JPH11211427A - Surface form measuring device - Google Patents

Surface form measuring device

Info

Publication number
JPH11211427A
JPH11211427A JP10016587A JP1658798A JPH11211427A JP H11211427 A JPH11211427 A JP H11211427A JP 10016587 A JP10016587 A JP 10016587A JP 1658798 A JP1658798 A JP 1658798A JP H11211427 A JPH11211427 A JP H11211427A
Authority
JP
Japan
Prior art keywords
measured
stage
points
declination
measurement probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10016587A
Other languages
Japanese (ja)
Inventor
Takashi Shimizu
敬司 清水
Maki Yamada
真樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP10016587A priority Critical patent/JPH11211427A/en
Publication of JPH11211427A publication Critical patent/JPH11211427A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface form measuring device capable of precisely measuring the surface form of a surface to be measured by correcting the error due to declination associated with translation movement. SOLUTION: A control part controls a translation stage 5 and rotating stages 6, 8 to conform the optical axis 7a of a measuring probe 7 with the normal of an aimed partial surface of the surface to be measured 4a of a matter to be measured 4. Laser length measuring machines 10A-10F measure the distance with flat mirrors 9A-9C and output distance signals. The control part calculate the declination (pitching, yawing, rolling) of a translation stage top part 5a on the basis of the distance signals from the laser length measuring machines 10A-10F. The measuring probe 7 optically measures the distance with each point on the aimed partial surface and outputs a measurement signal. The control part corrects the measurement signal from the measuring probe 7 on the basis of the calculated declination.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、レーザー
プリンター等に搭載される非球面レンズのように複雑な
非球面の面形状を光学的に非接触で測定する面形状測定
装置に関し、特に、面形状をレーザーの波長の数分の1
の高精度で測定する面形状測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface shape measuring apparatus for optically measuring the surface shape of a complex aspherical surface such as an aspherical lens mounted on a laser printer or the like in a non-contact manner. The surface shape is a fraction of the wavelength of the laser
The present invention relates to a surface shape measuring device for measuring with high accuracy.

【0002】[0002]

【従来の技術】従来の面形状測定装置としては、例え
ば、特開平2−259509号公報に示されるものがあ
る。この面形状測定装置は、被測定物を直交3軸方向に
それぞれ並進移動させる並進ステージと、被測定物を回
転させる回転ステージと、被測定物の被測定面のうち着
目する部分面の面形状を測定する干渉計とを備えたもの
である。被測定面全面を複数の部分面に区切り、並進ス
テージおよ回転ステージを制御して着目する部分面の法
線方向に干渉計の光軸を一致させ、その着目する部分面
の面形状を測定することを、被測定面上の全ての部分面
について行った後、各部分面の測定データを繋ぎ合わせ
ることによって被測定面全面の測定結果を得るものであ
る。
2. Description of the Related Art An example of a conventional surface shape measuring apparatus is disclosed in Japanese Patent Application Laid-Open No. 2-259509. The surface shape measuring apparatus includes a translation stage for translating the object to be measured in three orthogonal directions, a rotating stage for rotating the object to be measured, and a surface shape of a partial surface of interest of the measured surface of the object to be measured. And an interferometer for measuring. Divide the entire surface to be measured into multiple partial surfaces, control the translation stage and rotation stage, match the optical axis of the interferometer with the normal direction of the partial surface of interest, and measure the surface shape of the partial surface of interest This is performed for all the partial surfaces on the measured surface, and then the measurement data of the entire measured surface is obtained by joining the measurement data of the respective partial surfaces.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の面形状
測定装置によると、並進ステージによって被測定物を移
動させると、ピッチング、ヨーイング、ローリングと呼
ばれる微小角度誤差が発生する。また、回転ステージ
は、その案内部分の機械加工精度に限界があるため、回
転動作に伴う軸ぶれによる誤差が発生する。このため、
各部分面の測定データを繋ぎ合わせる計算を行うことに
よって得られる全面の測定結果に誤差が発生してしまう
という問題があった。
However, according to the conventional surface shape measuring apparatus, when the object to be measured is moved by the translation stage, minute angle errors called pitching, yawing, and rolling occur. In addition, since the rotary stage has a limit in the machining accuracy of the guide portion, an error occurs due to shaft deviation accompanying the rotation operation. For this reason,
There is a problem that an error occurs in the measurement result of the entire surface obtained by performing the calculation for joining the measurement data of each partial surface.

【0004】従って、本発明の目的は、並進移動に伴う
偏角による誤差を補正して被測定面の面形状を高精度に
測定することが可能な面形状測定装置を提供することに
ある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a surface shape measuring apparatus capable of correcting an error due to a declination accompanying translational movement and measuring a surface shape of a surface to be measured with high accuracy.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するため、被測定物の表面に測定光を照射し、前記表
面で反射した前記測定光を受光して測定信号を出力する
測定プローブと、前記被測定物に対し前記測定プローブ
を相対的に並進移動させる並進移動手段と、前記被測定
物に対し前記測定プローブを相対的に回転移動させる回
転移動手段と、前記並進移動手段によって並進移動され
る前記測定プローブあるいは前記被測定物の偏角を検出
する偏角検出手段と、前記並進移動手段および前記回転
移動手段を制御して前記測定プローブおよび前記被測定
物を所定の位置に位置決めし、前記測定プローブから出
力される前記測定信号を前記偏角検出手段が検出した前
記偏角に基づいて補正する制御手段とを備えたことを特
徴とする面形状測定装置を提供する。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a measurement method in which a surface of an object to be measured is irradiated with measurement light, the measurement light reflected from the surface is received, and a measurement signal is output. A probe, a translation unit that relatively translates the measurement probe with respect to the object, a rotation unit that relatively rotates the measurement probe with respect to the object, and the translation unit. A deflection angle detecting means for detecting a deflection angle of the measurement probe or the object to be translated, and controlling the translation means and the rotation means to move the measurement probe and the object to a predetermined position. Control means for positioning and correcting the measurement signal output from the measurement probe based on the declination detected by the declination detection means. To provide a device.

【0006】[0006]

【発明の実施の形態】図1は、本発明の第1の実施の形
態に係る面形状測定装置を示す。なお、X方向,Y方
向,Z方向は、同図に示す方向とする。この装置1は、
装置1全体に振動が伝わるのを防ぐ防振台2と、防振台
2上に立設された支柱3とを有し、防振台2上に、被測
定物4をX方向,Y方向,Z方向に移動、位置決めする
並進ステージ5と、被測定物4を回転させる第1の回転
ステージ6とを設け、支柱3に、対向する面との距離を
光学的に測定する測定プローブ7を回転させる第2の回
転ステージ8を設けている。並進ステージ5の上部に
は、並進ステージ最上部5aが取り付けられ、並進ステ
ージ最上部5aには、反射面がX方向,Y方向,Z方向
にそれぞれ直交する3つの平面ミラー9A,9B,9C
が取り付けられている。防振台2上には、図示しない支
持部材によって支持され、平面ミラー9A〜9Cとの距
離を測定して距離信号を出力するレーザー測長器10A
〜10Fを設けている。
FIG. 1 shows a surface shape measuring apparatus according to a first embodiment of the present invention. Note that the X, Y, and Z directions are directions shown in FIG. This device 1
It has a vibration isolating table 2 for preventing vibration from being transmitted to the entire apparatus 1 and a column 3 erected on the vibration isolating table 2. , A translation stage 5 for moving and positioning in the Z direction, and a first rotary stage 6 for rotating the object 4 to be measured, and a support probe 3 is provided with a measurement probe 7 for optically measuring the distance between the support 3 and an opposing surface. A second rotating stage 8 for rotating is provided. A translation stage uppermost portion 5a is attached to the upper portion of the translation stage 5, and three plane mirrors 9A, 9B, and 9C whose reflecting surfaces are orthogonal to the X, Y, and Z directions are mounted on the translation stage uppermost portion 5a.
Is attached. A laser length measuring device 10A which is supported on a vibration isolator 2 by a support member (not shown), measures a distance to the plane mirrors 9A to 9C and outputs a distance signal.
-10F are provided.

【0007】並進ステージ5は、上部に並進ステージ最
上部5aを有し、並進ステージ最上部5aを転がり軸受
を用いてX方向,Y方向,Z方向にそれぞれ移動、位置
決めさせるXステージ5b,Yステージ5cおよびZス
テージ5dを備え、Xステージ5b,Yステージ5cお
よびZステージ5dは、それぞれ並進ステージ最上部5
aをX方向,Y方向,Z方向に移動させる後述するX軸
モータ,Y軸モータ,Z軸モータを備えている。
The translation stage 5 has a translation stage uppermost portion 5a at an upper portion, and the X stage 5b and the Y stage respectively move and position the translation stage uppermost portion 5a in the X, Y, and Z directions using rolling bearings. 5c and a Z stage 5d, and the X stage 5b, the Y stage 5c and the Z stage 5d
An X-axis motor, a Y-axis motor, and a Z-axis motor, which will be described later, are moved in the X, Y and Z directions.

【0008】第1の回転ステージ6は、X方向に第1の
回転軸線θ1 を有し、並進ステージ最上部5aの両端に
取り付けられ、被測定物載置台11を第1の回転軸線θ
1 の回りに空気軸受を用いて回転可能に支持する一対の
回転ステージ6A,6Bと、被測定物載置台11を第1
の回転軸線θ1 の回りに回転させる後述するθ1 モータ
と、被測定物載置台11の回転量を検出して角度検出信
号を出力するロータリーエンコーダ等のθ1 検出器60
とを備えている。
The first rotation stage 6 has a first rotation axis θ 1 in the X direction, is attached to both ends of the translation stage uppermost portion 5a, and moves the workpiece mounting table 11 to the first rotation axis θ.
A pair of rotary stages 6A and 6B rotatably supported by an air bearing around 1 and an object mounting table 11 are placed in a first position.
A motor 1 that rotates around the rotation axis θ 1 of the above, and a θ 1 detector 60 such as a rotary encoder that detects the amount of rotation of the DUT 11 and outputs an angle detection signal.
And

【0009】第2の回転ステージ8は、Y方向に第2の
回転軸線θ2 を有し、測定プローブ7を第2の回転軸線
θ2 の回りに非接触式の軸受けとして例えば空気軸受を
用いて回転させる後述するθ2 モータと、測定プローブ
7の回転量を検出して角度検出信号を出力するロータリ
ーエンコーダ等のθ2 検出器80とを備えている。
The second rotary stage 8 has a second rotational axis θ 2 in the Y direction, and uses, for example, an air bearing as a non-contact bearing around the second rotational axis θ 2. It includes a theta 2 motor to be described later rotates, and theta 2 detector 80 such as a rotary encoder for outputting a detection to the angle detection signal the amount of rotation of the measuring probe 7 Te.

【0010】図2は、回転軸線θ1 ,θ2 と測定プロー
ブ7の光軸7aとの位置関係を示す。測定プローブ7
は、被測定物4の被測定面4aのうち着目する部分面
(例えば1mm2 の範囲)4bの法線の平均方向と光軸
7aとが一致したとき、着目する部分面4b上の各点と
の距離を光学的に測定し、それを面情報として出力する
ものであり、例えば、白色干渉計,レーザ変位計等を用
いることができる。また、測定プローブ7の光軸7a
は、Z方向に設けられ、測定プローブ7は、その測定レ
ンジの中心点が第1の回転軸線θ1 と第2の回転軸線θ
2 との交点と略一致するように設けられている。
FIG. 2 shows the positional relationship between the rotation axes θ 1 and θ 2 and the optical axis 7a of the measurement probe 7. Measurement probe 7
Are the points on the partial surface 4b of interest when the average direction of the normal line of the partial surface 4b (for example, a range of 1 mm 2 ) 4b of the surface 4a to be measured coincides with the optical axis 7a. Is measured optically and the distance is output as surface information. For example, a white light interferometer, a laser displacement meter, or the like can be used. Also, the optical axis 7a of the measurement probe 7
Are provided in the Z direction, and the measurement probe 7 has a center point of the measurement range whose first rotation axis θ 1 and second rotation axis θ
It is provided so as to substantially coincide with the intersection with 2 .

【0011】図3(a) ,(b) は、平面ミラー9A〜9C
とレーザー測長器10A〜10Fとの位置関係を示す。
なお、同図(b) 中、10a,10b,10cは、それぞ
れレーザー測長器10A〜10Cからのレーザーの照射
点を示す。レーザー測長器10A,10B,10Cは、
平面ミラー9AのY方向の移動距離を測定するものであ
り、レーザー測長器10D,10Eは、平面ミラー9B
のX方向の移動距離を測定するものであり、レーザー測
長器10Fは、平面ミラー9CのZ方向の移動距離を測
定するものである。レーザー測長器10Aとレーザー測
長器10Bが測定した移動距離に基づいて並進ステージ
最上部5aのX方向の軸回りの姿勢変化(偏角)を求め
ることができ、レーザー測長器10Dとレーザー測長器
10Eが測定した移動距離に基づいて並進ステージ最上
部5aのY方向の軸回りの姿勢変化を求めることがで
き、レーザー測長器10Aまたは10Bとレーザー測長
器10Cが測定した移動距離に基づいて並進ステージ最
上部5aのZ方向の軸回りの姿勢変化を求めることがで
きる。なお、Z方向の軸回りの姿勢変化が3秒程度の場
合は、隣接する部分面4bの繋ぎ合わせに与える影響が
ごく小さく、部分面4bの繋ぎ合わせを繰り返して得ら
れる全面測定結果がほとんど変化しないため、Z方向の
軸回りの回転によって生じる姿勢変化を測定するために
必要なレーザー測長器10Cを省略して簡略化を図るこ
とも可能である。
FIGS. 3A and 3B show plane mirrors 9A to 9C.
And the positional relationship between the laser length measuring devices 10A to 10F.
In FIG. 3B, reference numerals 10a, 10b, and 10c denote the irradiation points of the laser from the laser length measuring devices 10A to 10C, respectively. Laser length measuring devices 10A, 10B, 10C
This is for measuring the moving distance of the plane mirror 9A in the Y direction.
The laser length measuring device 10F measures the moving distance of the plane mirror 9C in the Z direction. Based on the movement distance measured by the laser length measuring device 10A and the laser length measuring device 10B, the posture change (declination) of the translation stage uppermost portion 5a around the axis in the X direction can be obtained. The posture change of the translation stage uppermost portion 5a around the Y-axis can be obtained based on the movement distance measured by the length measuring device 10E, and the moving distance measured by the laser length measuring device 10A or 10B and the laser length measuring device 10C. The attitude change of the translation stage uppermost portion 5a around the axis in the Z direction can be obtained based on the above equation. When the posture change about the axis in the Z direction is about 3 seconds, the influence on the joining of the adjacent partial surfaces 4b is very small, and the whole measurement result obtained by repeating the joining of the partial surfaces 4b hardly changes. Therefore, it is also possible to omit the laser length measuring device 10C required for measuring the posture change caused by the rotation around the axis in the Z direction, thereby simplifying the measurement.

【0012】図4は、本装置1の制御系を示す。この装
置1は、本装置1全体の制御を司る制御部20を有し、
この制御部20に、制御部20のプログラム等を記憶す
るメモリ21と、上記並進ステージ5のX軸モータ5
0,Y軸モータ51,Z軸モータ53、第1の回転ステ
ージ6のθ1 検出器60,θ1 モータ61、測定プロー
ブ7、第2の回転ステージ8のθ2 検出器80,θ2
ータ81、およびレーザー測長器10A乃至10Fとを
接続している。
FIG. 4 shows a control system of the apparatus 1. The device 1 has a control unit 20 that controls the entire device 1,
The control unit 20 includes a memory 21 for storing a program or the like of the control unit 20 and an X-axis motor 5 for the translation stage 5.
0, Y axis motor 51, Z axis motor 53, theta 1 detector 60 of the first rotary stage 6, theta 1 motor 61, the measurement probe 7, theta 2 detector 80 of the second rotation stage 8, theta 2 motor 81 and the laser length measuring devices 10A to 10F.

【0013】次に、本装置1の動作を説明する。オペレ
ータは、並進ステージ5上に被測定物4を載置し、図示
しない起動スイッチを押下する。制御部20は、起動ス
イッチの押下に基づいてメモリ21に記憶されたプログ
ラムに従い、被測定物4の被測定面4aの形状測定を行
う。すなわち、制御部20は、被測定面4a全面を複数
に区切られた部分面4bのうち着目する部分面4bが測
定プローブ7の測定レンジに入るように並進ステージ5
を制御して位置決めする。次に、制御部20は、第1お
よび第2の回転ステージ6,8を回転させて、測定プロ
ーブ7の光軸7aの方向を着目する部分面4bの法線の
平均方向に一致させる。制御部20は、レーザー測長器
10A乃至10Fからの距離信号に基づいて並進ステー
ジ最上部5aのX方向,Y方向,Z方向の移動距離を求
め、並進ステージ最上部5aの偏角(ピッチング、ヨー
イング、ローリング)を求める。制御部20は、求めた
並進ステージ最上部5aのX方向,Y方向,Z方向の移
動距離、回転ステージ7,8の検出器60,80からの
角度検出信号、および測定プローブ7からの部分面4b
の面情報に基づいて部分面4bの面形状を測定し、その
測定結果を先に求めた並進ステージ最上部5aの偏角に
基づいて補正し、その補正後の測定結果をメモリ21に
記憶する。制御部20は、これを被測定面4a上の全て
の部分面4bに対し同様に行い、部分面4bのどれか1
つを基準としてそれに隣接する部分面4bを順次繋ぎ合
わせていくことによって、被測定面4a全面の測定結果
を得てそれをメモリ21に記憶する。
Next, the operation of the apparatus 1 will be described. The operator places the DUT 4 on the translation stage 5 and presses a start switch (not shown). The control unit 20 measures the shape of the measured surface 4a of the measured object 4 according to the program stored in the memory 21 based on the depression of the start switch. That is, the control unit 20 controls the translation stage 5 so that the focused partial surface 4b of the partial surface 4b obtained by dividing the entire surface to be measured 4a enters the measurement range of the measurement probe 7.
Is controlled to perform positioning. Next, the control unit 20 rotates the first and second rotary stages 6 and 8 so that the direction of the optical axis 7a of the measurement probe 7 coincides with the average direction of the normal of the focused partial surface 4b. The control unit 20 obtains the moving distance of the uppermost portion 5a of the translation stage in the X, Y, and Z directions based on the distance signals from the laser length measuring devices 10A to 10F. Yawing, rolling). The control unit 20 calculates the moving distances of the translation stage uppermost portion 5a in the X, Y, and Z directions, the angle detection signals from the detectors 60 and 80 of the rotation stages 7 and 8, and the partial surface from the measurement probe 7. 4b
The surface shape of the partial surface 4b is measured based on the surface information described above, and the measurement result is corrected based on the previously-determined declination of the translation stage uppermost portion 5a, and the corrected measurement result is stored in the memory 21. . The control unit 20 performs the same for all the partial surfaces 4b on the measured surface 4a, and
By sequentially connecting the partial surfaces 4b adjacent to each other on the basis of one measurement result, the measurement result of the entire surface to be measured 4a is obtained and stored in the memory 21.

【0014】上記第1の実施の形態によれば、並進ステ
ージ最上部5aの並進移動に伴う偏角(ピッチング、ヨ
ーイング、ローリング)は、転がり軸受の性能および並
進ステージ5の案内部分の機械加工精度から少なくとも
3秒程度発生するが、レーザー測長器10A〜10Fに
よる移動距離の測定結果に基づいて偏角を求めて、測定
プローブ7によって測定された面情報を補正しているの
で、アッベ誤差は補正しない場合と比較して1/10以
下の0.2μmに小さくできる。従って、部分面4bの
位置姿勢誤差が小さくなり、それらを繋ぎ合わせる計算
によって得られる被測定面4a全面の測定結果の誤差も
小さくなるため、被測定面4aが球面と大きく異なる複
雑な場合でも高精度な測定が可能になる。
According to the first embodiment, the declination (pitching, yawing, rolling) associated with the translation of the translation stage uppermost portion 5a depends on the performance of the rolling bearing and the machining accuracy of the guide portion of the translation stage 5. Is generated for at least about 3 seconds, but the declination is obtained based on the measurement result of the moving distance by the laser length measuring devices 10A to 10F, and the surface information measured by the measuring probe 7 is corrected. Compared to the case without correction, the size can be reduced to 0.2 μm which is 1/10 or less. Accordingly, the position and orientation error of the partial surface 4b is reduced, and the error of the measurement result of the entire surface 4a to be measured obtained by joining them is also reduced. Accurate measurement becomes possible.

【0015】また、回転ステージ6,8に転がり軸受を
用いると、案内部分の機械加工精度から3μm程度の軸
ぶれが発生し、部分面4bの相対位置姿勢の初期値に3
μm程度の誤差を与えるが、本実施の形態によれば、回
転ステージ6,8に空気軸受を用いているので、案内部
の機械加工精度の影響が小さくなり、回転ステージ6,
8の回転軸ぶれを0.1μm程度に小さくすることがで
き、2つの部分面4bの相対位置姿勢の誤差を減らすこ
とができる。
When rolling bearings are used for the rotary stages 6 and 8, shaft deviation of about 3 μm occurs due to machining accuracy of the guide portion, and the initial value of the relative position and orientation of the partial surface 4b is 3
Although an error of about μm is given, according to the present embodiment, since the air bearings are used for the rotating stages 6 and 8, the influence of the machining accuracy of the guide portion is reduced, and
8 can be reduced to about 0.1 μm, and errors in the relative position and orientation of the two partial surfaces 4b can be reduced.

【0016】また、空気軸受を用いた回転ステージ6,
8は、転がり軸受や滑り軸受を用いた回転ステージに比
べて剛性が低く、かつ減衰性能が低いため、誤差の原因
となる振動が大きくなる懸念があるが、2つの回転ステ
ージ6,8を互いに相手を回転させることなく独立に設
けているので、各回転ステージ6,8が負担する質量が
最小になるため、装置1全体の振動特性を最良にするこ
とができ、位置姿勢制御機構全体としての振動を小さく
することができる。
Further, a rotary stage 6 using an air bearing 6,
8 has a lower rigidity and a lower damping performance than a rotating stage using a rolling bearing or a sliding bearing, and there is a concern that vibration causing an error may increase. However, the two rotating stages 6 and 8 are connected to each other. Since the counterparts are independently provided without rotating the counterpart, the mass borne by each of the rotary stages 6 and 8 is minimized, so that the vibration characteristics of the entire apparatus 1 can be optimized and the position and orientation control mechanism as a whole can be improved. Vibration can be reduced.

【0017】また、3つのXステージ5b,Yステージ
5c,Zステージ5dを一体的に設け、X,Y,Z3方
向に動く部分をレーザー測長器10A〜10Fで測定す
ることによって、レーザー測長器10A〜10Fの数を
最小にすることができる。すなわち、仮に、Z方向のZ
ステージ5dとX,Y方向のXステージ5b,Yステー
ジ5cとを分離して配置し、それぞれ被測定物4と測定
プローブ7を移動させる構成にし、本実施の形態と同等
の効果を得るためには、レーザー測長器をそれぞれの並
進ステージの部分に6本ずつ計12本用意する必要があ
る。これは装置構成上煩雑になる上、微小ではあるがレ
ーザー測長器自身の持つ誤差も2倍になるため、本実施
の形態のように並進ステージは3つまとめるのが有利で
ある。
Further, three X stages 5b, Y stages 5c, and Z stages 5d are provided integrally, and a portion that moves in the X, Y, and Z directions is measured by laser length measuring devices 10A to 10F, whereby the laser length is measured. The number of vessels 10A to 10F can be minimized. That is, suppose Z in the Z direction
The stage 5d and the X stage 5b and the Y stage 5c in the X and Y directions are separately arranged, and the configuration is such that the DUT 4 and the measurement probe 7 are moved, respectively, in order to obtain the same effect as in the present embodiment. It is necessary to prepare a total of 12 laser length measuring devices, 6 for each translation stage. This complicates the configuration of the apparatus and, although minute, causes the error of the laser length measuring device itself to double, so that it is advantageous to combine three translation stages as in this embodiment.

【0018】図5は、本発明の第2の実施の形態に係る
面形状測定装置を示す。この装置1は、第1の実施の形
態において、第1の回転ステージ6と、Y方向に被測定
物4を移動、位置決めするYステージ5cとを省略した
ものであり、他は第1の実施の形態と同様に構成されて
いる。この第2の実施の形態によれば、被測定面4aの
Y方向が測定プローブ7のY方向の測定レンジより狭い
被測定物4を対象にすることができる。また、このよう
に被測定面4aの形状が限定されている場合は、不要な
ステージを省略することによって、構造を簡略化でき、
かつ装置1全体の振動特性を最良にすることができる。
FIG. 5 shows a surface shape measuring apparatus according to a second embodiment of the present invention. This apparatus 1 is different from the first embodiment in that the first rotary stage 6 and the Y stage 5c for moving and positioning the DUT 4 in the Y direction are omitted. The configuration is the same as that of the first embodiment. According to the second embodiment, it is possible to target the DUT 4 whose Y direction of the measured surface 4a is narrower than the measurement range of the measurement probe 7 in the Y direction. When the shape of the surface 4a to be measured is limited as described above, the structure can be simplified by omitting an unnecessary stage,
In addition, the vibration characteristics of the entire device 1 can be optimized.

【0019】[0019]

【発明の効果】以上説明した通り、本発明の面形状測定
装置によれば、並進移動手段によって並進移動される測
定プローブあるいは被測定物の偏角を検出し、その偏角
に基づいて測定プローブから出力される測定信号を補正
するので、並進移動に伴う偏角による誤差を補正して被
測定面の面形状を高精度に測定することが可能になる。
As described above, according to the surface shape measuring apparatus of the present invention, the deflection angle of the measurement probe or the object to be measured which is translated by the translation means is detected, and the measurement probe is measured based on the deflection angle. Since the measurement signal output from is corrected, it is possible to correct the error due to the declination due to the translation and to measure the surface shape of the surface to be measured with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る面形状測定装
置を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a surface shape measuring device according to a first embodiment of the present invention.

【図2】回転軸線θ1 ,θ2 と測定プローブの光軸との
位置関係を示す図である。
FIG. 2 is a diagram showing a positional relationship between rotation axes θ 1 and θ 2 and an optical axis of a measurement probe.

【図3】(a) はYZ面における平面ミラーとレーザー測
長器との位置関係を示す図、(b) はXZ面における平面
ミラーとレーザー測長器との位置関係を示す図である。
3A is a diagram showing a positional relationship between a plane mirror and a laser length measuring device on the YZ plane, and FIG. 3B is a diagram showing a positional relationship between the plane mirror and the laser length measuring device on the XZ plane.

【図4】第1の実施の形態に係る制御系を示すブロック
図である。
FIG. 4 is a block diagram illustrating a control system according to the first embodiment.

【図5】本発明の第2の実施の形態に係る面形状測定装
置を示す概略構成図である。
FIG. 5 is a schematic configuration diagram showing a surface shape measuring device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 面形状測定装置 2 防振台 3 支柱 4 被測定物 4a 被測定面 4b 部分面 5 並進ステージ 5a 並進ステージ最上部 5b Xステージ 5c Yステージ 5d Zステージと 6 第1の回転ステージ 7 測定プローブ 7a 光軸 8 第2の回転ステージ 9A〜9C 平面ミラー 10A〜10F レーザー測長器 10a,10b,10c レーザーの照射点 11 被測定物載置台 20 制御部 21 メモリ 50 X軸モータ 51 Y軸モータ 53 Z軸モータ 60 θ1 検出器 61 θ1 モータ 80 θ2 検出器 81 θ2 モータ θ1 第1の回転軸線 θ2 第2の回転軸線DESCRIPTION OF SYMBOLS 1 Surface shape measuring apparatus 2 Anti-vibration table 3 Support 4 Object to be measured 4a Surface to be measured 4b Partial surface 5 Translation stage 5a Top of translation stage 5b X stage 5c Y stage 5d Z stage and 6 First rotation stage 7 Measurement probe 7a Optical axis 8 Second rotating stage 9A to 9C Planar mirror 10A to 10F Laser length measuring device 10a, 10b, 10c Irradiation point of laser 11 Measurement object mounting table 20 Control unit 21 Memory 50 X-axis motor 51 Y-axis motor 53Z Shaft motor 60 θ 1 detector 61 θ 1 motor 80 θ 2 detector 81 θ 2 motor θ 1 First rotation axis θ 2 Second rotation axis

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】被測定物の表面に測定光を照射し、前記表
面で反射した前記測定光を受光して測定信号を出力する
測定プローブと、 前記被測定物に対し前記測定プローブを相対的に並進移
動させる並進移動手段と、 前記被測定物に対し前記測定プローブを相対的に回転移
動させる回転移動手段と、 前記並進移動手段によって並進移動される前記測定プロ
ーブあるいは前記被測定物の偏角を検出する偏角検出手
段と、 前記並進移動手段および前記回転移動手段を制御して前
記測定プローブおよび前記被測定物を所定の位置に位置
決めし、前記測定プローブから出力される前記測定信号
を前記偏角検出手段が検出した前記偏角に基づいて補正
する制御手段とを備えたことを特徴とする面形状測定装
置。
1. A measuring probe for irradiating a measuring light on a surface of an object to be measured, receiving the measuring light reflected on the surface and outputting a measuring signal, and relative to the object to be measured. Translational movement means for translating the measurement probe relative to the object to be measured; rotational movement means for rotationally moving the measurement probe relative to the object to be measured; and deflection angle of the measurement probe or the object to be measured translated by the translational movement means. Declination detecting means for detecting the position of the measurement probe and the object to be measured at a predetermined position by controlling the translation movement means and the rotation movement means, the measurement signal output from the measurement probe Control means for correcting based on the declination detected by the declination detecting means.
【請求項2】前記偏角検出手段は、前記並進移動手段に
よって並進移動する部分に設けられた反射鏡と、前記反
射鏡上の複数の点に複数のレーザ光を照射し、前記反射
鏡上の前記複数の点で反射した前記複数のレーザ光を受
光して前記複数の点の移動距離を検出するレーザ検出手
段と、前記レーザ検出手段が検出した前記複数の点の前
記移動距離から前記偏角を演算する演算手段とを備えた
構成の請求項1記載の面形状測定装置。
2. The method according to claim 1, wherein the deflection angle detecting means includes: a reflecting mirror provided at a portion translated by the translation moving means; and a plurality of points on the reflecting mirror irradiated with a plurality of laser beams. Laser detecting means for receiving the plurality of laser beams reflected at the plurality of points and detecting a moving distance of the plurality of points; and detecting a deviation of the plurality of points from the moving distances of the plurality of points detected by the laser detecting means. 2. The surface shape measuring apparatus according to claim 1, further comprising a calculating means for calculating an angle.
【請求項3】前記並進移動手段は、前記被測定物に対し
前記測定プローブを互いに直交する3方向に相対的にそ
れぞれ並進移動させる第1のステージ、第2のステージ
および第3のステージを備え、 前記偏角検出手段は、前記3方向に反射面が直交するよ
うに前記第1のステージ、第2のステージおよび第3の
ステージによって前記互いに直交する3方向に各並進移
動する部分に設けられた3つの反射鏡と、前記3つの反
射鏡上の所定の6つの点に6つのレーザ光を照射し、前
記3つの反射鏡上の前記6つの点で反射した前記6つの
レーザ光を受光して前記6つの点の移動距離を検出する
レーザ検出手段と、前記レーザ検出手段が検出した前記
6つの点の前記移動距離から前記方向の軸回りの前記偏
角をそれぞれ演算する演算手段とを備えた構成の請求項
1記載の面形状測定装置。
3. The translation means includes a first stage, a second stage, and a third stage for translating the measurement probe relative to the object to be measured in three directions perpendicular to each other. The declination detecting means is provided at a portion where each of the first stage, the second stage and the third stage translates in the three directions orthogonal to each other so that the reflection surface is orthogonal to the three directions. Three reflecting mirrors, and irradiating six laser beams to predetermined six points on the three reflecting mirrors, and receiving the six laser beams reflected at the six points on the three reflecting mirrors Laser detecting means for detecting the moving distance of the six points, and calculating means for calculating the declination around the axis in the direction from the moving distances of the six points detected by the laser detecting means. Was The surface shape measuring apparatus according to claim 1 having a configuration.
【請求項4】前記回転移動手段は、回転移動の軸受とし
て空気軸受を用いた構成の請求項1記載の面形状測定装
置。
4. The surface shape measuring apparatus according to claim 1, wherein said rotational movement means uses an air bearing as a rotational movement bearing.
【請求項5】前記回転移動手段は、前記被測定物を第1
の回転軸線の回りに回転させる第1の回転ステージと、
前記第1の回転軸線と所定の角度をなす第2の回転軸線
を有し、前記測定プローブを前記第2の回転軸線の回り
に回転させる第2の回転ステージとを備え、前記第1の
回転ステージおよび前記第2の回転ステージは、互いに
相手を回転させることなく独立に設けられた構成の請求
項1記載の面形状測定装置。
5. The apparatus according to claim 1, wherein said rotating means moves the object to be measured to a first position.
A first rotary stage for rotating about a rotation axis of
A second rotation stage having a second rotation axis that forms a predetermined angle with the first rotation axis, and rotating the measurement probe around the second rotation axis; The surface shape measuring apparatus according to claim 1, wherein the stage and the second rotary stage are provided independently without rotating each other.
JP10016587A 1998-01-29 1998-01-29 Surface form measuring device Pending JPH11211427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10016587A JPH11211427A (en) 1998-01-29 1998-01-29 Surface form measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10016587A JPH11211427A (en) 1998-01-29 1998-01-29 Surface form measuring device

Publications (1)

Publication Number Publication Date
JPH11211427A true JPH11211427A (en) 1999-08-06

Family

ID=11920418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10016587A Pending JPH11211427A (en) 1998-01-29 1998-01-29 Surface form measuring device

Country Status (1)

Country Link
JP (1) JPH11211427A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292438A (en) * 2007-05-23 2008-12-04 J Tec:Kk Ultraprecisely shape measuring method and device
CN103148801A (en) * 2013-01-30 2013-06-12 青岛云路新能源科技有限公司 Method and device for measuring plate cut of belt material on line
JP2014112067A (en) * 2012-02-15 2014-06-19 Tokyo Seimitsu Co Ltd Rotation angle measuring apparatus and rotation angle measuring method
CN106461385A (en) * 2014-05-19 2017-02-22 泰勒.霍布森有限公司 Device and method for geometrically measuring an object
US10352817B2 (en) 2014-05-19 2019-07-16 Taylor Hobson Ltd. Device and method for geometrically measuring an object

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292438A (en) * 2007-05-23 2008-12-04 J Tec:Kk Ultraprecisely shape measuring method and device
JP2014112067A (en) * 2012-02-15 2014-06-19 Tokyo Seimitsu Co Ltd Rotation angle measuring apparatus and rotation angle measuring method
CN103148801A (en) * 2013-01-30 2013-06-12 青岛云路新能源科技有限公司 Method and device for measuring plate cut of belt material on line
CN106461385A (en) * 2014-05-19 2017-02-22 泰勒.霍布森有限公司 Device and method for geometrically measuring an object
JP2017519203A (en) * 2014-05-19 2017-07-13 テイラー・ホブソン・リミテッドTaylor Hobson Limited Object geometric measurement apparatus and method
JP2018194555A (en) * 2014-05-19 2018-12-06 テイラー・ホブソン・リミテッドTaylor Hobson Limited Device and method for geometrically measuring object
US10352817B2 (en) 2014-05-19 2019-07-16 Taylor Hobson Ltd. Device and method for geometrically measuring an object
US10371511B2 (en) 2014-05-19 2019-08-06 Taylor Hobson Ltd. Device and method for geometrically measuring an object

Similar Documents

Publication Publication Date Title
JP2001503133A (en) 5-axis / 6-axis laser measurement system
EP2261629A2 (en) Asphere measurement method and apparatus
JP2003057016A (en) High speed measuring method for shape of large caliber surface and measuring instrument therefor
JP2009069151A (en) Means and method for determining space position of transfer element in coordinate measuring device
JP4099367B2 (en) Method for calibrating and aligning multiple multi-axis motion stages for optical alignment with planar waveguide devices and systems
JP2000266524A (en) Machine and method for measuring three-dimensional shape
JP2000304529A (en) Probe device and shape measuring device
US6674512B2 (en) Interferometer system for a semiconductor exposure system
JP5517062B2 (en) Normal vector tracking type ultra-precision shape measurement method
JPH11211427A (en) Surface form measuring device
JP2001317933A (en) Shape-measuring apparatus
JPH11132752A (en) Three-dimensional shape measuring device
JPH11211426A (en) Surface form measuring device
JP2002054987A (en) Three-dimensional laser doppler vibrograph
JP2020159819A (en) Inspection system, method for inspection, and program
JP2001056213A (en) Surface shape measuring device and measuring method
JP3800541B2 (en) Beam tracking type laser interferometric length measuring device by swinging optical lever using spherical motor and coordinate measuring method using the device
WO2019069926A1 (en) Surface-shape measuring device, surface-shape measuring method, structural-member manufacturing system, structural member manufacturing method, and surface-shape measuring program
JP5149085B2 (en) Displacement meter
CN114440849B (en) Method and device for calibrating verticality of two-dimensional feedback positioning frame
JP2795612B2 (en) High-speed tracking laser interferometer
US20230236085A1 (en) Non Rotating Lens Centering Device
JP2005337921A (en) Method and device for measuring three-dimensional shape
JPH1068602A (en) Shape measuring apparatus
JPH10281720A (en) Stage device and wave front aberration measuring device using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term