions at both ends. Hereinafter, the wire 51 will be referred to as the wire loop 5.

しかしながら、実際には第3図に示すような種々の湾曲
状態の形状のワイヤーループ5が存在することがある。
However, in reality, wire loops 5 having various curved shapes as shown in FIG. 3 may exist.

第3図において、(A)はワイヤーループ5が垂下しI
Cチップ3の端部に接触した場合、(B)は゛ワイヤー
ループ5の高さが異常に大きく配線された場合、(C)
はワイヤーループ5の高さが不足して配線された場合で
、それぞれノイズの発生等の不良、パッケージに蓋を取
付けた際に該ワイヤーループ5の湾曲形状が押し潰され
、隣接する他のワイヤーループと短絡する等の不良、I
Cチップ3上に形成されている配線パターンと短絡する
不良等を生じる可能性がある。
In FIG. 3, (A) shows that the wire loop 5 is hanging down and I
If the end of the C chip 3 is contacted, (B) is ``If the height of the wire loop 5 is abnormally large, (C)
The above is a case where the wire loop 5 is wired with an insufficient height, resulting in defects such as noise generation, the curved shape of the wire loop 5 being crushed when the lid is attached to the package, and other adjacent wires being Defects such as short circuit with the loop, I
There is a possibility that defects such as short circuit with the wiring pattern formed on the C chip 3 may occur.

以上の理由により、ワイヤーループ5の形成後にその形
状を検査することが必要となる。
For the above reasons, it is necessary to inspect the shape of the wire loop 5 after it is formed.

第4図は本発明に係る形状検査装置の機能ブロック図で
あって、被検査物体6 (例えば前記パ・ンケージ1上
のワイヤーループ5)に対して光線投射器7から光線を
投射する。
FIG. 4 is a functional block diagram of the shape inspection apparatus according to the present invention, in which a light beam is projected from a light beam projector 7 onto an object to be inspected 6 (for example, the wire loop 5 on the package 1).

光線投射器7は光線投射型駆動装置8によって被検査物
体6に対する光線投射角度を微少に変化される。これに
より、被検査物体6における投射光線の位置レベルが微
少変化する。すなわち各位置レベルに対応して被検査物
体6表面の等高線図が輝線として描かれることになる。
The beam projector 7 is configured to slightly change the beam projection angle with respect to the object to be inspected 6 by a beam projection drive device 8 . As a result, the position level of the projected light beam on the object to be inspected 6 changes slightly. That is, a contour map of the surface of the object to be inspected 6 is drawn as bright lines corresponding to each position level.

この各位置レベルにおする該等高線図を撮像装置9によ
って読取る。該撮像装置9としては、例えばCCDのよ
うな固体撮像素子を用いた装置が好適である。
The contour map at each position level is read by the imaging device 9. As the imaging device 9, a device using a solid-state imaging device such as a CCD is suitable, for example.

撮像装置9上の各読取点は光点位置検出回路10の撮像
装置ドライバによって走査され、その時のX走査クロッ
クパルス、Y走査クロックパルス、および該2値化輝度
信号パルスが物体形状検出回路11に入力される。
Each reading point on the imaging device 9 is scanned by the imaging device driver of the light spot position detection circuit 10, and the X scanning clock pulse, Y scanning clock pulse, and the binarized luminance signal pulse at that time are sent to the object shape detection circuit 11. is input.

一方、光線投射器7を駆動させるための駆動制御クロッ
クパルスが前記光線投射器駆動装W8から該物体形状検
出回路11に入力される。
On the other hand, a drive control clock pulse for driving the beam projector 7 is inputted to the object shape detection circuit 11 from the beam projector driving device W8.

これらのクロックパルスのそれぞれは、第5図に示すよ
うに、物体形状検出回路11内のXアドレスカウンター
、Xアドレスカウンターおよび2アドレスカウンターに
より計数され、各読取点に対する各カウンター値から該
読取点の3次元位置データが決められ、前記2値化輝度
データがオンである該位置データのみがメモリ (物体
形状検出回路11に内蔵)に格納される。
As shown in FIG. 5, each of these clock pulses is counted by an X address counter, an Three-dimensional position data is determined, and only the position data for which the binarized luminance data is on is stored in the memory (built in the object shape detection circuit 11).

゛すなわち、上記データから任意のZアドレスのデータ
を選び出してプロットすれば、前記等高線図が描かれる
のである。また、例えば上記位置データをX−Y平面を
基準面とする極座標系に変換し、任意の方位角のデータ
を選び出してプロットずれば、被検査物体6を前記Z方
向に平行な平面で切った場合の断面プロフィールが得ら
れる。
In other words, by selecting data at an arbitrary Z address from the above data and plotting it, the contour map can be drawn. For example, if the above position data is converted to a polar coordinate system with the X-Y plane as the reference plane, and data at an arbitrary azimuth angle is selected and plotted, it is possible to cut the object 6 to be inspected on a plane parallel to the Z direction. The cross-sectional profile of the case is obtained.

ところで、前記ワイヤーループの形状検査においては、
該ワイヤーループのχ−■平面内における所定位置から
のずれは比較的小さい。検査ずべき項目としては、とく
に上記断面プロフィール、Z方向位置座標を知ることが
重要であり、これは上記のような方法によって得られた
断面プロフィールをCRT表示装置等に拡大して表示す
ることによって、従来よりも正確かつ容易に検査するこ
とが可能となる。
By the way, in the shape inspection of the wire loop,
The deviation of the wire loop from the predetermined position in the χ-■ plane is relatively small. As items to be inspected, it is especially important to know the above-mentioned cross-sectional profile and Z-direction position coordinates. , it becomes possible to perform inspection more accurately and easily than before.

あるいは、第4図に示すように物体形状基準データメモ
リ12と比較検査回路13を設レノ、前記物体形状検出
回路11に格納されている検出位置データと該物体形1
に基準データメモ1月2の基準データとを図形表示して
比較するか(第6図)、または該比較検査回路13によ
って両データの差を求め、これを図形表示等で出力して
もよく、さらにまた比較検査回路13に各基準データに
対応して偏差許容値(±ΔZo)を設定しておき、上記
検出位置データと基準データとの差ΔZと該ΔZOとの
大小を検証し、その結果から形状の良否判定を自動的に
行うようにすることも可能である(第7図)。
Alternatively, as shown in FIG. 4, an object shape reference data memory 12 and a comparison inspection circuit 13 are installed, and the detected position data stored in the object shape detection circuit 11 and the object shape 1
Then, the reference data of the reference data memo January 2 may be graphically displayed and compared (Fig. 6), or the comparison test circuit 13 may be used to determine the difference between both data and this may be output in a graphical display, etc. Furthermore, a deviation tolerance value (±ΔZo) is set in the comparative inspection circuit 13 corresponding to each reference data, and the magnitude of the difference ΔZ between the detected position data and the reference data and the ΔZO is verified. It is also possible to automatically determine whether the shape is good or bad based on the results (FIG. 7).

ところで、第3図(A)および(C)に示したような形
状不良を検出するためには、リード電極2およびパッド
電極4近傍におけるワイヤーループの形状を厳しく吟味
する必要がある。このために、第8図に示すように、該
両電極近傍においては上記偏差許容値Δzoを小さい値
ΔZosに設定することによって、このような目的の自
動形状検査が可能となる。
Incidentally, in order to detect shape defects as shown in FIGS. 3A and 3C, it is necessary to carefully examine the shape of the wire loop in the vicinity of the lead electrode 2 and pad electrode 4. For this reason, as shown in FIG. 8, by setting the deviation tolerance value Δzo to a small value ΔZos in the vicinity of both electrodes, automatic shape inspection for this purpose becomes possible.

なお、第8図においては、前記リード電極近傍とパッド
電極近傍とでは、それぞれ異なる偏差許容値ΔZosl
、ΔZO511を設定した場合を示しである。
In addition, in FIG. 8, the deviation tolerance value ΔZosl is different in the vicinity of the lead electrode and in the vicinity of the pad electrode.
, ΔZO511 are set.

第9図に本発明に係る物体形状検査装置における光学系
の構成例を示す。
FIG. 9 shows an example of the configuration of an optical system in an object shape inspection apparatus according to the present invention.

レーザ等の光源14から出射した光線が前記ワイヤール
ープ等の被検査物体6上に焦点を結ぶように、レンズ1
5を設定する。該光線は反射鏡16と回転駆動機構17
から成る前記光線□投射器により被検査物体6方向に反
射される。この場合、回転駆動機構17は前記光線投射
器駆動装置8からの制御信号によって駆動され、光線を
図上Z軸方向(すなわら被検査物体6面に垂直方向)に
走査するように反射鏡16を回転させる。
The lens 1 is arranged so that the light beam emitted from the light source 14 such as a laser is focused on the object to be inspected 6 such as the wire loop.
Set 5. The light beam is transmitted through a reflecting mirror 16 and a rotational drive mechanism 17.
The light beam □ is reflected in the direction of the object to be inspected 6 by the projector. In this case, the rotational drive mechanism 17 is driven by a control signal from the light beam projector drive device 8, and rotates the reflecting mirror so as to scan the light beam in the Z-axis direction (in other words, perpendicular to the surface of the object to be inspected). Rotate 16.

反射鏡16からの反射光は、別の駆動機構を用いて図上
に−Y平面に平行な方向にも走査する必要があるが、簡
単には、第10図に示すようにシリンドリカルレンズ1
8を用いて扇形ビーム状に投射してもよい。
Although it is necessary to scan the reflected light from the reflecting mirror 16 in a direction parallel to the -Y plane on the figure using another drive mechanism, it is easy to scan the reflected light from the cylindrical lens 1 as shown in FIG.
8 may be used to project in a fan-shaped beam.

上記のようにして光線をZ軸方向に、被検査物体6上で
例えば20μmの間隔で飛び飛びに移動させ、この間隔
の各ステップにおいて、前記撮像装置9によりX−Y面
内における読取りが行われる。
As described above, the light beam is moved in the Z-axis direction on the object to be inspected 6 at intervals of, for example, 20 μm, and at each step of this interval, the imaging device 9 performs reading in the X-Y plane. .

前記ワイヤーループの検査の場合には、通常10〜20
ステツプにおける読取りが行われ、300μm程度の高
さの範囲における形状データが読取られる。第11図は
この様子を示す模式図であり、同図(B)においてa、
b、c、・・・は上記Z軸方向におけるステップを示し
、各ステップにおいてワイヤーループが光照射されて生
じる光点a1、C2、bl、b2、C1、C2、・・・
のX−Y平面上における位置映像は同図(A)のように
なり、該光点位置映像が前記撮像装置9により読取られ
る。
In the case of the wire loop inspection, usually 10 to 20
Reading is performed in steps, and shape data in a height range of about 300 μm is read. FIG. 11 is a schematic diagram showing this situation, and in FIG. 11 (B), a,
b, c, . . . indicate steps in the Z-axis direction, and in each step, light spots a1, C2, bl, b2, C1, C2, . . . are generated when the wire loop is irradiated with light.
The position image on the X-Y plane is as shown in FIG.

(g)発明の効果 本発明によれば、物体の3次元形状を迅速かつ高精度で
、かつまた自動的に検査できる装置を堤供可能とする効
果がある。
(g) Effects of the Invention According to the present invention, it is possible to provide a device that can inspect the three-dimensional shape of an object quickly, with high precision, and automatically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図までは集積回路におけるワイヤールー
プの配線位置とその形状例を示す図、第4図と第5図は
本発明に係る物体形状検査装置の機能ブロック図、第6
図から第8図までは本発明に係る物体形状検査゛装置に
おける読取データと基準データとの比較方法の例を説明
するための図、第・9図から第11図までは本発明に係
る物体形状検査装置における光学系の構成等を説明する
ための図である。 図において1は集積回路パッケージ、2はリード電極、
3はICチップ、4はパッド電極、5はワイヤーループ
、6は被検査物体、7は光線投射器、8は光線投射器駆
動装置、9は撮像装置、IOは光〜点位置検出回路、1
1は物体形状検出回路、12は物体形状基準データメモ
リ、13は比較検査回路、14はレーザ等の光源、15
はレンズ、16は反射鏡、17は回転駆動機構、18は
シリンドリカルレンズ、第j 図 第2図 とA )                   とb
 )                 (C)第3−
図 0 秦 4 口1 〆 集7シj 争q図 不1(ν] (A)        (Bン 2 千−
1 to 3 are diagrams showing wiring positions of wire loops in an integrated circuit and examples of their shapes; FIGS. 4 and 5 are functional block diagrams of the object shape inspection device according to the present invention;
8 to 8 are diagrams for explaining an example of a method of comparing read data and reference data in the object shape inspection device according to the present invention, and FIGS. FIG. 3 is a diagram for explaining the configuration of an optical system in the shape inspection device. In the figure, 1 is an integrated circuit package, 2 is a lead electrode,
3 is an IC chip, 4 is a pad electrode, 5 is a wire loop, 6 is an object to be inspected, 7 is a light beam projector, 8 is a light beam projector driving device, 9 is an imaging device, IO is a light to point position detection circuit, 1
1 is an object shape detection circuit, 12 is an object shape reference data memory, 13 is a comparison inspection circuit, 14 is a light source such as a laser, 15
is a lens, 16 is a reflecting mirror, 17 is a rotary drive mechanism, 18 is a cylindrical lens, Fig. j Fig. 2 and A) and b
) (C) 3rd-
Figure 0 Qin 4 Mouth 1 〆Collection 7shij War q Figure Not 1 (ν] (A) (Bn 2 1,000-

Claims (4)

【特許請求の範囲】[Claims] (1)光線投射器と撮像装置と光点位置検出回路とから
成る物体形状検査装置において、撮像面に対する光線の
投射角を変えるための光線投射器駆動゛装置と、該光線
投射型駆動装置の移動角度信号と前記撮像装置のX−Y
アドレス信号とから光点の3次元アドレスを検出する物
体形状検出回路とを設けたことを特徴とする物体形状検
査装置。
(1) In an object shape inspection device consisting of a light beam projector, an imaging device, and a light spot position detection circuit, a light beam projector drive device for changing the projection angle of the light beam with respect to the imaging surface, and a drive device for the light beam projection type drive device are provided. Movement angle signal and X-Y of the imaging device
An object shape inspection device comprising an object shape detection circuit that detects a three-dimensional address of a light spot from an address signal.
(2)物体形状基準データを格納したメモリー装置と、
前記物体形状検出回路からのデータを該メモリー装置の
データとを比較するための比較検査回路とを設けたこと
を特徴とする特許請求の範囲第1項記載の物体形状検査
装置。
(2) a memory device storing object shape reference data;
2. The object shape inspection apparatus according to claim 1, further comprising a comparison inspection circuit for comparing data from said object shape detection circuit with data in said memory device.
(3)前記比較検査回路に比較データの差を許容値と比
較する機能を持たせたことを特徴とする特許請求の範囲
第2項記載の物体形状検査装置。
(3) The object shape inspection device according to claim 2, wherein the comparison inspection circuit has a function of comparing the difference in comparison data with a tolerance value.
(4)前記撮像装置のXアドレスおよびYアドレスそれ
ぞれの範囲によって前記許容値を変えることを特徴とす
る特許請求の範囲第3項記載の物体形状検査装置。
(4) The object shape inspection device according to claim 3, wherein the allowable value is changed depending on the respective ranges of the X address and Y address of the imaging device.
JP58022285A 1983-02-14 1983-02-14 Object shape inspecting apparatus Granted JPS59147206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58022285A JPS59147206A (en) 1983-02-14 1983-02-14 Object shape inspecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58022285A JPS59147206A (en) 1983-02-14 1983-02-14 Object shape inspecting apparatus

Publications (2)

Publication Number Publication Date
JPS59147206A true JPS59147206A (en) 1984-08-23
JPH023447B2 JPH023447B2 (en) 1990-01-23

Family

ID=12078472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58022285A Granted JPS59147206A (en) 1983-02-14 1983-02-14 Object shape inspecting apparatus

Country Status (1)

Country Link
JP (1) JPS59147206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093424A (en) * 1983-10-28 1985-05-25 Kawasaki Heavy Ind Ltd Method and device for forming material body having the same shape as objective material body from objective thing
JPS60118399A (en) * 1983-12-01 1985-06-25 Kawasaki Heavy Ind Ltd Method and device for forming object having the same shape as shape of target object from target object
JPH0239449A (en) * 1988-07-28 1990-02-08 Matsushita Electric Ind Co Ltd Inspection of wire bonding
KR100424699B1 (en) * 2002-05-01 2004-03-27 삼성테크윈 주식회사 Automatic calibration system for line scan camera

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139355A (en) * 1975-04-05 1976-12-01 Opto Produkte Ag Method of and apparatus for optically exploring object and comparing shape with position thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139355A (en) * 1975-04-05 1976-12-01 Opto Produkte Ag Method of and apparatus for optically exploring object and comparing shape with position thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093424A (en) * 1983-10-28 1985-05-25 Kawasaki Heavy Ind Ltd Method and device for forming material body having the same shape as objective material body from objective thing
JPH0534603B2 (en) * 1983-10-28 1993-05-24 Kawasaki Heavy Ind Ltd
JPS60118399A (en) * 1983-12-01 1985-06-25 Kawasaki Heavy Ind Ltd Method and device for forming object having the same shape as shape of target object from target object
JPH0239449A (en) * 1988-07-28 1990-02-08 Matsushita Electric Ind Co Ltd Inspection of wire bonding
KR100424699B1 (en) * 2002-05-01 2004-03-27 삼성테크윈 주식회사 Automatic calibration system for line scan camera

Also Published As

Publication number Publication date
JPH023447B2 (en) 1990-01-23

Similar Documents

Publication Publication Date Title
US4240750A (en) Automatic circuit board tester
US4641527A (en) Inspection method and apparatus for joint junction states
JP4384737B2 (en) Inspection equipment for high-speed defect analysis
JP2594685B2 (en) Wafer slip line inspection method
JP4207302B2 (en) Bump inspection method and inspection apparatus
JPS63265442A (en) Appearance inspecting apparatus for semiconductor device
JPH09329422A (en) Height measuring method and device
JPS59147206A (en) Object shape inspecting apparatus
JPH0269606A (en) Instrument for measuring height position of linear object
JP2000311924A (en) Method and apparatus for visual inspection
JPH02253110A (en) Shape checking device for linear object
JPH04221705A (en) Visual inspection device
JP2003232624A (en) Defect inspection device
JP2000121333A (en) Appearance inspection apparatus and method
JP2001280926A (en) Three-dimensional measuring instrument, three- dimensional measuring method, and method of inspecting component using the instrument and the method
JPS6367508A (en) Method and instrument for measuring coordinates of tape end
JPH0666401B2 (en) Inspection method for lead frame
JP2620263B2 (en) Dimension measuring device
JPH01320415A (en) Inspection instrument for packaged printed wiring board
JPH02187615A (en) Inspection device for mounted printed board
JPH0536794A (en) Method and apparatus for measurement of wire-shaped object
JPS6222530B2 (en)
JPH02187619A (en) Inspection device for mounted printed board
JPH04121613A (en) Object shape inspector
JPH02140606A (en) Object shape inspection instrument