JP3127003B2 - Aspherical lens eccentricity measurement method - Google Patents

Aspherical lens eccentricity measurement method

Info

Publication number
JP3127003B2
JP3127003B2 JP03170661A JP17066191A JP3127003B2 JP 3127003 B2 JP3127003 B2 JP 3127003B2 JP 03170661 A JP03170661 A JP 03170661A JP 17066191 A JP17066191 A JP 17066191A JP 3127003 B2 JP3127003 B2 JP 3127003B2
Authority
JP
Japan
Prior art keywords
axis
aspherical
aspherical lens
optical
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03170661A
Other languages
Japanese (ja)
Other versions
JPH04369451A (en
Inventor
金保 大川
龍介 野澤
泰 中村
治男 小川
暢喜 岩崎
茂也 菅田
光夫 後藤
健 川俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP03170661A priority Critical patent/JP3127003B2/en
Publication of JPH04369451A publication Critical patent/JPH04369451A/en
Application granted granted Critical
Publication of JP3127003B2 publication Critical patent/JP3127003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非球面レンズの偏心を
測定する非球面レンズ偏心測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aspherical lens eccentricity measuring method for measuring the eccentricity of an aspherical lens.

【0002】[0002]

【従来の技術】従来、非球面レンズの偏心測定装置とし
て、先に当出願人より提出した特開平1−296132
号公報がある。
2. Description of the Related Art Conventionally, as an eccentricity measuring device for an aspherical lens, Japanese Patent Application Laid-Open No. 1-296132 previously submitted by the present applicant has been proposed.
There is an official gazette.

【0003】前記発明は図4に示す如く、測定装置71
は被検レンズ72を回転自在に保持するための回転ホル
ダー(図示を省略している回転駆動部を介して回転駆動
される)73と、第1面72aの近軸曲率中心72cの
回転軸74に対する偏心量を検出するための近軸偏心測
定部75と、該回転軸74に対する前記第1面72aの
非球面軸76の傾き角ε1AS を測定するための非球面軸
測定部77とより構成してある。
[0003] As shown in FIG.
Is a rotation holder (rotated and driven via a rotation drive unit not shown) 73 for rotatably holding the test lens 72, and a rotation axis 74 of the paraxial curvature center 72c of the first surface 72a. A paraxial eccentricity measuring unit 75 for detecting the amount of eccentricity with respect to the axis, and an aspherical axis measuring unit 77 for measuring the inclination angle ε 1AS of the aspherical axis 76 of the first surface 72 a with respect to the rotation axis 74 I have.

【0004】前記回転ホルダー73における被検レンズ
72との接触部は回転軸74に対して同心加工してあ
る。なお、78で示すのは非球面軸の検出軸、72dで
示すのは球面である第2面72bの曲率中心である。
The contact portion of the rotating holder 73 with the lens 72 to be tested is machined concentrically with respect to the rotating shaft 74. Reference numeral 78 denotes the detection axis of the aspherical axis, and reference numeral 72d denotes the center of curvature of the second surface 72b which is a spherical surface.

【0005】上記構成において、被検レンズ72を回転
ホルダー73にて支持しつつ回転ホルダー73を回転さ
せると、被検レンズ72の第2面72bの曲率中心72
dは理論的に常に回転軸74の軸線上となるように調心
されている。
In the above configuration, when the rotation holder 73 is rotated while the test lens 72 is supported by the rotation holder 73, the center of curvature 72 of the second surface 72 b of the test lens 72.
d is theoretically aligned so that it is always on the axis of the rotating shaft 74.

【0006】また、近軸偏心測定部75によって第1面
72aの近軸曲率中心72cの回転軸74に対する偏心
量を検出し、この偏心量が0となるように被検レンズ7
2の位置を調整することにより、第1面72aの曲率中
心72cを第2面72bの曲率中心72dと同様に回転
軸74の軸線上に一致させることができる。
Further, the eccentricity of the paraxial curvature center 72c of the first surface 72a with respect to the rotation axis 74 is detected by the paraxial eccentricity measuring section 75, and the lens 7 to be measured is set so that the eccentricity becomes zero.
By adjusting the position 2, the center of curvature 72c of the first surface 72a can be made coincident with the axis of the rotating shaft 74 in the same manner as the center of curvature 72d of the second surface 72b.

【0007】従って、第1面72aの近軸曲率中心72
cおよび第2面72bの曲率中心72dを結ぶ直線を被
検レンズ72の基準軸とすると、この基準軸は回転軸7
4と一致する。
Therefore, the paraxial center of curvature 72 of the first surface 72a
Assuming that a straight line connecting c and the center of curvature 72d of the second surface 72b is the reference axis of the lens 72 to be measured, this reference axis is the rotation axis 7
Matches 4.

【0008】ここで、非球面軸測定部77にて回転軸7
4に対する第1面72aの非球面軸76の傾き角度ε
1AS を測定すると、傾き角度ε1AS は上記基準軸に対す
る非球面軸76の傾き角度となり、第2面72bが球
面,第1面72aが非球面の場合の非球面軸76の基準
軸に対する傾きε1AS が測定できる。
Here, the rotation axis 7 is measured by the aspherical axis measurement unit 77.
The inclination angle ε of the aspherical axis 76 of the first surface 72a with respect to
When 1AS is measured, the inclination angle ε 1AS is the inclination angle of the aspherical axis 76 with respect to the reference axis, and the inclination ε of the aspherical axis 76 with respect to the reference axis when the second surface 72b is spherical and the first surface 72a is aspherical. 1AS can be measured.

【0009】また、同様にして第1面72a,第2面7
2bとも非球面である場合にも第1面と同様に第2面7
2bの非球面軸の傾きを測定できる。
Similarly, the first surface 72a and the second surface 7
When both 2b are aspherical surfaces, similarly to the first surface, the second surface 7
The inclination of the aspherical axis of 2b can be measured.

【0010】さらに、第2面72bが平面である場合に
も、第1面72aの近軸曲率中心72cを通る第2面へ
の垂線を基準軸とすることにより傾きε1AS を測定でき
る。
Further, even when the second surface 72b is a flat surface, the inclination ε 1AS can be measured by using the perpendicular to the second surface passing through the paraxial curvature center 72c of the first surface 72a as the reference axis.

【0011】[0011]

【発明が解決しようとする課題】しかるに、前記従来技
術には以下の様な問題がある。
However, the above prior art has the following problems.

【0012】すなわち、非球面軸測定部で非球面軸の測
定を行なうため、球面位置の検出値を基にして複雑な演
算が必要となり、全体として測定に長時間を要する。
That is, since the measurement of the aspherical axis is performed by the aspherical axis measuring unit, a complicated calculation is required based on the detected value of the spherical position, and the measurement takes a long time as a whole.

【0013】因って、本発明は前記従来技術における問
題に鑑みて開発されたもので、短時間で測定の行なえる
非球面レンズ偏心測定方法の提供を目的とする。
Accordingly, the present invention has been developed in view of the above-mentioned problems in the prior art, and has as its object to provide an aspherical lens eccentricity measuring method capable of performing measurement in a short time.

【0014】[0014]

【課題を解決するための手段および作用】本発明は、非
球面レンズを形成する2つの光学面に各々同軸にして一
体成形された2つの平面部を有する非球面レンズにおけ
る前記2つの平面部のなす傾き角と前記2つの光学面の
測定軸に対する偏心量とを検出し、これらの検出値によ
り前記非球面レンズの偏心量を演算して求める方法であ
る。
SUMMARY OF THE INVENTION The present invention relates to an aspherical lens having two flat surfaces formed coaxially and integrally with two optical surfaces forming an aspheric lens. In this method, an inclination angle to be formed and an eccentric amount of the two optical surfaces with respect to a measurement axis are detected, and an eccentric amount of the aspherical lens is calculated and obtained from the detected values.

【0015】図1は本発明に係る非球面レンズ偏心測定
方法を示す概念図である。
FIG. 1 is a conceptual diagram showing a method for measuring decentering of an aspherical lens according to the present invention.

【0016】1は測定軸であり、2は該測定軸1と直交
する基準面である。3は非球面である上側光学面で、0
1 はその近軸曲率中心を示す。また、4は非球面である
下側光学面で、02 はその近軸曲率中心を示す。
1 is a measurement axis, and 2 is a reference plane orthogonal to the measurement axis 1. Reference numeral 3 denotes an upper optical surface which is an aspherical surface.
1 indicates its paraxial center of curvature. Numeral 4 denotes a lower optical surface which is an aspherical surface, and 0 2 denotes its paraxial center of curvature.

【0017】ここで、0,0との距離は設計値Lと
して与えられる。5は上側光学面3と同一金型により一
体成形して上側光学面3の周囲に形成される上側平面部
であり、6は下側光学面4と同一金型により一体成形し
て下側光学面4の周囲に形成される下側平面部である。
Here, the distance from 0 1 and 0 2 is given as a design value L. 5 is an upper flat portion formed around the upper optical surface 3 by being integrally formed with the upper optical surface 3 by the same mold, and 6 is formed by integrally forming the lower optical surface 4 with the same die. The lower flat portion formed around the surface 4.

【0018】7は上側光学面3の近軸曲率中心01 と下
側光学面4の近軸曲率中心02 とを通る直線で、以下こ
の直線を光軸7と呼ぶ。
[0018] 7 is a straight line passing through the paraxial curvature center 0 2 of the paraxial curvature center 0 1 of the upper optical surface 3 and the lower optical surface 4, hereinafter called the straight line and the optical axis 7.

【0019】8および9はそれぞれ上側光学面3および
下側光学面4の非球面軸で、該上面非球面軸8および該
下面非球面軸9はそれぞれ上側光学面3の近軸曲率中心
1 および下側光学面4の近軸曲率中心02 を通る。
Reference numerals 8 and 9 denote aspherical axes of the upper optical surface 3 and the lower optical surface 4, respectively. The upper aspherical axis 8 and the lower aspherical axis 9 are paraxial centers of curvature 0 1 of the upper optical surface 3, respectively. and through the paraxial curvature center 0 2 of the lower optical surface 4.

【0020】まず、下側平面部6を基準面2に一致させ
た状態で、オートコリメーション法などの方法により、
上側光学面3の近軸曲率中心01 および下側光学面4の
近軸曲率中心02 の測定軸1に対する偏心シフト量δ1
およびδ2 を測定するとともに、同じくオートコリメー
ション法などの方法により、上側平面部5の下側平面部
6に対する傾き角εを測定する。
First, in a state where the lower flat portion 6 is aligned with the reference surface 2, a method such as an autocollimation method is used.
Eccentric shift amount with respect to the measurement axis 1 of paraxial curvature center 0 2 of the paraxial curvature center of the upper optical surfaces 3 0 1 and lower optical surfaces 4 [delta] 1
And δ 2 , and the inclination angle ε of the upper flat portion 5 with respect to the lower flat portion 6 is also measured by a method such as the autocollimation method.

【0021】これらの測定値と前記距離Lとから前記上
面非球面軸8および前記下面非球面軸9の光軸7に対す
る傾き角ε1 およびε2 を次の数1および数2により求
めることができる。
From these measured values and the distance L, the inclination angles ε 1 and ε 2 of the upper surface aspherical axis 8 and the lower surface aspherical axis 9 with respect to the optical axis 7 can be obtained by the following equations ( 1) and (2). it can.

【0022】[0022]

【数1】(Equation 1)

【0023】[0023]

【数2】(Equation 2)

【0024】上記数1および数2は両面共非球面である
場合の説明であるが、片側が平面の場合には近軸曲率中
心が無限遠に存在することになる。
Equations ( 1) and (2) are for the case where both sides are aspherical. If one side is a plane, the center of the paraxial curvature exists at infinity.

【0025】この場合には、他の非球面の近軸曲率中心
を通り、該平面に直角な直線を光軸と定義することによ
り、非球面側の非球面軸の傾き角を求めることができ
る。
In this case, the inclination angle of the aspherical axis on the aspherical surface side can be obtained by defining the straight line passing through the paraxial curvature center of another aspherical surface and perpendicular to the plane as the optical axis. .

【0026】[0026]

【実施例1】図2は本実施例を示す説明図である。Embodiment 1 FIG. 2 is an explanatory view showing this embodiment.

【0027】図2において、前記図1と同一部分には同
一番号および同一記号を付してその説明を省略する。
In FIG. 2, the same portions as those in FIG. 1 are denoted by the same reference numerals and symbols, and description thereof will be omitted.

【0028】本実施例では、前述のδ1 とεとをオート
コリメーション法によりオートコリメーター11で上方
から測定し、δ2 を同じくオートコリメーション法によ
りオートコリメーター12で下方から測定するものであ
る。
[0028] In this embodiment is for measuring the ε and [delta] 1 of the aforementioned measured from above by autocollimator 11 by autocollimation method, a [delta] 2 also from below autocollimator 12 by autocollimation method .

【0029】詳細には、被検レンズの測定軸1を回転軸
として回転させることにより、δ1 ,δ2 およびεに対
応した反射像が回転することになり、これらの回転半径
を求めることでδ1 ,δ2 およびεを求める。
More specifically, when the measurement axis 1 of the lens to be inspected is rotated about the rotation axis, the reflection images corresponding to δ 1 , δ 2 and ε are rotated. Find δ 1 , δ 2 and ε.

【0030】本実施例によれば、高精度に測定すること
ができる。
According to this embodiment, measurement can be performed with high accuracy.

【0031】[0031]

【実施例2】本実施例では、前記実施例1における被検
レンズを基準面に沿って移動して、δ2 の検出値が0と
なる様にした後、δ1 およびεを測定する。
EXAMPLE 2 In this embodiment, by moving the sample lens in Example 1 along the reference surface, after the manner detected value of [delta] 2 is zero, measuring the [delta] 1 and epsilon.

【0032】本実施例によれば、前記実施例1に比べて
さらに高精度な測定が行なえる。
According to this embodiment, more accurate measurement can be performed as compared with the first embodiment.

【0033】[0033]

【実施例3】図3は本実施例を示す説明図である。Embodiment 3 FIG. 3 is an explanatory view showing this embodiment.

【0034】図3において、前記図2と同一部分には同
一番号および同一記号を付してその説明を省略する。
In FIG. 3, the same parts as those in FIG. 2 are denoted by the same reference numerals and symbols, and description thereof will be omitted.

【0035】21は上側光学面3と上側平面部5との交
線で、22はεの検出のみに用いるオートコリメーター
である。23は前記交線21の位置を検出するための顕
微装置である。
Reference numeral 21 denotes a line of intersection between the upper optical surface 3 and the upper plane portion 5, and reference numeral 22 denotes an autocollimator used only for detecting ε. Reference numeral 23 denotes a microscope for detecting the position of the intersection line 21.

【0036】本実施例では、顕微装置によって被検レン
ズの回転に伴う前記交線21の像の振れ量を検出し、こ
の振れ量から該交線21の中心の測定軸に対する偏心量
δを求めることができ、上側平面部5を含む平面と上面
非球面軸8との交点より上側光学面3の近軸曲率中心0
1 までの設計値の距離L1 を導入して次の数3により、
δ1 を求めることができる。
In this embodiment, the amount of shake of the image of the intersection line 21 due to the rotation of the lens to be inspected is detected by the microscope, and the amount of eccentricity δ of the center of the intersection line 21 with respect to the measurement axis is determined from the shake amount. And the paraxial center of curvature 0 of the upper optical surface 3 from the intersection of the plane including the upper plane portion 5 and the upper surface aspherical axis 8.
The following equation 3 by introducing the distance L 1 of the design value of up to 1,
δ 1 can be determined.

【0037】[0037]

【数3】(Equation 3)

【0038】このδ1 の値とオートコリメーター12で
求めたδ2 の値と前記数1および数2とでε1 およびε
2 を求めることができる。
[0038] The [delta] 1 of the value and second value [delta] obtained with the auto collimator 12 and the number 1 and number 2 epsilon 1 and epsilon
You can ask for 2 .

【0039】本実施例によれば、前記各実施例よりもさ
らに測定時間の短縮が図れる。
According to this embodiment, the measurement time can be further shortened than in each of the above embodiments.

【0040】[0040]

【発明の効果】以上説明した様に、本発明に係る非球面
レンズ偏心測定方法によれば、平面幾何学的な解析の
み、即ち、2つの光学面の近軸曲率中心の測定軸に対す
る偏心シフト量δ1 およびδ2 と、2つの平面部のなす
角(傾き角)εとを測定するのみで非球面偏心量が求め
られることにより、測定時間の短縮が図れる。
As described above, according to the aspherical lens eccentricity measuring method according to the present invention, only the geometric analysis of the plane, that is, the eccentric shift of the paraxial center of curvature of the two optical surfaces with respect to the measuring axis. The measurement time can be shortened by obtaining the aspherical eccentric amount only by measuring the amounts δ 1 and δ 2 and the angle (tilt angle) ε between the two plane portions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を示す概念図である。FIG. 1 is a conceptual diagram illustrating the present invention.

【図2】実施例1を示す説明図である。FIG. 2 is an explanatory diagram illustrating a first embodiment;

【図3】実施例3を示す説明図である。FIG. 3 is an explanatory diagram showing a third embodiment.

【図4】従来例を示す説明図である。FIG. 4 is an explanatory diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 測定軸 2 基準面 3 上側光学面 4 下側光学面 5 上側平面部 6 下側平面部 7 光軸 8 上面非球面軸 9 下面非球面軸 DESCRIPTION OF SYMBOLS 1 Measurement axis 2 Reference surface 3 Upper optical surface 4 Lower optical surface 5 Upper flat surface 6 Lower flat surface 7 Optical axis 8 Upper surface aspherical axis 9 Lower surface aspherical axis

【数1】 (Equation 1)

【数2】 (Equation 2)

【数3】 (Equation 3)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 治男 東京都渋谷区幡ケ谷2丁目43番2号 オ リンパス光学工業株式会社内 (72)発明者 岩崎 暢喜 東京都渋谷区幡ケ谷2丁目43番2号 オ リンパス光学工業株式会社内 (72)発明者 菅田 茂也 東京都渋谷区幡ケ谷2丁目43番2号 オ リンパス光学工業株式会社内 (72)発明者 後藤 光夫 東京都渋谷区幡ケ谷2丁目43番2号 オ リンパス光学工業株式会社内 (72)発明者 川俣 健 東京都渋谷区幡ケ谷2丁目43番2号 オ リンパス光学工業株式会社内 (56)参考文献 特開 平1−296132(JP,A) 特開 昭61−53602(JP,A) 特開 平3−115944(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01M 11/00 - 11/02 ──────────────────────────────────────────────────続 き Continued on the front page (72) Haruo Ogawa, Inventor 2-43-2, Hatagaya, Shibuya-ku, Tokyo Inside O-limpus Optical Industries Co., Ltd. (72) Nobuyoshi Iwasaki 2-43-2, Hatagaya, Shibuya-ku, Tokyo No. Ohlympus Optical Co., Ltd. (72) Inventor Shigeya Sugita 2-43-2 Hatagaya, Shibuya-ku, Tokyo In-Olympus Optical Industry Co., Ltd. (72) Mitsuo Goto 2-43, Hatagaya, Shibuya-ku, Tokyo No. 2 Inside Olympus Optical Co., Ltd. (72) Inventor Takeshi Kawamata 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd. (56) References JP-A-1-296132 (JP, A) JP-A-61-53602 (JP, A) JP-A-3-115944 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01M 11/00-11/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非球面レンズを形成する2つの光学面に
各々同軸にして一体成形された2つの平面部を有する非
球面レンズにおける前記2つの平面部のなす傾き角と前
記2つの光学面の測定軸に対する偏心量とを検出し、こ
れらの検出値により前記非球面レンズの偏心量を演算し
て求めることを特徴とする非球面レンズ偏心測定方法。
1. An aspherical lens having two flat surfaces formed coaxially and integrally with two optical surfaces forming an aspherical lens, respectively, and an inclination angle between the two flat surfaces and the two optical surfaces. A method for measuring eccentricity of an aspherical lens, comprising detecting an eccentricity with respect to a measurement axis, and calculating an eccentricity of the aspherical lens based on the detected values.
JP03170661A 1991-06-14 1991-06-14 Aspherical lens eccentricity measurement method Expired - Fee Related JP3127003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03170661A JP3127003B2 (en) 1991-06-14 1991-06-14 Aspherical lens eccentricity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03170661A JP3127003B2 (en) 1991-06-14 1991-06-14 Aspherical lens eccentricity measurement method

Publications (2)

Publication Number Publication Date
JPH04369451A JPH04369451A (en) 1992-12-22
JP3127003B2 true JP3127003B2 (en) 2001-01-22

Family

ID=15909030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03170661A Expired - Fee Related JP3127003B2 (en) 1991-06-14 1991-06-14 Aspherical lens eccentricity measurement method

Country Status (1)

Country Link
JP (1) JP3127003B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033343A (en) * 2005-07-28 2007-02-08 Hoya Corp Eccentricity measuring method, eccentricity measuring device, manufacturing method of aspheric single lens, aspheric single lens, and optical equipment
CN101275826B (en) * 2007-03-29 2010-06-16 富士能株式会社 Surface offset measuring method and device for non-spherical lens
EP2261629A2 (en) 2009-06-08 2010-12-15 Fujinon Corporation Asphere measurement method and apparatus
US8665425B2 (en) 2010-04-13 2014-03-04 Konica Minolta Advanced Layers, Inc. Eccentricity measuring method
CN106104247A (en) * 2014-03-28 2016-11-09 柯尼卡美能达株式会社 Aspheric method for measuring eccentricity quantity and shape analysis method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138656B2 (en) * 2009-10-15 2013-02-06 シャープ株式会社 Lens evaluation method
JP2016102875A (en) * 2014-11-27 2016-06-02 株式会社 清原光学 Aspherical lens, device for aligning optical axis thereof, aspherical mirror, and cassegrain telescope
CN114778079B (en) * 2022-03-31 2024-01-23 宜宾市极米光电有限公司 Eccentric instrument and eccentric detection method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033343A (en) * 2005-07-28 2007-02-08 Hoya Corp Eccentricity measuring method, eccentricity measuring device, manufacturing method of aspheric single lens, aspheric single lens, and optical equipment
CN101275826B (en) * 2007-03-29 2010-06-16 富士能株式会社 Surface offset measuring method and device for non-spherical lens
US7760365B2 (en) 2007-03-29 2010-07-20 Fujinon Corporation Aspheric lens surface-decenter measuring method and apparatus
EP2261629A2 (en) 2009-06-08 2010-12-15 Fujinon Corporation Asphere measurement method and apparatus
US8665425B2 (en) 2010-04-13 2014-03-04 Konica Minolta Advanced Layers, Inc. Eccentricity measuring method
CN106104247A (en) * 2014-03-28 2016-11-09 柯尼卡美能达株式会社 Aspheric method for measuring eccentricity quantity and shape analysis method

Also Published As

Publication number Publication date
JPH04369451A (en) 1992-12-22

Similar Documents

Publication Publication Date Title
JP3127003B2 (en) Aspherical lens eccentricity measurement method
CN100588934C (en) Core shift measuring method
US6744510B2 (en) Ellipsometer and precision auto-alignment method for incident angle of the ellipsometer without auxiliary equipment
JPH0875597A (en) Non-spherical surface eccentricity measuring machine
JPH01277731A (en) Method and apparatus for measuring eccentricity of waveguide buried in cylindrical connector pin
JPH04268433A (en) Measuring apparatus for aspherical lens eccentricity
JP2735104B2 (en) Aspherical lens eccentricity measuring apparatus and measuring method
JP3010786B2 (en) Aspheric measurement method
KR101379677B1 (en) Eccentricity measurement for aspheric lens using the interferometer producing spherical wave
JPS60142204A (en) Dimension measuring method of object
JP3268877B2 (en) Aspherical lens measurement method
JP2002048673A (en) Physical quantity measuring method of optical element or optical system
CN117119173B (en) Camera internal reference verification method
JP2790752B2 (en) Inspection method of cam assembly
JP2735106B2 (en) Aspherical lens eccentricity measuring device
JP2000186976A (en) Eccentricity measuring method and eccentricity measuring device for optical lens
JPH06273264A (en) Measurement of nonspherical lens and device therefor
JPH06229725A (en) Outer diameter measuring method for tubular object
JPH11281306A (en) Calibrated-value detection method for coordinate-measuring machine and calibration method for shape data using the same calibrated data
JPH09170918A (en) Form measuring device
JPS6110739A (en) Method and apparatus for detecting position of optical lens
JPH0540024A (en) Shape measuring system
JPH02120607A (en) Shape measuring apparatus
JPS58200126A (en) Method for measuring amount of eccentricity of lens system
JP2007017431A (en) Eccentricity amount measuring method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees