JPH09170918A - Form measuring device - Google Patents

Form measuring device

Info

Publication number
JPH09170918A
JPH09170918A JP34987595A JP34987595A JPH09170918A JP H09170918 A JPH09170918 A JP H09170918A JP 34987595 A JP34987595 A JP 34987595A JP 34987595 A JP34987595 A JP 34987595A JP H09170918 A JPH09170918 A JP H09170918A
Authority
JP
Japan
Prior art keywords
measurement
measuring means
displacement
measured
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34987595A
Other languages
Japanese (ja)
Inventor
Kohei Shinpo
晃平 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP34987595A priority Critical patent/JPH09170918A/en
Publication of JPH09170918A publication Critical patent/JPH09170918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the measurement of a form of a to-be-measured surface with inclination more than a specified angle (for example, 25 deg.) even with the use of a displacement gage which cannot measure an object if an angle of inclination of the to-be-measured surface such as an optical probe, etc., is over a specified value (e.d. 250), in a simple structure and method. SOLUTION: This device is provided with a stage 1 which is allowed to move in at least two direction of X and Y axes, length measuring means 4 and 5 measuring its displacement, displacement measuring means 2 and 3 detecting the position in at least two measuring axis directions, and a coordinate reference globe 10. At this time, the displacement measuring means 2 and 3 are so assigned as to be inclined relatively by the angle smaller than the allowance inclination angle, and a to-be- measured surface and the coordinate reference globe 10 are measured in the same measuring coordinate system with the displacement measuring means 2 and 3, respectively, and, based on the measurement result of each displacement measuring means 2 and 3, each measuring coordinate is so coordinate-transformed that the center of curvature of the coordinate reference globe 10 is made the same point, for jointing the measured data of the to-be-measured surface. By this device, even the form of the to-be-measured surface with inclination more than 25 deg. is easily measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非球面レンズ等の
形状を光触針式に測定する技術に係り、3次元形状測定
装置にも応用可能な形状測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring the shape of an aspherical lens or the like by a photo-tactile method, and relates to a shape measuring apparatus applicable to a three-dimensional shape measuring apparatus.

【0002】[0002]

【従来の技術】非球面レンズなどの形状測定において、
十分な精度と高い汎用性を兼ね備えた測定機の開発は難
しい問題であった。例えば接触型のプローブ(探査針)
を備えた3次元形状測定機では、測定精度が劣ることや
被測定面に傷を残すなどの問題があり、光波の干渉原理
に基づく干渉計を用いた測定では非球面量の大きいもの
は測定不可能であった。表面粗さの測定や、傾斜角の小
さい物の形状測定に対しては、被測定面に光束を集光
し、反射光束から面形状を測定する光プローブを用いて
直交座標で測定する輪郭形状測定機は、非接触であり、
精度も得られ有用である。
2. Description of the Related Art In measuring the shape of an aspherical lens,
The development of a measuring machine that has both sufficient accuracy and high versatility has been a difficult problem. For example, contact probe (probe)
The 3D shape measuring instrument equipped with has problems such as inferior measurement accuracy and leaving scratches on the surface to be measured. When measuring with an interferometer based on the principle of interference of light waves, those with a large amount of aspherical surface can be measured. It was impossible. For surface roughness measurement and shape measurement of objects with a small inclination angle, the contour shape is measured in Cartesian coordinates using an optical probe that focuses the light beam on the surface to be measured and measures the surface shape from the reflected light beam. The measuring machine is non-contact,
The accuracy is also obtained and it is useful.

【0003】[0003]

【発明が解決しようとする課題】よって特開昭60−1
69707号公報に開示されているもののようにこのシ
ステムを形状測定に使うための拡張が行われてきた。し
かし、現在光プローブ単体での傾斜角の許容幅は、±2
5°程度までであり、大きな傾斜角を持った面の測定は
出来ないという問題がある。被測定面と光プローブを相
対的に回転させて測定する極座標を用いた測定機では、
回転中心の位置や、厳密な回転半径が正確に求められ
ず、直交座標系に変換してからの形状の評価という面で
は直交座標での測定に比べ大きく不利であるという問題
がある。
Therefore, JP-A-60-1 is used.
Extensions have been made to use this system for shape measurement, such as the one disclosed in 69707. However, the allowable width of the tilt angle of the optical probe alone is currently ± 2.
The angle is up to about 5 °, and there is a problem that a surface having a large inclination angle cannot be measured. With a measuring machine that uses polar coordinates to measure by rotating the surface to be measured and the optical probe relatively,
The position of the center of rotation and the strict radius of gyration cannot be obtained accurately, and there is a problem that it is significantly disadvantageous in the evaluation of the shape after conversion to the Cartesian coordinate system as compared with the measurement in Cartesian coordinates.

【0004】また、特公平6−29715号公報に開示
されているもののように極座標測定と直交座標測定を複
合させた測定法もあるが、稼働部分が増え、装置が大き
くなり、精度、コスト的に不利となるという問題があ
る。
There is also a measuring method that combines polar coordinate measurement and Cartesian coordinate measurement, such as the one disclosed in Japanese Patent Publication No. 6-29715, but the number of operating parts increases, the device becomes large, and accuracy and cost are low. There is a problem that it is disadvantageous to.

【0005】本発明は上記事情に鑑みてなされたもので
あり、請求項1記載の形状測定装置においては、測定精
度を保ったまま、1つの変位センサの許容する傾斜角度
を大きく上回った被測定面の形状測定が行えるようにす
ることを目的とするものである。
The present invention has been made in view of the above circumstances, and in the shape measuring apparatus according to the first aspect of the present invention, while the measurement accuracy is maintained, the measured angle is much larger than the inclination angle allowed by one displacement sensor. The purpose is to enable surface shape measurement.

【0006】また、請求項2記載の形状測定装置におい
ては、基準用ガラス球の測定時間を除いて被測定物の測
定時間の短縮を図ることを目的とするものである。
Further, in the shape measuring apparatus according to the second aspect of the present invention, it is an object to shorten the measuring time of the object to be measured excluding the measuring time of the reference glass ball.

【0007】また、請求項3記載の形状測定装置におい
ては、1つの変位にセンサで測定を行うことによりコス
トの低減を図ることを目的とするものである。
Further, in the shape measuring apparatus according to the third aspect, it is an object of the present invention to reduce the cost by measuring with a sensor for one displacement.

【0008】また、請求項4記載の形状測定装置におい
ては、アッベの原理による誤差を小さくすることを目的
とするものである。
Further, in the shape measuring apparatus according to the fourth aspect, an object is to reduce an error due to Abbe's principle.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、少なくともX、Yの2軸方向に移動可能
なステージと、その変位を測定する測長手段と、少なく
とも2つの測定軸方向の位置を検出する変位測定手段
と、座標基準球とを備え、しかも、前記変位測定手段が
それぞれの許容傾斜角度より小さな角度だけ相対的に傾
けて配置されると共に、それぞれの変位測定手段によっ
て被測定面と座標基準球とを同一の測定座標系で測定し
てそれぞれの変位測定手段による測定結果より、その座
標基準球の曲率中心が同一点になるようにそれぞれの測
定座標を座標変換して被測定面の測定データをつなぎ合
わせる手段を有していることを特徴とするものである。
In order to achieve the above object, the present invention provides a stage movable in at least two axial directions of X and Y, a length measuring means for measuring its displacement, and at least two measuring axes. The displacement measuring means for detecting the position in the direction and the coordinate reference sphere, and the displacement measuring means are arranged relatively inclined by an angle smaller than the respective allowable inclination angles, and the displacement measuring means The surface to be measured and the coordinate reference sphere are measured in the same measurement coordinate system, and the measurement coordinates obtained by the displacement measuring means are converted into coordinates so that the centers of curvature of the coordinate reference spheres are at the same point. It has a means for connecting the measurement data of the surface to be measured.

【0010】また、前記測長手段と前記変位測定手段と
の全てが、熱膨張による影響が測定精度と比べて十分に
低く、かつ剛性の高い1つの部材に固定されていること
を特徴とするものである。
Further, all of the length measuring means and the displacement measuring means are fixed to one member having a high rigidity, which is sufficiently less affected by thermal expansion than the measurement accuracy. It is a thing.

【0011】また、少なくともX、Yの2軸方向に移動
可能なステージと、その変位を測定する測長手段と、測
定軸方向の位置を検出する変位測定手段と、該変位測定
手段を前記ステージのX−Y平面と平行な平面内で回転
させる回転手段と、座標基準球とを備え、しかも、前記
回転手段により変位測定手段をその許容する傾斜角より
も小さい角度で相対的に回転させて2回以上被測定面と
座標基準球を同一の測定座標系で測定すると共に、それ
ぞれの測定結果より、その座標基準球の曲率中心が同一
点にあるようにそれぞれの測定座標系を平行移動して被
測定面の測定データをつなぎ合わせる手段を有している
ことを特徴とするものである。
Further, a stage movable in at least two axis directions of X and Y, a length measuring means for measuring the displacement thereof, a displacement measuring means for detecting a position in the measuring axis direction, and the displacement measuring means for the stage. Is provided with a rotating means for rotating in a plane parallel to the XY plane and a coordinate reference sphere, and further, the rotating means relatively rotates the displacement measuring means at an angle smaller than the allowable inclination angle. Measure the surface to be measured and the coordinate reference sphere in the same measurement coordinate system two or more times, and translate each measurement coordinate system so that the center of curvature of the coordinate reference sphere is at the same point based on the measurement results. It has a means for connecting the measurement data of the surface to be measured.

【0012】さらに、前記回転手段が前記変位測定手段
の測定点を概略的に中心として回転することを特徴とす
るものである。
Further, the rotating means is configured to rotate about a measurement point of the displacement measuring means as a center.

【0013】上記構成とすることにより、被測定面と座
標基準球との同一測定座標系における2つの測定結果に
基づき、座標基準球の曲率中心が同一点になるように被
測定面の測定データをつなげ合わせるので、1つの変位
センサ(変位測定手段)の許容する傾斜角度の範囲内の
測定でも、25°以上の傾斜角を有する被測定面の形状
測定が、高精度の測定精度を保ったままで行える。
With the above structure, the measurement data of the surface to be measured is adjusted so that the center of curvature of the coordinate reference sphere is at the same point based on the two measurement results of the surface to be measured and the coordinate reference sphere in the same measurement coordinate system. Therefore, even if the measurement is performed within the range of the tilt angle allowed by one displacement sensor (displacement measuring means), the shape measurement of the surface to be measured having a tilt angle of 25 ° or more maintains high measurement accuracy. Can be done.

【0014】[0014]

【発明の実施の形態】以下、本発明の係る実施例を図に
基づいて説明する。図1に第1実施例を示す。即ち、図
1において、定盤上のX、Yの2軸方向に移動制御可能
なステージとしてのX−Yテーブル1上には同種類の2
つの変位測定手段としての変位センサ2、3がそれぞれ
の許容傾斜角度より少し小さな角度で、互いに逆方向に
傾けて取り付けてある。また、X軸、Y軸の変位測定用
の2つの測長手段としてのレーザ測長機4、5が取り付
けてあり、それぞれ定盤に取り付けてあるX、Y軸基準
ミラー6、7との変位を測定する。被測定面を有する被
測定物8は位置調整機能付き治具9を介して定盤に取り
付ける。また被測定物の近傍には、座標基準球としての
基準用ガラス球10が取り付けてある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment. That is, in FIG. 1, two types of the same type are mounted on the XY table 1 as a stage capable of movement control in two axial directions of X and Y on the surface plate.
Displacement sensors 2 and 3 as one displacement measuring means are attached at angles slightly smaller than the respective allowable inclination angles and inclined in opposite directions. Further, laser length measuring machines 4 and 5 as two length measuring means for measuring displacements of the X axis and the Y axis are attached, and displacements with respect to the X and Y axis reference mirrors 6 and 7 respectively attached to the surface plate. To measure. The object to be measured 8 having the surface to be measured is attached to the surface plate via the jig 9 with a position adjusting function. A reference glass sphere 10 as a coordinate reference sphere is attached near the object to be measured.

【0015】まず一方の変位センサ2を用いて被測定物
8の被測定面の測定を、このセンサ2の許容する傾斜角
の範囲内で行う。次に、レーザ測長機4、5の変位出力
をリセットせずに同一の測定座標系で基準用ガラス球1
0を同様に測定する。この順番は、前後入れ替わっても
良い。これを測定〔1〕とする。
First, the displacement sensor 2 on one side is used to measure the surface to be measured of the object 8 to be measured within the range of the inclination angle allowed by the sensor 2. Next, without resetting the displacement outputs of the laser length-measuring machines 4 and 5, the reference glass ball 1 is used in the same measurement coordinate system.
0 is similarly measured. This order may be reversed before and after. This is measurement [1].

【0016】次に、もう一方の変位センサ3を用いて測
定を行う。測定手順は同じで、まず被測定物8の被測定
面を、次に基準用ガラス球10を測定する。これを測定
〔2〕とする。この時重要なのは、レーザ測長期4、5
のを変位出力をリセットせずに同一の測定座標系で、被
測定面と基準用ガラス球10を続けて測定することであ
る。測定〔1〕、〔2〕の測定軌跡を図2に示す。
Next, measurement is performed using the other displacement sensor 3. The measurement procedure is the same. First, the surface to be measured of the object to be measured 8 is measured, and then the reference glass ball 10 is measured. This is measurement [2]. At this time, it is important that the laser measurement long term is 4, 5
Is to continuously measure the surface to be measured and the reference glass ball 10 in the same measurement coordinate system without resetting the displacement output. The measurement loci of measurement [1] and [2] are shown in FIG.

【0017】測定データの処理として、まず、それぞれ
の基準用ガラス球10の測定結果より、いくつもの各測
定座標系での基準用ガラス球10の中心位置を求める。
この測定精度の信頼性は、十分な測定点数を与えること
により容易に要求精度まで上げることが出来る。測定
〔1〕と測定〔2〕の座標系のX、Y軸はそれぞれ十分
な精度で平行であるから、測定〔2〕の基準用ガラス球
10の中心が測定〔1〕の基準用ガラス球10の中心に
一致するように測定〔2〕の被測定物8の測定値を座標
変換する。これによって測定〔1〕と測定〔2〕の測定
データは高精度でつなぎ合わされる。また、測定は2回
である必要はなく、3回以上でもよい。しかし、この場
合は許容する角度は狭くなるので、測定軸方向での性能
の良いセンサを3個以上用いて数回に分けて、同じ手順
で測定することも可能である。
As the processing of the measurement data, first, the center position of the reference glass sphere 10 in each of the measurement coordinate systems is obtained from the measurement results of the respective reference glass spheres 10.
The reliability of the measurement accuracy can be easily increased to the required accuracy by giving a sufficient number of measurement points. Since the X and Y axes of the coordinate systems of measurement [1] and measurement [2] are parallel to each other with sufficient accuracy, the center of the reference glass sphere 10 of measurement [2] is the reference glass sphere of measurement [1]. Coordinate conversion is performed on the measured value of the object to be measured 8 in the measurement [2] so as to coincide with the center of 10. As a result, the measurement data of measurement [1] and measurement data of measurement [2] are connected with high accuracy. The measurement need not be performed twice, and may be performed three times or more. However, in this case, the allowable angle is narrowed, so that it is possible to use three or more sensors having good performance in the measurement axis direction and divide the measurement into several times to perform the measurement in the same procedure.

【0018】また、変位測定手段としての変位センサ
2、3や測長手段としてのレーザ測長機4、5を固定す
るステージとしてのX−Yテーブル1のみならず、被測
定物8や基準用ガラス球10を保持する位置調整機能付
き治具9をも、それぞれ熱膨張係数が低く、剛性が十分
高い部材、例えばセラミックや低膨張ガラス素材等を用
いて構成すれば、測定装置全体としての信頼性が高ま
り、元来基準として造られている基準用ガラス球10の
測定点数は減少させることができ、全体として被測定物
の測定時間を短縮することができる。
Further, not only the displacement sensors 2 and 3 as the displacement measuring means and the XY table 1 as the stage for fixing the laser length measuring machines 4 and 5 as the length measuring means, but also the object to be measured 8 and the reference are used. If the jig 9 with a position adjusting function for holding the glass sphere 10 is also made of a member having a low coefficient of thermal expansion and a sufficiently high rigidity, for example, a ceramic or a low expansion glass material, the reliability of the entire measuring device is improved. As a result, it is possible to reduce the number of measurement points of the reference glass ball 10 that is originally formed as a reference, and it is possible to shorten the measurement time of the object to be measured as a whole.

【0019】図3に第2実施例を示す。この第2実施例
においては、1つの変位測定手段としての変位センサ1
2が、回転手段としての回転機能付き治具13を介して
X−Yテーブル1に取り付けてある以外は第1実施例と
同様である。この回転機能付き治具13はステージとし
てのX−Yテーブルと平行な平面内で回転するように設
置されている。
FIG. 3 shows a second embodiment. In the second embodiment, the displacement sensor 1 as one displacement measuring means.
The second embodiment is the same as the first embodiment except that it is attached to the XY table 1 via a jig 13 with a rotating function as a rotating means. The jig 13 with a rotating function is installed so as to rotate in a plane parallel to the XY table as a stage.

【0020】この第2実施例においては、回転機能付き
治具13により変位センサ12をその許容する傾斜角よ
りも小さい角度で相対的に回転させて固定し、しかる後
に被測定物8の被測定面と基準用ガラス球10を測定す
る。次に、同じく変位センサ12をその許容する傾斜角
よりも小さい角度で相対的に回転させて固定し、同様に
被測定物8の被測定面と基準用ガラス球10を測定す
る。これは少なくとも2回、同一測定座標系で測定す
る。測定中はX、Yの2軸のみが稼働する。そして、こ
れを何回か繰り返す訳であるが、後は第1実施例と同様
であるので省略する。この第2実施例においては、変位
測定手段としての変位センサが1つであり、この1つの
変位センサで測定が行えるので、第1実施例に比してコ
スト低減が可能となる。
In the second embodiment, the displacement sensor 12 is relatively rotated and fixed by the jig 13 with a rotating function at an angle smaller than the allowable tilt angle, and then the object 8 to be measured is measured. The surface and the reference glass ball 10 are measured. Next, similarly, the displacement sensor 12 is relatively rotated and fixed at an angle smaller than the allowable tilt angle, and similarly, the measured surface of the measured object 8 and the reference glass ball 10 are measured. It is measured at least twice in the same measuring coordinate system. During measurement, only the X and Y axes operate. Then, although this is repeated several times, the subsequent steps are the same as in the first embodiment, and therefore will be omitted. In the second embodiment, there is one displacement sensor as the displacement measuring means, and since the measurement can be performed with this one displacement sensor, the cost can be reduced as compared with the first embodiment.

【0021】図4に第3実施例を示す。この第3実施例
においては、1つの変位測定手段としての変位センサ1
5が円弧形状の回転機能付き治具16を介してX−Yテ
ーブル1に取り付けてあり、変位センサ15の測定点
(被測定物8の被測定面の一点)を概略の中心として回
転するようになっている。また、レーザ測長機4、5の
光線の延長が概略集光点を通るようにセットする。その
他の構成は第2実施例と同様であり、測定手順も第2実
施例と同じである。
FIG. 4 shows a third embodiment. In the third embodiment, the displacement sensor 1 as one displacement measuring means.
5 is attached to the XY table 1 via an arc-shaped jig 16 having a rotation function, and is rotated about a measurement point of the displacement sensor 15 (one point of the measured surface of the object 8 to be measured) as an approximate center. It has become. The extension of the light beams of the laser length measuring machines 4 and 5 is set so as to roughly pass through the focal point. Other configurations are the same as those of the second embodiment, and the measurement procedure is also the same as that of the second embodiment.

【0022】この第3実施例においては、変位センサ1
5のセッティングを変更しても測定点がほぼ一点とな
り、レーザ測長機4、5の光軸をそれぞれ概略合わせる
ことができる。このことは、被測定物体の測定すべき長
さ部分と標準尺(干渉計の移動コーナキューブの移動位
置)とは同一直線状になくてはならず、その誤差は測定
誤差となるという所謂アッベの原理による誤差を小さく
することとなり、測定精度を向上させることができる。
In the third embodiment, the displacement sensor 1
Even if the setting of 5 is changed, the number of measurement points becomes almost one, and the optical axes of the laser length measuring machines 4 and 5 can be roughly aligned with each other. This means that the length of the object to be measured to be measured and the standard scale (moving position of the moving corner cube of the interferometer) must be in the same straight line, and the error is a measurement error. The error due to the principle of is reduced, and the measurement accuracy can be improved.

【0023】[0023]

【発明の効果】以上述べた如く、本発明の請求項1記載
の形状測定装置によれば、測定精度を保ったまま、1つ
の変位センサの許容する傾斜角度を大きく上回った被測
定面の形状測定が行える。
As described above, according to the shape measuring apparatus according to the first aspect of the present invention, the shape of the surface to be measured which greatly exceeds the inclination angle allowed by one displacement sensor while maintaining the measurement accuracy. Can measure.

【0024】また、本発明の請求項2記載の形状測定装
置によれば、基準用ガラス球を測定する時間がのぞか
れ、被測定物の測定時間が短縮される。
According to the shape measuring apparatus of the second aspect of the present invention, the time for measuring the reference glass ball is excluded, and the measuring time for the object to be measured is shortened.

【0025】また、本発明の請求項3記載の形状測定装
置によれば、1つの変位センサを用いて測定が行え、コ
ストが低減する。
According to the shape measuring apparatus of the third aspect of the present invention, the measurement can be performed by using one displacement sensor, and the cost is reduced.

【0026】さらに、本発明の請求項4記載の形状測定
装置によれば、変位センサのセッティングを変更しても
測定点がほぼ1点となり、レーザ測長機の光軸をそれぞ
れ概略合わせることができる。従ってアッベの原理によ
る誤差を小さくすることができる。
Further, according to the shape measuring apparatus of the fourth aspect of the present invention, even if the setting of the displacement sensor is changed, the number of measuring points becomes almost one, and the optical axes of the laser length measuring machines can be roughly aligned with each other. it can. Therefore, the error due to the Abbe principle can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る第1実施例の概略平面図である。FIG. 1 is a schematic plan view of a first embodiment according to the present invention.

【図2】本発明に係る測定軌跡を示す説明図である。FIG. 2 is an explanatory diagram showing a measurement trajectory according to the present invention.

【図3】本発明に係る第2実施例の概略平面図である。FIG. 3 is a schematic plan view of a second embodiment according to the present invention.

【図4】本発明に係る第3実施例の概略平面図である。FIG. 4 is a schematic plan view of a third embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1 X−Yテーブル(ステージ) 2,3 変位センサ(変位測定手段) 4,5 レーザ測長機(測長手段) 6 X軸基準ミラー 7 Y軸基準ミラー 8 被測定物 9 位置調整機能付き治具 10 基準用ガラス球(座標基準球) 12 変位センサ(変位測定手段) 13 回転機能付き治具(回転手段) 15 変位センサ(変位測定手段) 16 円弧形状の回転機能付き治具(回転手段) 1 XY table (stage) 2,3 Displacement sensor (displacement measuring means) 4,5 Laser length measuring machine (length measuring means) 6 X-axis reference mirror 7 Y-axis reference mirror 8 Measured object 9 Position adjustment function Tool 10 Reference glass sphere (coordinate reference sphere) 12 Displacement sensor (displacement measuring means) 13 Jig with rotation function (rotating means) 15 Displacement sensor (displacement measuring means) 16 Jig with arc-shaped rotation function (rotating means)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくともX、Yの2軸方向に移動可能
なステージと、その変位を測定する測長手段と、少なく
とも2つの測定軸方向の位置を検出する変位測定手段
と、座標基準球とを備え、しかも、前記変位測定手段が
それぞれの許容傾斜角度より小さな角度だけ相対的に傾
けて配置されると共に、それぞれの変位測定手段によっ
て被測定面と座標基準球とを同一の測定座標系で測定し
てそれぞれの変位測定手段による測定結果より、その座
標基準球の曲率中心が同一点になるようにそれぞれの測
定座標を座標変換して被測定面の測定データをつなぎ合
わせる手段を有していることを特徴とする形状測定装
置。
1. A stage movable in at least two X, Y axis directions, a length measuring means for measuring the displacement thereof, a displacement measuring means for detecting positions in at least two measurement axis directions, and a coordinate reference sphere. Further, the displacement measuring means is arranged relatively inclined by an angle smaller than the respective allowable tilt angles, and the displacement measuring means causes the surface to be measured and the coordinate reference sphere to be in the same measurement coordinate system. Based on the result of measurement by each displacement measuring means, it has a means for connecting the measurement data of the surface to be measured by coordinate conversion of each measurement coordinate so that the center of curvature of the coordinate reference sphere becomes the same point. A shape measuring device characterized in that
【請求項2】 前記測長手段と前記変位測定手段との全
てが、熱膨張による影響が測定精度と比べて十分に低
く、かつ剛性の高い1つの部材に固定されていることを
特徴とする請求項1記載の形状測定装置。
2. The length measuring means and the displacement measuring means are all fixed to one member having a high rigidity and being less affected by thermal expansion than the measurement accuracy. The shape measuring device according to claim 1.
【請求項3】 少なくともX、Yの2軸方向に移動可能
なステージと、その変位を測定する測長手段と、測定軸
方向の位置を検出する変位測定手段と、該変位測定手段
を前記ステージのX−Y平面と平行な平面内で回転させ
る回転手段と、座標基準球とを備え、しかも、前記回転
手段により変位測定手段をその許容する傾斜角よりも小
さい角度で相対的に回転させて2回以上被測定面と座標
基準球を同一の測定座標系で測定すると共に、それぞれ
の測定結果より、その座標基準球の曲率中心が同一点に
あるようにそれぞれの測定座標系を平行移動して被測定
面の測定データをつなぎ合わせる手段を有していること
を特徴とする形状測定装置。
3. A stage movable in at least two axis directions of X and Y, a length measuring means for measuring the displacement thereof, a displacement measuring means for detecting a position in the measuring axis direction, and the displacement measuring means for the stage. Is provided with a rotating means for rotating in a plane parallel to the XY plane and a coordinate reference sphere, and further, the rotating means relatively rotates the displacement measuring means at an angle smaller than the allowable inclination angle. Measure the surface to be measured and the coordinate reference sphere in the same measurement coordinate system two or more times, and translate each measurement coordinate system so that the center of curvature of the coordinate reference sphere is at the same point based on the measurement results. A shape measuring device having means for connecting measurement data of a surface to be measured.
【請求項4】 前記回転手段が前記変位測定手段の測定
点を概略的に中心として回転することを特徴とする請求
項3記載の形状測定装置。
4. The shape measuring device according to claim 3, wherein the rotating means rotates about a measurement point of the displacement measuring means as a center.
JP34987595A 1995-12-20 1995-12-20 Form measuring device Pending JPH09170918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34987595A JPH09170918A (en) 1995-12-20 1995-12-20 Form measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34987595A JPH09170918A (en) 1995-12-20 1995-12-20 Form measuring device

Publications (1)

Publication Number Publication Date
JPH09170918A true JPH09170918A (en) 1997-06-30

Family

ID=18406709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34987595A Pending JPH09170918A (en) 1995-12-20 1995-12-20 Form measuring device

Country Status (1)

Country Link
JP (1) JPH09170918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317200A (en) * 2005-05-11 2006-11-24 Canon Inc Surface shape measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317200A (en) * 2005-05-11 2006-11-24 Canon Inc Surface shape measuring apparatus

Similar Documents

Publication Publication Date Title
US6870605B2 (en) Method of measuring length and coordinates using laser tracking interferometric length measuring instruments
JP2007536552A (en) Optical precision measuring apparatus and method
JPH1183438A (en) Position calibration method for optical measuring device
KR20050074330A (en) Non-contact surface configuration measuring apparatus and method thereof
JPH10160428A (en) Method and equipment for measuring shape
CN107091608B (en) A kind of five degree of freedom measurement method of parameters based on primary standard of curved surface part
CN209842399U (en) Calibrating device for geometric error of machine tool and corner positioning error of rotary table
EP1509747B1 (en) Metrology system for precision 3d motion
US7764387B2 (en) Apparatus and method for measuring suspension and head assemblies in a stack
JP2001317933A (en) Shape-measuring apparatus
US6351313B1 (en) Device for detecting the position of two bodies
JP2002333305A (en) Interference measuring apparatus and lateral coordinate measuring method
JP5032741B2 (en) 3D shape measuring method and 3D shape measuring apparatus
JPH09170918A (en) Form measuring device
JP3702733B2 (en) Alignment method and mechanism of optical inspection apparatus
JPH07253304A (en) Multi-axial positioning unit and length measuring method therefor
JPH11211426A (en) Surface form measuring device
JPH04268433A (en) Measuring apparatus for aspherical lens eccentricity
JP2006133059A (en) Device for measuring interference
JP2001165629A (en) Shape measuring device and shape measuring method
JPH11211427A (en) Surface form measuring device
JP2000121340A (en) Face inclination angle measuring apparatus
JP2009139200A (en) Method and apparatus for measuring position variation of rotation center line
JPH10281720A (en) Stage device and wave front aberration measuring device using the same
JP2005337921A (en) Method and device for measuring three-dimensional shape