WO2019069926A1 - Surface-shape measuring device, surface-shape measuring method, structural-member manufacturing system, structural member manufacturing method, and surface-shape measuring program - Google Patents

Surface-shape measuring device, surface-shape measuring method, structural-member manufacturing system, structural member manufacturing method, and surface-shape measuring program Download PDF

Info

Publication number
WO2019069926A1
WO2019069926A1 PCT/JP2018/036887 JP2018036887W WO2019069926A1 WO 2019069926 A1 WO2019069926 A1 WO 2019069926A1 JP 2018036887 W JP2018036887 W JP 2018036887W WO 2019069926 A1 WO2019069926 A1 WO 2019069926A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
measurement
stage
unit
measured
Prior art date
Application number
PCT/JP2018/036887
Other languages
French (fr)
Japanese (ja)
Inventor
宮脇 崇
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2019546735A priority Critical patent/JP7120247B2/en
Publication of WO2019069926A1 publication Critical patent/WO2019069926A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Definitions

  • the present invention relates to a surface shape measuring device, a surface shape measuring method, a structure manufacturing system, a structure manufacturing method, and a surface shape measuring program.
  • an apparatus for measuring the surface shape of an object to be measured which is supported by the object to be measured and which is rotatable about a first axis, and is disposed opposite to the stage
  • a measurement unit that is rotatable about a second axis orthogonal to the first axis and detects the distance to the measurement point of the measurement object and / or the inclination of the surface of the measurement object at the measurement point;
  • the stage is placed around the first axis such that the reference axis of the measuring unit is at a predetermined angle with respect to the tangent plane of the reference shape of the measured object at the measurement point.
  • a surface shape measuring apparatus comprising: a control unit that rotates and rotates the measuring unit about a second axis.
  • an apparatus for measuring the surface shape of an object to be measured the stage being capable of supporting the object to be measured and being rotatable about a first axis, and disposed opposite the stage And a measurement unit that is rotatable about a second axis orthogonal to the first axis and that detects the distance to the measurement point of the measurement object and / or the inclination of the surface of the measurement object at the measurement point
  • the surface shape measuring apparatus is provided, wherein the second axis is arranged to pass through the measurement point of the object to be measured.
  • a method of measuring the surface shape of an object to be measured the stage supporting the object to be measured based on reference shape data of the object to be measured acquired in advance, the first axis A measuring unit that rotates around, measures the distance to the measurement point of the object to be measured, and / or detects the inclination of the surface of the object at the measurement point Rotating around a second axis orthogonal to the first axis such that the reference axis of the measurement unit is at a predetermined angle with respect to the tangent plane of the reference shape of the object at A measurement method is provided.
  • a design device for producing reference shape data regarding the shape of a structure a molding device for molding a structure based on the reference shape data, and measurement of the surface shape of the molded structure
  • a structure manufacturing system includes the surface shape measurement device described above, and an inspection device that compares measurement data regarding the surface shape of the structure obtained by the surface shape measurement device with reference shape data.
  • a method of preparing reference shape data on a shape of a structure comprising: measuring the surface shape of the surface shape; and comparing measurement data on the surface shape of the structure obtained by the surface shape measuring method with reference shape data.
  • a stage included in a surface shape measuring apparatus for measuring the surface shape of an object to be measured, based on reference shape data of the object to be measured acquired in advance is a stage for supporting the object A process of rotating the first axis about the first axis, a distance between the object and the measuring point, and / or a measuring unit for detecting the inclination of the surface of the object at the measuring point A process of rotating around a second axis orthogonal to the first axis such that the reference axis of the measurement unit is at a predetermined angle with respect to the tangent plane of the reference shape of the object at the measurement point A surface shape measurement program to be executed is provided.
  • the surface shape measuring apparatus 100 positions the plurality of measurement target points Pi of the object to be measured W sequentially on the measurement points P based on the reference shape data of the object to be measured W.
  • the surface shape of the object to be measured W is measured by this method. Deviation with respect to the reference shape is performed, for example, by measuring the positional deviation and the angular deviation, respectively, using two probe lights.
  • the reference shape data is three-dimensional design data indicating the surface shape of the workpiece W, and is generated in advance.
  • the measurement point P is one point defined on a three-dimensional coordinate where the probe light always passes regardless of the orientation of the optical unit 20.
  • the measurement target points Pi of the object to be measured W are points to be measured on the surface (measurement surface WS) of the reference shape of the object to be measured W, and plural points exist on the surface to be measured of the object to be measured W Do.
  • the measurement target point Pi of the object to be measured W positioned at the measurement point P is simply referred to as “measurement point P of the object to be measured W” or “measurement target point Pi (measurement point P)”.
  • the surface shape measuring method according to the present embodiment is implemented by the surface shape measuring device 100 or the surface shape measuring device 200 described later.
  • FIG. 1 is a perspective view which shows typically an example of the surface shape measuring apparatus 100 which concerns on 1st Embodiment.
  • the surface shape measuring apparatus 100 includes a work stage unit 10, an optical unit 20, a head stage unit 30, and a control unit 50.
  • the work stage unit 10 can hold the object W and move the object W in the X-axis, Y-axis, and Z-axis directions.
  • the work stage unit 10 can position the measurement target point Pi of the object to be measured W on the measurement point P.
  • the optical unit 20 positions the measurement target point Pi of the object to be measured W at the measurement point P, and the probe light at the measurement point P (refer to the first probe light PL1 and the second probe light PL2 in FIG.
  • the light PL1 and the second probe light PL2 are simply referred to as probe light, and the reflected light from the measurement target point Pi (measurement point P) is received and the measurement target point Pi (measurement point P) Position (coordinate value or the distance from the reference position to the measurement point P) and the angle of the surface (the measurement surface WS shown in FIG. 3) of the object W at the measurement point P are measured.
  • the head stage unit 30 supports the optical unit 20 and rotates the optical unit 20 around the second rotation axis (second axis) A2X parallel to the X axis so as to direct the optical unit 20 to the measurement point P. .
  • the optical unit 20 is configured such that the probe light always passes the measurement point P at any rotational position, and the measurement target point Pi of the object to be measured W is positioned at the measurement point P, thereby making the measurement possible.
  • the probe light is irradiated to the measurement target point Pi of the object W.
  • the control unit 50 controls the operations of the work stage unit 10, the optical unit 20, the head stage unit 30, and the like based on the operation of the operator or a preset procedure. Each part will be described below.
  • the work stage unit 10 is provided on a base 80 as a base.
  • the base 80 is made of, for example, metal, natural stone, resin, wood or the like, and is disposed on a floor surface or a desk.
  • a caster etc. may be provided in the lower surface side of the base 80, and the surface shape measuring apparatus 100 may be movable on a floor surface etc.
  • the work stage unit 10 includes an X stage 11, a Y stage 12, a Z stage 13, a ⁇ Z stage (stage) 14, and a tilt adjustment mechanism 15.
  • the arrangement of the X stage 11, the Y stage 12, the Z stage 13, the ⁇ Z stage 14, and the tilt adjustment mechanism 15 in the vertical direction is not limited to the configuration shown in FIG. 1 and can be arbitrarily arranged. Further, for example, when one stage can be moved along the XY plane by a planar motor or the like, the X stage 11 and the Y stage 12 may be realized by one stage.
  • the X-stage 11 is provided movably in the X-axis direction with respect to the base 80 so as to move the object W in the X-axis direction.
  • the X stage 11 moves in the X axis direction by driving an X axis driving device (not shown) along a guide in the X axis direction (not shown) provided on the base 80, for example.
  • a linear motor may be used as the X-axis drive device, and any drive device such as a ball screw mechanism or a rack and pinion mechanism using an electric rotary motor may be used.
  • the X-axis drive is disposed, for example, on the base 80.
  • the Y stage 12 is provided movably in the Y axis direction with respect to the X stage 11 (base 80) so as to move the object W in the Y axis direction.
  • the Y stage 12 moves in the Y axis direction by driving a Y axis driving device (not shown) along a guide in the Y axis direction (not shown) provided on the X stage 11, for example.
  • a linear motor may be used as the Y-axis drive device, and any drive device such as a ball screw mechanism or a rack and pinion mechanism using an electric rotary motor may be used.
  • the Y-axis drive device is disposed, for example, on the X stage 11.
  • the Z stage 13 is provided movably in the Z axis direction with respect to the Y stage 12 (base 80) so as to move the object W in the Z axis direction.
  • the Z stage 13 moves in the Z axis direction by driving a Z axis driving device (not shown) along a guide in the Z axis direction (not shown) provided on the Y stage 12, for example.
  • a Z axis driving device for example, a linear motor may be used, or any drive device such as a ball screw mechanism or a rack and pinion mechanism using an electric rotary motor may be used.
  • the Z-axis driving device is disposed, for example, on the Y stage 12.
  • the ⁇ Z stage 14 is rotatably provided with respect to the Z stage 13 (base 80) so as to rotate the object W around a first rotation axis (first axis) A1Z parallel to the Z axis direction.
  • the ⁇ Z stage 14 is rotatably supported by, for example, a bearing (not shown) provided on the Y stage 12 and rotates about the axis of the first rotation axis A1Z by driving a Z axis rotating device (not shown).
  • a Z-axis rotation device any rotation device such as, for example, an electric rotation motor and a reduction gear is used.
  • the Z-axis rotation device is disposed, for example, on the Z stage 13.
  • the ⁇ Z stage 14 is moved by the X stage 11, Y stage 12 and Z stage 13 in the direction along the XY plane (first plane) perpendicular to the first rotation axis A1Z, and in the first rotation axis A1Z direction. It is possible to move
  • the tilt adjustment mechanism 15 includes a holding unit (not shown) for holding the object W on the top surface.
  • the holder holds the object W at a predetermined position by, for example, vacuum suction.
  • another arbitrary mechanism is applicable.
  • the tilt adjusting mechanism 15 finely adjusts the angles around the X axis and the Y axis of the object W so that the object W is aligned with a predetermined plane (for example, the XY plane) as a reference.
  • the tilt adjustment mechanism 15 can finely adjust the angle of the object W to be measured with respect to the optical unit 20.
  • a parallel link mechanism is applied to the tilt adjustment mechanism 15, and by tilting an actuator such as a piezoelectric element, the holding unit holding the object W is tilted about one or both of the X axis and the Y axis. Is possible.
  • the tilt adjustment mechanism 15 is provided is optional, and the tilt adjustment mechanism 15 may not be provided. Further, the drive of each of the above-described X-axis drive device, Y-axis drive device, Z-axis drive device, Z-axis rotation device, and actuator is controlled by the control unit 50. The control unit 50 will be described later.
  • the surface shape measuring apparatus 100 includes an interferometer unit 40A to detect the position of the Z stage 13 holding the object W (the amount of movement of the object W from the reference position). , An interferometer unit 40B, and an interferometer unit 40C.
  • the interferometer unit 40A detects the position of the Z stage 13 in the X-axis direction, and is disposed apart from the Z stage 13 in the + X-axis direction.
  • the interferometer unit 40A is fixed to the upper end of the first frame 81 which rises from above the base 80.
  • the interferometer unit 40A includes X interferometers 41, 42, 46 in order to detect the position of the Z stage 13 in the X axis direction (see FIG. 3). In FIG. 1, the X interferometer 46 is omitted.
  • the X interferometers 41, 42, 46 of the interferometer unit 40A emit detection light (laser light) toward the movable mirror 61 provided on the Z stage 13 and receive reflected light from the movable mirror 61.
  • detection light laser light
  • the moving mirror 61 is disposed on the + X side on the Z stage 13 and provided so that the reflecting surface is parallel to or substantially parallel to the YZ plane.
  • the X interferometer 41 is set such that the optical axis of the detection light is parallel to the X axis direction and passes through the measurement point P.
  • the X interferometer 42 is arranged such that the optical axis of the detection light is parallel to the X axis direction, and is separated from the X interferometer 41 by a predetermined distance (for example, the distance LA shown in FIG. 15) in the + Z direction. Therefore, the two detection lights emitted from the X interferometers 41 and 42 are incident on the moving mirror 61 in a parallel state separated in the Z-axis direction.
  • the X interferometer 42 may be used to detect the angle around the Y axis of the Z stage 13 or may be used as a backup of the X interferometer 41.
  • the X interferometer 46 is disposed apart from the X interferometer 41 in the Y axis direction, and the optical axis of the detection light is parallel to the X axis direction.
  • the X interferometer 46 is used to detect the rotation angle around the Z axis of the Z stage 13 by measuring the distance to the moving mirror 62. The detection of the position of the Z stage 13 using the X interferometers 41, 42 and 46 will be described later.
  • Interferometer unit 40 B detects the position of Z stage 13 in the Y-axis direction, and is arranged separately from Z stage 13 in the + Y-axis direction.
  • the interferometer unit 40B is fixed to the upper end of the second frame 82 which rises from above the base 80.
  • the interferometer unit 40B includes Y interferometers 43 and 44 in order to detect the position of the Z stage 13 in the Y-axis direction.
  • the Y interferometers 43 and 44 of the interferometer unit 40 B emit detection light (laser light) toward the movable mirror 62 provided on the Z stage 13, and receive reflected light from the movable mirror 61, The distance to the movable mirror 62 (the position of the Z stage 13 in the Y-axis direction) is detected.
  • the movable mirror 62 is disposed on the + Y side on the Z stage 13 and provided so that the reflecting surface is parallel or almost parallel to the XZ plane.
  • the Y interferometer 43 is set so that the optical axis of the detection light is parallel to the Y-axis direction and passes through the measurement point P.
  • the Y interferometer 44 is arranged such that the optical axis of the detection light is parallel to the Y axis direction and is separated from the Y interferometer 43 by a predetermined distance (for example, refer to the distance LB shown in FIG. 16) in the + Z direction. Therefore, the two detection lights emitted from the Y interferometers 43 and 44 enter the moving mirror 62 in a parallel state separated in the Z-axis direction.
  • the Y interferometer 44 may be used to detect an angle around the X axis of the Z stage 13 or may be used as a backup of the Y interferometer 43. The detection of the position of the Z stage 13 using the Y interferometers 43 and 44 will be described later.
  • the interferometer unit 40C detects the position of the Z stage 13 in the Z-axis direction, and is provided below the Z stage 13, for example, on the base 80.
  • the interferometer unit 40C includes a Z interferometer 45 in order to detect the position of the Z stage 13 in the Z axis direction.
  • the Z interferometer 45 of the interferometer unit 40C emits detection light (laser light) toward a movable mirror (not shown) provided on the Z stage 13 and receives reflected light from the movable mirror.
  • the position of the Z stage 13 in the Z axis direction is detected.
  • a movable mirror (not shown) is disposed, for example, on the lower surface of the Z stage 13 and provided so that the reflecting surface is parallel or substantially parallel to the XY plane.
  • the optical axis of the detection light is parallel to the Z axis direction.
  • the detection light from the Z interferometer 45 may be set to pass through the measurement point P.
  • X interferometers 41, 42, 46, Y interferometers 43, 44, and Z interferometer 45 detect the position (or the distance to movable mirror 61) of each movable mirror 61, 62 etc., the position is indicated.
  • a signal is output to the control unit 50.
  • the X interferometers 41, 42, 46 and the Y interferometers 43, 44 are the moving position of the Z stage 13 ( ⁇ Z stage 14) in the direction along the XY plane (first plane) and / or the first It is a position detection unit that detects the rotational position around the rotation axis A1Z.
  • the optical unit 20 includes a distance detector 21 and an angle detector 22.
  • the distance detector 21 irradiates the first probe light PL1 (see FIG. 3 etc.) as the probe light toward the measurement point P of the object to be measured W, and the first reflected light RL1 (see FIG. 3) reflected at the measurement point P. 3), and measure the distance to the measurement point P.
  • the angle detector 22 irradiates the second probe light PL2 (see FIG. 3 etc.) as the probe light toward the measurement point P of the object to be measured W, and the second reflected light RL2 (see FIG. 3) reflected at the measurement point P. 3) is received to measure the angle of the measurement surface WS at the measurement point P.
  • the angle of the measurement surface WS indicates the angle between a predetermined reference surface (for example, the XY plane) and the measurement surface WS.
  • the optical unit 20 is supported by the head stage unit 30. Details of the optical unit 20 will be described later.
  • FIG. 2 is an enlarged perspective view showing an example of the optical unit 20 and the head stage unit 30 in the surface shape measuring apparatus 100.
  • the head stage unit 30 includes a ⁇ X stage (second axis rotation stage) 31 that rotates the optical unit 20 around the second rotation axis A2X.
  • the ⁇ X stage 31 is disposed on the + X side of the third frame 83 rising from above the base 80, and is rotatably provided around the axis of the second rotation axis A2X.
  • An arm portion 32 is provided on a surface on the + X side of the ⁇ X stage 31 at a position away from the second rotation axis A2X (a position decentered from the second rotation axis A2X).
  • the arm portion 32 is provided to extend from the ⁇ X stage 31 in the + X axis direction.
  • the optical unit 20 is attached to the tip portion on the + X side of the arm portion 32.
  • the optical unit 20 orbits around the axis of the second rotation axis A2X with the probe light directed to the measurement point P. That is, the optical unit 20 is controlled by the stage control unit 54 of the control unit 50 described later, and rotates with one degree of freedom of rotation around the second rotation axis A2X.
  • the length of the arm portion 32 in the X-axis direction is set to a length that allows the optical unit 20 to be disposed above the measurement point P + Z-axis.
  • the arm unit 32 may include an adjustment unit capable of adjusting the position of the optical unit 20 in the X-axis direction.
  • a weight 31a is provided at a position facing the arm portion 32 across the second rotation axis A2X.
  • the weight 31 a is, for example, the same as or substantially the same as the weight of the arm 32 and the optical unit 20.
  • the weight 31a allows the ⁇ X stage 31 to rotate smoothly. Note that whether or not the weight 31 a is provided on the ⁇ X stage 31 is optional, and the weight 31 a may not be provided. Also, a plurality of weights 31a may be provided.
  • FIG. 3 is a view showing an example of an outline of the optical unit 20.
  • the optical unit 20 is set such that the distance between the reference position G of the optical unit 20 and the measurement point P is a predetermined distance D, as shown in FIG. Further, since the second rotation axis A2X passes through the measurement point P, in the optical unit 20, the distance between the reference position G and the second rotation axis A2X is the predetermined distance D. And, at any rotational position, the probe light is always set to pass through the measurement point P.
  • the reference position G of the optical unit 20 may be set to the center position or the barycentric position of the optical unit 20, or may be set to other than these.
  • the optical unit 20 includes a distance detector 21 and an angle detector 22 as shown in FIG.
  • the distance detector 21 includes an irradiation unit 21A that emits the first probe light PL1, and a detection unit 21B that receives the first reflected light RL1 that the first probe light PL1 reflects at the measurement point P.
  • the irradiation unit 21A emits the first probe light PL1 such that the optical axis of the first probe light PL1 overlaps the measurement point P in a state of being inclined from the Z-axis direction.
  • the detection unit 21B is disposed in a state of being inclined symmetrically with the irradiation unit 21A about the Z-axis direction.
  • the angle detector 22 detects the irradiation unit 22A that emits the second probe light PL2 and the second reflected light RL2 that is reflected by the second probe light PL2 at the measurement point P. And a unit 22B.
  • reference numerals 22A and 22B are written in parentheses of reference numeral 22.
  • the irradiating unit 22A emits the second probe light PL2 such that the optical axis of the second probe light PL2 overlaps the measurement point P in a state of being inclined from the Z-axis direction.
  • the detection unit 22B is disposed in a state of being inclined symmetrically with the irradiation unit 22A centering on the Z-axis direction.
  • the optical axis of the first probe light PL1 and the optical axis of the second probe light PL2 intersect at the measurement point P. That is, the state in which the optical axis of the first probe light PL1 intersects the optical axis of the second probe light PL2 at the measurement point P (second rotation axis A2X) separated from the reference position G of the optical unit 20 by the predetermined distance D It has become.
  • the first probe light PL1 of the distance detector 21 and the second probe light PL2 of the angle detector 22 overlap, and these are combined.
  • the optical unit 20 is not limited to the configuration shown in FIG.
  • the optical unit 20 is applicable to any configuration capable of measuring the distance to the measurement point P and the angle of the measurement surface WS at the measurement point P.
  • the optical axis of the first probe light PL1 and the optical axis of the second probe light PL2 intersect at the second rotation axis A2X, even when the optical unit 20 is rotated by rotating the ⁇ X stage 31, the first The optical axis of the probe light PL1 and the optical axis of the second probe light PL2 do not change in that they intersect at the second rotation axis A2X. Therefore, the distance between the measurement point P and the optical unit 20 can be easily controlled by setting the measurement point P on the second rotation axis A2X.
  • the control unit 50 controls the operation of each part of the surface shape measuring apparatus 100 such that the probe light (first probe light PL1 and second probe light PL2) emitted from the optical unit 20 is irradiated to the measurement point P.
  • FIG. 4 is a diagram showing an example of a control unit (control unit) 50 of the surface shape measuring apparatus 100 by functional blocks.
  • the control unit 50 includes an operation unit 51, a storage unit 52, an operation unit 53, a stage control unit 54, a measurement control unit 55, and an I / O unit 56.
  • the operation unit 51 is an interface for the operator to operate an operation in each part of the surface shape measuring apparatus 100.
  • the operation unit 51 is a liquid crystal display panel that displays information such as a measurement program and / or a measurement result, a keyboard that inputs numerical and / or character information, a mouse, a touch panel, various switches, and further CD (Compact Disk), USB ( A reader / writer capable of reading and writing reference shape data of the measurement surface WS recorded on a recording medium such as a Universal Serial Bus memory or the like, measurement results from the optical unit 20, and the like are provided.
  • the surface shape measuring apparatus 100 can perform measurement of the surface shape corresponding to the type of the measurement surface WS and the measurement pattern in an interactive manner by such an operation unit 51.
  • the storage unit 52 is configured of a plurality of storage elements such as a read only memory (ROM) and a random access memory (RAM).
  • the ROM stores in advance a control program for controlling the operation of each part of the surface shape measuring apparatus 100, a type of the object to be measured W, a measurement program corresponding to a measurement pattern, and the like.
  • the control unit 50 incorporates the corresponding measurement program into the control program.
  • the RAM is reference shape data of the measurement surface WS of the object to be measured W read via the reader / writer or the I / O unit 56 of the operation unit 51, a reference at the measurement point P on the measurement line set in the measurement program. Inclination angle, distance data of each measurement point P output from distance detector 21 during execution of measurement program, angle of measurement surface WS at each measurement point P output from angle detector 22 during execution of measurement program Temporarily store data etc.
  • the arithmetic unit 53 includes a central processing unit (CPU), a shift register, and the like, and performs various arithmetic processing based on the control program and measurement program stored in advance in the storage unit 52.
  • the stage control unit 54, measurement control A command signal is output to the unit 55 and the like to control the operation of the work stage unit 10, the optical unit 20, and the head stage unit 30.
  • the stage control unit 54 controls operations of the X stage 11, the Y stage 12, the Z stage 13, the ⁇ Z stage 14, the tilt adjustment mechanism 15, and the ⁇ X stage 31 based on a command signal output from the computing unit 53.
  • the measurement control unit 55 outputs a measurement control signal to the distance detector 21 and the angle detector 22 of the optical unit 20 based on the command signal output from the calculation unit 53, and controls the shape measurement of the measurement surface WS.
  • the I / O unit 56 exchanges signals with the outside.
  • FIG. 5 is a view for explaining the concept of measuring the surface shape by the surface shape measuring apparatus 100.
  • the measurement surface WS of the object to be measured W is simplified and shown in a planar shape, but actually, it has an uneven shape by a free curved surface.
  • the direction perpendicular to the tangent plane is indicated by an arrow at any point on the measurement surface WS of such an object to be measured W, the directions of the arrows at the respective points are apart.
  • the surface shape measuring apparatus rotates the optical unit 20 around both the X axis and the Y axis to measure the object It is general to direct the optical unit 20 to the measurement point P of W.
  • the configuration in which the optical unit 20 is rotated about the X axis and the Y axis supports the optical unit 20 with two stages, which tends to cause an error in the irradiation position of the probe light, and is a troublesome operation It becomes.
  • the surface shape measuring apparatus 100 when the optical unit 20 is directed to the measurement point P of the object W to be measured, the surface shape measuring apparatus 100 according to the present embodiment rotates the object W around the Z axis by the ⁇ Z stage 14 as shown in FIG. By rotating the optical unit 20 around the X axis by the ⁇ X stage 31, the optical unit 20 can be accurately directed to the measurement point P of the object W to be measured.
  • the angle ⁇ x can be expressed using the angle ⁇ y and the angle ⁇ z.
  • the angle ⁇ y can be expressed using the angle ⁇ x and the angle ⁇ z.
  • the angle ⁇ z can be expressed using the angle ⁇ x and the angle ⁇ y. That is, it is possible to express the remaining angle by two angles among the angles ⁇ x, ⁇ y, and ⁇ z. Therefore, it is possible to direct the optical unit 20 to the measurement point P by controlling any two angles.
  • the angle ⁇ x and the angle ⁇ z are used. That is, the control unit 50 controls the rotation angle of the ⁇ X stage 31 of the head stage unit 30 so as to become the angle ⁇ x, and the rotation angle of the ⁇ Z stage 14 of the work stage unit 10 so as to become the angle ⁇ z. Control.
  • FIGS. 7 to 9 are explanatory views illustrating movement patterns on the object W when the probe light from the optical unit 20 and the object W are moved relative to each other and the probe light is moved along the measurement line. It is.
  • FIGS. 7 to 9 schematically show the measurement object W held by the tilt adjustment mechanism 15 as viewed from above, and a measurement line along which the probe light moves on the measurement surface of the measurement object W is shown. It is indicated by L1 to L6.
  • FIG. 7 shows a movement pattern of probe light (measurement point P in the case where a workpiece W having a circular or substantially circular surface shape in plan view is measured, such as a meniscus lens or an aspheric lens. Measurement route) is shown.
  • the stage control unit 54 is configured to rotate the ⁇ X stage 31 in the head stage unit 30, move the X stage 11 of the work stage unit 10, move the Y stage 12 and Z stage 13, and rotate the ⁇ Z stage 14. Is controlled to move the measurement surface WS in the movement pattern shown in FIG.
  • the control unit 50 controls the rotation angle of the ⁇ X stage 31 and the rotation angle of the ⁇ Z stage 14 to control the measurement points P at the measurement points P aligned with each measurement target point Pi in the movement pattern.
  • the optical unit 20 is properly directed to the surface.
  • the aspect which aims the optical unit 20 with respect to the measurement point P is mentioned later.
  • the control unit 50 controls the X stage 11 and the like of the work stage unit 10 so that each measurement point P is positioned on the second rotation axis A2X.
  • the stage control unit 54 moves the probe light along the linear measurement line L1 from the state where the probe light is irradiated to the start point SP on the measurement surface WS of the object to be measured W.
  • the measurement control unit 55 sequentially positions each measurement target point Pi on the measurement line L1 as the measurement point P, thereby the distance at each measurement target point Pi (measurement point P) and the angle of the measurement surface WS by the optical unit 20. Let me measure.
  • the stage control unit 54 rotates the ⁇ Z stage 14 by a predetermined angle (for example, clockwise) to move the probe light along the linear measurement line L2.
  • the measurement control unit 55 causes the optical unit 20 to measure the distance at each measurement target point Pi (measurement point P) on the measurement line L2 and the angle of the measurement surface WS, as in the measurement line L1.
  • the stage control unit 54 rotates the ⁇ Z stage 14 by a predetermined angle to move the probe light along the linear measurement line L3.
  • the measurement control unit 55 causes the optical unit 20 to measure the distance at each measurement target point Pi (measurement point P) on the measurement line L3 and the angle of the measurement surface WS, as in the measurement lines L1 and L2.
  • the control unit 50 can obtain distance and angle measurement data for the entire measurement surface WS of the object W by repeating measurement of distance and angle along a plurality of measurement lines. In the case shown in FIG. 7, it is possible to obtain data obtained by measuring the entire measurement surface of the object W in the form of a line in the radial direction.
  • the measurement data of the distance in each measurement point P and the angle of the measurement surface WS are obtained by the optical unit 20 in the above, it is not limited to this method.
  • the control unit 50 is adjusted to each measurement target point Pi while controlling to keep the distance D (see FIG. 3) constant from the optical unit 20 to each measurement target point Pi in each measurement line L1 etc.
  • a method may be used in which angle data of the measurement surface WS is acquired by the optical unit 20 at the measurement point P.
  • FIG. 8 shows the case where the measurement surface WS of the object W is circular in plan view, but the measurement surface is non-circular in shape such as rectangular, elliptical or oblong in plan view.
  • An example of a movement pattern of probe light suitable for measuring an object W (for example, a cylindrical lens or the like) is shown.
  • the stage control unit 54 moves the probe light along the linear measurement line L1 from the state where the probe light is irradiated to the start point SP on the measurement surface WS of the object to be measured W.
  • the measurement control unit 55 causes the optical unit 20 to measure the distance at each measurement target point Pi (measurement point P) on the measurement line L1 and the angle of the measurement surface WS.
  • the stage control unit 54 operates the X stage 11 or the like of the work stage unit 10 to shift the object W in the ⁇ X direction by a predetermined amount, thereby linearly forming the probe light. It moves along the measurement line L4 of.
  • the measurement control unit 55 causes the optical unit 20 to measure the distance at each measurement target point Pi (measurement point P) on the measurement line L4 and the angle of the measurement surface WS as in the measurement line L1.
  • the stage control unit 54 operates the X stage 11 or the like of the work stage unit 10 to further shift the object W in the ⁇ X direction by a predetermined amount, and the probe light is along the linear measurement line L5.
  • the measurement control unit 55 causes the optical unit 20 to measure the distance at each measurement target point Pi (measurement point P) on the measurement line L5 and the angle of the measurement surface WS, as in the measurement lines L1 and L4.
  • the control unit 50 can obtain distance and angle measurement data for the entire measurement surface WS of the object W by repeating measurement of distance and angle along a plurality of measurement lines. In the case shown in FIG. 8, it is possible to obtain data obtained by measuring the entire measurement surface of the object W in parallel lines. Also in the case shown in FIG. 8, in the same manner as described above, the control unit 50 controls to keep the distance D from the optical unit 20 to each measurement target point Pi constant at each measurement line L1 etc.
  • the angle data of the measurement surface WS may be acquired by the optical unit 20 at the measurement point P where each measurement target point Pi is positioned.
  • FIG. 9 shows an example of the movement pattern of the probe light in the case where the measurement object W having a circular or substantially circular surface shape in plan view is measured, as in FIG. 7.
  • the stage control unit 54 moves the probe light along the spiral measurement line L6 from the state where the probe light is irradiated to the start point SP on the measurement surface WS of the object to be measured W.
  • the measurement control unit 55 causes the optical unit 20 to measure the distance at each measurement target point Pi (measurement point P) on the measurement line L6 and the angle of the measurement surface WS.
  • the control unit 50 can obtain measurement data of the spiral distance and angle for the entire measurement surface WS of the object W by measuring the distance and angle along the spiral measurement line L6.
  • the measurement line L6 is set spirally toward the outer side from the center of the measurement surface WS, it is not limited to this, for example, a spiral measurement line is set toward the center from the outer side It may be done.
  • the control unit 50 performs control while maintaining the distance D from the optical unit 20 to each measurement point P constant in the measurement line L6. Angle data of the measurement surface WS may be acquired by the optical unit 20 at the point P.
  • each measurement target point Pi (measurement point P) and the angle of the measurement surface WS in the measurement line L1 and the like are measured at the measurement point P by the first probe light PL1 and the second probe light PL2 emitted from the optical unit 20. It is calculated
  • FIG. The stage control unit 54 of the control unit 50 measures, based on the reference shape data of the object to be measured W stored in advance in the storage unit 52 (see FIG. 4), each measurement target point Pi along the measurement line L1 etc.
  • the movement position of X stage 11, Y stage 12, and Z stage 13 of work stage unit 10 is controlled to position target point Pi at measurement point P arranged on second rotation axis A2X, and
  • the rotation angle of the ⁇ X stage 31 and the rotation angle of the ⁇ Z stage 14 are controlled so that the optical unit 20 is properly directed to the tangent plane at the measurement point P.
  • the stage control unit 54 may simultaneously control the movement position of the X stage 11, the Y stage 12, and the Z stage 13, and control the rotation angle of the ⁇ X stage 31 and the rotation angle of the ⁇ Z stage 14. Each may be performed independently.
  • the measurement control unit 55 controls the optical unit 20 to sequentially measure the distance of each measurement target point Pi and the angle of the measurement surface WS along the measurement line L1 and the like.
  • the calculation unit 53 of the control unit 50 calculates the shape of the measurement surface WS of the object to be measured W from the distance detected for each measurement target point Pi and the angle of the measurement surface WS.
  • the arithmetic unit 53 extracts, for example, the difference in the angle of the measurement surface WS at the measurement point P with respect to the reference shape data stored in the storage unit 52.
  • the surface shape of the measurement surface WS may be calculated by arithmetic processing of the data of (1) using a known method such as integration processing or fitting processing.
  • FIG. 10 is a diagram showing an example of calculating the surface shape of the object W to be measured.
  • the optical unit 20 moves from the left side to the right side of the drawing in FIG. 10 along the measurement line L1 or the like in the Y direction described above, and performs measurement at predetermined sampling intervals L.
  • a point set by a predetermined sampling interval L is a measurement target point Pi of the object to be measured W.
  • the surface shape of the object to be measured W is a free-form surface, the normals measured at each measurement target point are directed in the three-dimensional direction, but in FIG.
  • the angle change of the measurement surface WS along the measurement line is indicated by extracting the inclination of the angle.
  • an arbitrary direction for example, a direction perpendicular to the measurement line
  • the surface shape along the arbitrary direction of the measurement surface WS can be obtained. It can be calculated.
  • the inclination angle ⁇ i has a small angle
  • the measurement target point Pi f (i)
  • the surface shape of the entire measurement surface WS of the object to be measured W is calculated by performing the calculation of the surface shape along the measurement line L1 and the like in a plurality of measurement lines.
  • FIG. 11A is a diagram for explaining the principle of measuring the distance to the measurement target point Pi (the measurement point P) by the distance detector 21.
  • FIG. 11B shows the measurement point P by the angle detector 22. It is a figure explaining the principle which measures the angle of measurement side WS in.
  • FIG. 11 shows a state in which the first probe light PL1 of the distance detector 21 and the second probe light PL2 of the angle detector 22 are made incident on the measurement surface WS extending horizontally in the XY direction.
  • the distance detector 21 includes a light source 211, a condensing lens 212, a condensing lens 213, and a light detector 214.
  • the light source 211 and the condenser lens 212 correspond to the irradiation unit 21A shown in FIG.
  • the condenser lens 213 and the light detector 214 correspond to the detection unit 21B shown in FIG.
  • the irradiation unit 21A (light source 211 and condensing lens 212) and the detection unit 21B (condensing lens 213 and light detector 214) are provided with a relative angle with the reference axis S defined.
  • the reference axis S is, for example, a symmetry axis between the optical axis of the irradiation light from the irradiation unit 21A and the optical axis of the reflected light reflected at the measurement point P.
  • the light source 211 generates the first probe light PL1.
  • the light source 211 is a laser light source whose oscillation wavelength, light output, beam diameter and the like are stabilized. For example, a fiber laser, a distributed feedback laser, or the like is used.
  • the light source 211 includes a collimator at an output unit, and outputs the first probe light PL1 as a parallel light beam.
  • the condensing lens 212 condenses the first probe light PL ⁇ b> 1 generated by the light source 211 and irradiates the measurement surface WS of the object to be measured W (measurement target point Pi, measurement point P).
  • the condensing lens 213 condenses the first reflected light RL1 reflected by the measurement surface WS (the measurement target point Pi, the measurement point P).
  • the light detector 214 is a detector for detecting the position of the first reflected light RL1 and measuring the distance to the measurement surface WS, and may be, for example, a charge-coupled device (CCD) or a complementary metal oxide semiconductor (CMOS). Or an image sensor such as an organic photodiode.
  • the angle detector 22 includes a light source 221, a condensing lens 222, a collimating lens 223, and a light detector 224.
  • the light source 221 and the condenser lens 222 correspond to the irradiation unit 22A shown in FIG.
  • the collimator lens 223 and the light detector 224 correspond to the detection unit 22B shown in FIG.
  • the irradiation unit 22A (light source 221 and condenser lens 222) and the detection unit 22B (collimator lens 223 and light detector 224) are provided at a relative angle with the reference axis S.
  • the reference axis S is, for example, an axis of symmetry between the optical axis of the irradiation light from the irradiation unit 22A and the optical axis of the reflected light reflected at the measurement point P.
  • the light source 221 generates a second probe light PL2.
  • the light source 221 is a laser light source whose oscillation wavelength, light output, beam diameter and the like are stabilized. For example, a fiber laser, a distributed feedback laser, etc. are used.
  • the light source 221 includes a collimator at an output unit, and outputs the second probe light PL2 as a parallel light flux.
  • the condensing lens 222 condenses the second probe light PL2 generated by the light source 221 and irradiates it on the measurement surface WS (measurement target point Pi, measurement point P) of the object W to be measured.
  • the collimating lens 223 converts the second reflected light RL2 reflected by the measurement surface WS (the measurement target point Pi, the measurement point P) into a parallel light flux.
  • the photodetector 224 is a detector for detecting the position of the second reflected light RL2 to measure the angle of the measurement surface WS, and, for example, an image sensor such as a CCD or CMOS or an organic photodiode is used. .
  • the first probe light PL1 emitted from the distance detector 21 is collected by the collecting lens 212 and enters the measurement surface WS, and the first reflected light RL1 is collected by the collecting lens 213 and the light detector Incident on 214. Therefore, the incident position of the first reflected light RL1 to the light detector 214 does not change even if the angle of the measurement surface WS changes. However, when the measurement surface WS changes in the Z-axis direction, the incident position of the first reflected light RL1 on the light detector 214 changes. Therefore, the control unit 50 measures the measurement surface WS (the measurement target point from the reference position G of the optical unit 20 even when the angle of the measurement surface WS changes by the signal output from the light detector 214). The distance to Pi, measurement point P) can be calculated.
  • the second probe light PL2 emitted from the angle detector 22 is condensed by the condensing lens 222 and is incident on the measurement surface WS, and the second reflected light RL2 is collimated by the collimate lens 223 and becomes light The light is incident on the detector 224.
  • the incident position of the second reflected light RL2 hardly (largely) changes even if the position of the measurement surface WS in the Z-axis direction changes.
  • the control unit 50 measures the measurement surface WS (the measurement target WS shown in FIG. 14 even if the position of the measurement surface WS in the Z-axis direction changes slightly due to the signal output from the light detector 224).
  • the angle of the tangent plane WA) at the point Pi can be calculated.
  • reference symbol S denotes a virtual optical axis, which is a reference axis of the optical unit 20.
  • the reference axis S is a virtual optical axis of probe light emitted from the optical unit 20.
  • An intersection point of the reference axis S and the measurement surface WS is a measurement point P.
  • the optical unit 20 is controlled by the control unit 50 such that the reference axis S is at a predetermined angle with respect to the tangent plane of the reference shape of the object W at the measurement point P.
  • to direct the optical unit 20 to the measurement point P is, for example, optical so that the reference axis S passes the measurement point P and the reference axis S is perpendicular to the tangent plane of the measurement point P.
  • the reference axis S may not be perpendicular to the tangent plane of the reference shape of the workpiece W at the measurement point P, as long as the angle is determined in advance.
  • the reference axis S may be set to pass through the reference position G (see FIG. 3) of the optical unit 20.
  • the first probe light PL1 and the first reflected light RL1 are symmetrical with respect to the reference axis S.
  • the second probe light PL2 and the second reflected light RL2 are symmetrical with respect to the reference axis S.
  • the distance detector 21 and the angle detector 22 are set such that the incident surface of the first probe light PL1 of the distance detector 21 and the incident surface of the second probe light PL2 of the angle detector 22 are orthogonal (or intersected) It is done.
  • the distance detector 21 is set so that the incident surface of the first probe light PL1 is along the YZ plane including the measurement point P.
  • the angle detector 22 is set so that the incident surface of the second probe light PL2 is orthogonal to the YZ plane and along the XZ plane including the measurement point P.
  • the arrangement of the distance detector 21 and the angle detector 22 will be described with reference to FIG.
  • FIG. 12A is a diagram for explaining the first probe light PL1 and the first reflected light RL1 in the distance detector 21.
  • FIG. 12B is a view for explaining the second probe light PL2 and the second probe light in the angle detector 22. It is a figure explaining reflected light RL2.
  • the distance detector 21 is set so that the incident surface of the first probe light PL1 is along the YZ plane including the measurement point P.
  • the YZ plane is a plane orthogonal to the X axis.
  • the angle detector 22 is set so that the incident surface of the second probe light PL2 is along the XZ plane including the measurement point P.
  • the XZ plane is a plane including the X axis.
  • the optical unit 20 includes a distance detector 21 disposed along the YZ plane and an angle detector 22 disposed along the XZ plane.
  • the first probe light PL1 along the YZ plane and the second probe light PL2 along the XZ plane intersect at the measurement point P on the second rotation axis A2X. That is, the optical unit 20 is adjusted so that the first probe light PL1 and the second probe light PL2 intersect at a measurement position separated by a predetermined distance D from the reference position G of the optical unit 20. Thereby, the optical unit 20 causes the first probe light PL1 and the second probe light PL2 to overlap, and irradiates the measurement light with the probe light obtained by combining these.
  • the measurement line L1 and the like of the probe light are set in the Y-axis direction. Therefore, the first probe light PL1 of the distance detector 21 is irradiated to the YZ plane along the measurement line L1 and the like.
  • the second probe light PL2 of the angle detector 22 is irradiated on the XZ plane orthogonal to the measurement line L1 and the like.
  • the present invention is not limited to such a setting.
  • the first probe light PL1 of the distance detector 21 may be irradiated in the XZ plane orthogonal to the measurement line L1 etc.
  • the second probe light of the angle detector 22 PL2 may be irradiated to the YZ plane along the measurement line L1 and the like.
  • the incident surface of the first probe light PL1 and the incident surface of the second probe light PL2 may not be orthogonal to each other.
  • the reference axis S of the optical unit 20 is parallel to the Z-axis direction.
  • the reference axis S coincides with a line where the YZ plane in which the distance detector 21 is disposed and the XZ plane in which the angle detector 22 is disposed.
  • FIG. 13 is a diagram showing another example of the angle detector.
  • the angle detector 122 shown in FIG. 13 includes a light source 221, an optical fiber 225, a collimator 226, a condenser lens 222A, a mirror 227, an aperture 228, and a light detector 224.
  • the light source 221 and the light detector 224 are the same as those shown in FIG.
  • the optical fiber 225 guides the second probe light generated by the light source 221.
  • the collimator 226 is provided at the output end of the optical fiber 225, and emits the second probe light as a parallel beam.
  • Condenser lens 222A condenses the 2nd probe light PL2 of parallel light flux, and irradiates it on measurement surface WS (measurement point P).
  • the mirror 227 reflects the second reflected light RL2 which has been collimated by being reflected by the measurement surface WS and transmitted again through the condenser lens 222A in a predetermined direction.
  • the aperture 228 removes, for example, the second back surface reflected light reflected from the back surface of the object W to be measured.
  • the angle detector 122 transmits the second probe light PL2 irradiated to the measurement surface WS and the second reflected light RL2 reflected by the measurement surface WS by transmitting the same condensing lens 222A, as shown in FIG.
  • the collimator lens 223 shown in FIG. 12 (b) is omitted.
  • the optical unit 20 can miniaturize the angle detector 122 formed along the XZ plane, so that the whole can be configured compact.
  • the angle detector 122 has the aperture 228 for removing the second back surface reflected light reflected by the back surface of the object to be measured W just before the light detector 224, the thickness of the object to be measured W is temporarily thin. In the case or the case where the incident angle of the second probe light PL2 is small, it is possible to efficiently remove the second back surface reflected light.
  • the condensing lens 212 of the distance detector 21 can set the focal distance f1 in the same range as the condensing lens 222A.
  • the focal length f1 is not shown.
  • the condensing lens 212 can use, for example, an achromatic lens having a focal length f1 of 120 mm, which is the same as the focal length f2 of the condensing lens 222A.
  • the distance detector 21 can transmit the first probe light PL1 irradiated to the measurement surface WS and the first reflected light RL1 reflected by the measurement surface WS through the same condensing lens, as shown in FIG. a) and the condensing lens 213 shown to Fig.12 (a) can be abbreviate
  • the focal point adjustment of the distance detector 21 is performed by transmitting the first probe light PL1 and the first reflected light RL1 (the second probe light PL2 and the second reflected light RL2) through the same condensing lens. Work can be shared. Further, by using the same focusing lens 222A in the distance detector 21 and the angle detector 22, the focal depths of the first probe light PL1 and the second probe light PL2 focused on the measurement point P are the same or It becomes almost the same, and the influence of an error component etc. based on the difference in depth of focus can be eliminated.
  • the range to which the probe light is irradiated at the measurement point P is, for example, a circular or substantially circular spot having a diameter of about 200 ⁇ m.
  • the distance detector 21 measures the average positional displacement of this spot.
  • the angle detector 22 detects an angle around the average X axis or Y axis of this spot.
  • FIG. 14 is a view schematically showing an example of the operation of the surface shape measuring apparatus 100 when measuring the surface shape of the object W to be measured.
  • the control unit 50 measures the distance and angle of each measurement point P
  • the measurement point P passes through the second rotation axis A2X based on the reference shape data stored in the storage unit 52, and the measurement point Control the operations of X stage 11, Y stage 12, Z stage 13, ⁇ Z stage 14, and ⁇ X stage 31 such that the normal line in the tangent plane of P coincides with reference axis S passing through reference position G of optical unit 20.
  • the surface shape of the object to be measured W is simplified and shown as an elliptical shape in the YZ cross section, but actually, it has minute unevenness due to a free curved surface.
  • the measurement target point Pi substantially at the center of the object W is positioned at the measurement point P on the second rotation axis A2X
  • the measurement target point Pi (measurement point P)
  • the tangent plane WA0 is substantially parallel to the XY plane, and the normal is approximately parallel to the Z-axis direction.
  • the control unit 50 aligns the reference axis S with the normal based on the reference shape data, and the ⁇ Z stage 14 and the distance Z from the measurement target point Pi (measurement point P) to the reference position G.
  • the rotation angle of the ⁇ X stage 31 is controlled, and the movement positions of the X stage 11, the Y stage 12, and the Z stage 13 are controlled.
  • the measurement target point Pi separated from the center of the object to be measured W is positioned at the measurement point P on the second rotation axis A2X
  • the measurement target point Pi Is inclined from the XY plane, and its normal is inclined from the Z-axis direction.
  • the control unit 50 aligns the reference axis S with the normal based on the reference shape data, and the rotation angles of the ⁇ Z stage 14 and the ⁇ X stage 31 so that the distance D from the measurement point P to the reference position G becomes And control the moving positions of the X stage 11, the Y stage 12, and the Z stage 13.
  • the control unit 50 aligns the reference axis S with the normal to the measurement surface, and allows the measurement point P to pass through the second rotation axis A2X, so that the X stage 11, Y stage 12, Z stage 13, ⁇ Z stage 14 and the ⁇ X stage 31 are controlled as follows.
  • the drawings relating to the functional blocks in FIG. 4 will be referred to as appropriate.
  • the calculation unit 53 of the control unit 50 calculates the tangent plane WA of each measurement target point Pi along the measurement line L1 and the like from the reference shape data of the measurement surface WS stored in the storage unit 52, and the tangent plane WA
  • the angle around the X axis and the angle around the Y axis (hereinafter referred to as the inclination angle of the measurement target point Pi) are calculated.
  • the calculation unit 53 calculates movement amounts of the X stage 11, the Y stage 12, and the Z stage 13 for positioning each measurement target point Pi in the measurement line L1 and the like as the measurement point P, and the calculated measurement. From the inclination angle of the target point Pi, the normal of the measurement target point Pi (tangent plane WA) coincides with the reference axis S, and the probe light of the optical unit 20 passes through the measurement target point Pi (measurement point P) The amounts of rotation of the ⁇ Z stage 14 and the ⁇ X stage 31 are calculated.
  • the stage control unit 54 generates drive signals based on the movement amount and rotation amount of each stage calculated by the operation unit 53, and the X stage 11, Y stage 12, Z stage 13, ⁇ Z stage 14, and ⁇ X stage A drive signal is output to 31 to move the object W and the optical unit 20 relative to each other.
  • the stage control unit 54 may control each stage at the same time, or may independently control each different period.
  • the distance detector 21 of the optical unit 20 applies the first probe light PL1 to the object to be measured W.
  • the angle detector 22 of the optical unit 20 irradiates the second probe light PL2 to the object to be measured W based on the measurement control signal output from the measurement control unit 55.
  • the first probe light PL1 and the second probe light PL2 are irradiated to the measurement target point Pi (measurement point P).
  • the optical unit 20 measures the distance of the measurement target point Pi (the measurement point P) and the angle of the measurement surface WS at the measurement target point Pi by receiving the first reflected light RL1 and the second reflected light RL2.
  • the control unit 50 calculates the surface shape of the object W from the measurement results of the distance at each measurement target point Pi and the angle of the measurement surface WS.
  • the distance between the reference position G of the optical unit 20 and the second rotation axis A2X is constant. Therefore, by arranging the measurement point P on the second rotation axis A2X, the distance between the reference position G and the measurement point P is set to be constant as the distance D.
  • the measurement point P and the reference position G are controlled to be the distance D based on the reference shape data, but the present invention is not limited to this.
  • the control unit 50 uses the output of the distance detector 21 to control the X stage 11 or the like so that the distance D is actually at each measurement point P, and the angle of the measurement surface WS at each measurement target point Pi May be controlled by the angle detector 22.
  • the above description is premised that the workpiece W is properly (horizontally) held by the work stage unit 10.
  • the tilt adjustment mechanism 15 of the work stage unit 10 can be adjusted so that the object to be measured W is properly held. Further, the position of the object to be measured W is recognized by detecting the distance to the moving mirrors 61 and 62 of the Z stage 13 by the X interferometers 41, 42 and 46 and the Y interferometers 43 and 44. Therefore, when the Z stage 13 (or the X stage 11 and the Y stage 12 on which the Z stage 13 is mounted) is inclined, the X interferometer 41 or the like can not detect the accurate position of the object W to be measured.
  • FIG. 15 is a diagram for explaining the detection of the tilt of the Z stage 13 around the Y axis.
  • FIG. 16 is a diagram for explaining the detection of the tilt of the Z stage 13 around the X axis.
  • the X interferometers 41 and 42 function as an inclination detection unit that detects the inclination of the Z stage 13 ( ⁇ Z stage 14) around the Y axis with respect to the XY plane (first plane) perpendicular to the first rotation axis A1Z.
  • the X interferometer 41 emits detection light in parallel with the X-axis direction (along the XY plane) to the movable mirror 61, and receives the reflected light reflected by the movable mirror 61. Based on the result of interference between the reflected light and the reference light, the distance to the moving mirror 61 (the position in the X-axis direction) is detected. Similarly, the X interferometer 42 detects the distance to the movable mirror 61 (the position in the X-axis direction). The X interferometer 41 is disposed such that the optical axis of the detection light coincides with or substantially coincides with the second rotation axis A2X.
  • the X interferometer 41 is disposed such that the optical axis of the detection light passes in the XY plane including the measurement point P. Therefore, by using this X interferometer 41, the position (distance) in the X axis direction can be detected (measured) without the occurrence of Abbe error.
  • FIG. 15A shows the Z stage 13 in a horizontal state parallel to the XY plane. That is, the Z stage 13 is in a state in which the angle around the Y axis is 0 °. In this state, the detection results output from the X interferometers 41 and 42 have the same value.
  • FIG. 15B shows a state in which the Z stage 13 is rotated about the Y axis from the XY plane. That is, the Z stage 13 is in a state of being inclined about the Y axis by an angle ⁇ 3 °. In this state, the value output from the X interferometer 41 differs from the value output from the X interferometer. In the example shown in FIG.
  • the value output from the X interferometer 42 is output from the X interferometer 41, where the distance LA from the optical axis of the X interferometer 41 to the optical axis of the X interferometer 42 is Is longer by LA tan ⁇ 3 than the value
  • the control unit 50 calculates that the Z stage 13 is inclined by ⁇ 3 ° around the Y axis based on LAtan ⁇ 3 which is the difference between the values output from the X interferometers 41 and 42.
  • the control unit 50 calculates the displacement in the X axis direction at the measurement point P since the Z stage 13 is inclined by ⁇ 3 ° around the Y axis, and uses the displacement as the offset amount in the X axis direction to move the X stage 11 Control.
  • the X interferometer 46 (see FIG. 4) is disposed away from the X interferometer 41 in the Y-axis direction. By comparing the value output from the X interferometer 46 with the value output from the X interferometer 41, it is possible to calculate the amount of rotation around the Z axis of the Z stage 13 as described above.
  • the control unit 50 can control the amount of rotation of the ⁇ Z stage 14 using this amount of rotation as an offset amount.
  • the Y interferometers 43 and 44 function as an inclination detection unit that detects the inclination of the Z stage 13 ( ⁇ Z stage 14) around the X axis with respect to the XY plane (first plane) perpendicular to the first rotation axis A1Z.
  • the Y interferometer 43 emits detection light in parallel with the Y-axis direction (along the XY plane) to the movable mirror 62, and receives the reflected light reflected by the movable mirror 62.
  • the distance to the movable mirror 62 (the position in the Y-axis direction) is detected.
  • the Y interferometer 44 detects the distance to the moving mirror 62 (the position in the Y-axis direction).
  • FIG. 16A shows the Z stage 13 in a horizontal state parallel to the XY plane. That is, the Z stage 13 is in a state in which the angle around the X axis is 0 °. In this state, the detection results output from the Y interferometers 43 and 44 have the same value.
  • FIG. 16B shows a state in which the Z stage 13 is rotated about the X axis from the XY plane. That is, the Z stage 13 is in a state of being inclined about the X axis by an angle ⁇ 4 °. In this state, the value output from the Y interferometer 43 and the value output from the Y interferometer 44 differ. In the case of the example shown in FIG.
  • the value output from the Y interferometer 44 is output from the Y interferometer 43, where the distance LB from the optical axis of the Y interferometer 43 to the optical axis of the Y interferometer 44 is Is longer by LB tan ⁇ 4 than the value
  • the control unit 50 calculates that the Z stage 13 is inclined by ⁇ 4 ° around the X axis based on LB tan ⁇ 4 which is a difference between values output from the Y interferometers 43 and 44.
  • the control unit 50 calculates the displacement in the Y axis direction at the measurement point P since the Z stage 13 is inclined by ⁇ 4 ° around the X axis, and uses the displacement as the offset amount in the Y axis direction to move the Y stage 12 Control.
  • the probe light is set to be irradiated toward the measurement point P on the second rotation axis A2X.
  • the X interferometer 41 is set so that the optical axis of the detection light passes the measurement point P along the second rotation axis A2X, and the Y interferometer 43 has the optical axis of the detection light the measurement point P It is set to pass through.
  • FIG. 17 is a view schematically showing another example of the optical unit.
  • the optical unit 20A shown in FIG. 17 includes a light source 301, a condensing lens 302, a collimator lens 303, a half mirror 304, a condensing lens 305, a light detector 306 for detecting a distance, and light for detecting an angle. And a detector 307.
  • the light source 301 generates a probe light PL3.
  • the probe light PL3 is irradiated along the YZ plane, and irradiated to the measurement surface WS (measurement point P).
  • the light source 301 is a laser light source whose oscillation wavelength, light output, beam diameter and the like are stabilized. For example, a fiber laser, a distributed feedback laser, etc. are used.
  • the light source 301 includes a collimator at an output unit, and outputs a probe light PL3 as a parallel light flux.
  • the condenser lens 302 condenses the probe light PL3 generated by the light source 301 and irradiates the measurement surface WS (measurement point P) of the object W.
  • the collimating lens 303 converts the reflected light RL3 reflected by the measurement surface WS into a parallel light flux.
  • the half mirror 304 reflects a part of the reflected light RL3 that has been collimated by the collimator lens 303, and transmits the remaining part.
  • the condensing lens 305 condenses the reflected light (first reflected light) RL31 reflected by the half mirror 304.
  • the light detector 306 for distance detection is a detector for receiving the reflected light RL31 condensed by the condensing lens 305 and detecting the position of the reflected light RL31 to measure the distance to the measurement surface WS. .
  • an image sensor such as a CCD or a CMOS or an organic photodiode is used.
  • the light detector 307 for angle detection receives the reflected light (second reflected light) RL32 transmitted through the half mirror 304 and detects the position of the reflected light RL32 to measure the angle of the measurement surface WS.
  • an image sensor such as a CCD or a CMOS, or an organic photodiode is used.
  • the incident position of the reflected light RL31 on the light detector 306 does not change even if the angle of the measurement surface WS changes, but changes if the position of the measurement surface WS in the Z-axis direction changes.
  • the control unit 50 can calculate the distance to the measurement surface WS and the angle of the measurement surface WS based on the signals output from the light detectors 306 and 307.
  • the control unit (control unit) 50 directs the optical unit 20 to the measurement point P based on the reference shape data of the measured object W acquired in advance.
  • the optical unit 20 is rotated around the X axis by the ⁇ X stage 31 and the object W is rotated around the Z axis by the ⁇ Z stage 14, the optical unit 20 is rotated by one ⁇ X stage 31.
  • the optical unit 20 can be accurately directed to the measurement point P of the object W, whereby the surface shape of the object W can be measured accurately.
  • the apparatus configuration is simplified as compared with a configuration in which the optical unit 20 is rotated around both the X axis and the Y axis. It is possible to reduce the cause of measurement errors.
  • FIG. 18 is a view showing an example of the surface shape measuring apparatus 200 according to the second embodiment.
  • the work stage unit 10 is provided with the ⁇ Z stage 14.
  • the work stage unit 10 does not have the ⁇ Z stage 14, and the head stage unit 30 is provided with the ⁇ Z stage 40.
  • the same or equivalent components as or to those of the embodiment described above are designated by the same reference numerals, and the description will be omitted or simplified.
  • the description of the tilt adjustment mechanism 15, the interferometer unit 40A, and the like, and the control unit 50 is omitted.
  • the surface shape measuring apparatus 200 includes the ⁇ Z stage 40 rotatable about the axis of the first rotation axis A1Z on the lower surface side (surface on the -Z side) of the upper frame 84 supported by the base 80 or another portion. There is.
  • the first rotation axis A1Z is set to pass through the measurement point P.
  • the upper frame 84 is provided above the head stage unit 30 (a position away from the + Z axis direction).
  • the ⁇ Z stage 40 is rotated by a Z-axis rotating device (not shown).
  • any rotation device such as, for example, an electric rotation motor and a reduction gear is used.
  • the Z-axis rotation device is disposed, for example, on the upper frame 84. Also, the Z-axis rotation device is controlled by the control unit 50 (see FIG. 1).
  • a horizontal member 85 is attached to the lower surface side and the outer peripheral portion of the ⁇ Z stage 40 so as to extend in the radial direction of the ⁇ Z stage 40.
  • the third frame 83A is attached to the lower surface of the horizontal member 85 on the -X side, and is provided to extend downward.
  • the third frame 83A is disposed apart from the base 80.
  • the head stage unit 30 is formed on the + X side of the third frame 83A.
  • the second rotation axis A2X of the ⁇ X stage 31 is set to pass through the measurement point P, as in the first embodiment.
  • the control unit 50 controls the rotational angles of the ⁇ X stage 31 and the ⁇ Z stage 40, the X stage 11 of the work stage unit 10, and the like to measure the measurement line L1 etc. (FIG. 7 etc.).
  • the probe light from the optical unit 20 can be accurately directed to each measurement point P along the reference).
  • the probe light is set to be irradiated toward the measurement point P on the second rotation axis A2X.
  • the X interferometer 41 and the Y interferometer 43 which are not shown in FIG. 18 are set so that both detection lights pass through the measurement point P, respectively.
  • FIG. 19 is a diagram showing an example of a structure manufacturing system according to the embodiment by functional blocks.
  • the structure manufacturing system 400 includes the surface shape measuring apparatus 100, 200, the designing apparatus 410, the molding apparatus 420, the control apparatus 430 (inspection apparatus), and the repair apparatus 440 described above.
  • the design device 410 produces design information on the shape of the structure. Then, the design device 410 transmits the created design information to the molding device 420 and the control device 430.
  • the design information is information indicating the coordinates of each position of the structure.
  • a measurement object is a structure.
  • the shaping device 420 shapes the structure based on the design information transmitted from the design device 410.
  • the forming process of the forming apparatus 420 includes casting, forging, or cutting.
  • the surface shape measuring apparatus 100, 200 measures the three-dimensional shape of the structure (the object to be measured W) produced by the forming apparatus 420, that is, the coordinates of the surface of the structure.
  • the design information produced by the design apparatus 410 is transmitted, and stored in the storage unit 52 (see FIG. 4) as reference shape data.
  • the surface shape measuring apparatus 100, 200 transmits, to the control device 430, information (hereinafter referred to as shape information) indicating coordinates measured for the structure.
  • the control device 430 includes a coordinate storage unit 431 and an inspection unit 432.
  • the coordinate storage unit 431 stores design information transmitted from the design device 410.
  • the inspection unit 432 reads the design information from the coordinate storage unit 431. Further, the inspection unit 432 compares the design information read from the coordinate storage unit 431 with the shape information transmitted from the surface shape measuring apparatus 100. Then, based on the comparison result, the inspection unit 432 inspects whether or not the structure is formed according to the design information.
  • the inspection unit 432 determines whether the structure formed by the forming device 420 is non-defective. Whether or not the structure is non-defective is determined based on, for example, whether or not the error between the design information and the shape information is within a predetermined threshold range. Then, when the structure is not shaped as the design information, the inspection unit 432 determines whether or not the structure can be repaired as the design information. If it is determined that the repair can be performed, the inspection unit 432 calculates the defective portion and the amount of repair based on the comparison result. Then, the inspection unit 432 transmits, to the repair device 440, information indicating a defective portion (hereinafter, referred to as defective portion information) and information indicating a repair amount (hereinafter, referred to as repair amount information).
  • defective portion information information indicating a defective portion
  • repair amount information information indicating a repair amount
  • the repair device 440 processes the defective portion of the structure based on the defective portion information and the repair amount information transmitted from the control device 430.
  • FIG. 20 is a flowchart showing processing by the structure manufacturing system 400, and shows an example of an embodiment of a structure manufacturing method.
  • the design device 410 produces design information on the shape of the structure (step S01).
  • the design device 410 transmits the created design information to the molding device 420 and the control device 430.
  • Control device 430 receives the design information transmitted from design device 410. Then, the control device 430 stores the received design information in the coordinate storage unit 431.
  • the forming apparatus 420 forms a structure based on the design information created by the design apparatus 410 (step S02). Then, the surface shape measuring apparatus 100, 200 measures the three-dimensional shape (the surface shape of the object to be measured W) of the structure formed by the forming device 420 (step S03). Thereafter, the surface shape measuring apparatus 100 200 transmits, to the control device 430, shape information which is a measurement result of the structure. Next, the inspection unit 432 compares the shape information transmitted from the surface shape measuring apparatus 100 with the design information stored in the coordinate storage unit 431, and determines whether the structure is formed according to the design information. Check (step S04).
  • the inspection unit 432 determines whether the structure is non-defective (step S05). If it is determined that the structure is non-defective (step S05: YES), the process by the structure manufacturing system 400 is ended. On the other hand, when the inspection unit 432 determines that the structure is not good (step S05: NO), the inspection unit 432 determines whether the structure can be repaired (step S06).
  • step S06 When it is determined that the inspection unit 432 can repair the structure (step S06: YES), the inspection unit 432 calculates the defective portion and the amount of repair of the structure based on the comparison result of step S04. Then, the inspection unit 432 transmits the defect site information and the repair amount information to the repair device 440. Repair apparatus 440 performs repair (re-processing) of the structure based on the defect site information and the repair amount information (step S07). Then, the process proceeds to step S03. That is, the process after step S03 is performed again on the structure for which the repair device 440 has performed repair. On the other hand, when the inspection unit 432 determines that the structure can not be repaired (step S06: NO), the process by the structure manufacturing system 400 is ended.
  • the inspection unit 432 follows the design information based on the measurement result of the surface shape of the structure (object W) by the surface shape measuring apparatus 100 and 200. It is determined whether or not a structure has been produced. As a result, it is possible to accurately determine whether or not the structure produced by the forming device 420 is non-defective, and the time of the determination can be shortened. Further, in the above-described structure manufacturing system 400, when it is determined by the inspection unit 432 that the structure is not good, repair of the structure can be performed immediately.
  • the forming device 420 may perform the process again.
  • control unit 50 includes, for example, a computer system.
  • the control unit 50 reads the surface shape measurement program stored in the storage unit 52, and executes various processes according to the program.
  • the surface shape measurement program causes the computer to support the ⁇ Z stage 13 (stage) for supporting the object W based on the reference shape data of the object W acquired in advance, and the first rotation axis (first axis) A1Z.
  • An optical unit arranged to face the ⁇ Z stage 13 to detect the distance to the measurement point P of the object W and / or the inclination of the surface of the object W at the measurement point P.
  • the first rotation axis (first measurement unit) 20 is set such that the reference axis S of the optical unit 20 is at a predetermined angle with respect to the tangent plane WA of the reference shape of the object W at the measurement point P.
  • Axis) A process of rotating around a second rotation axis (second axis) A2X orthogonal to A1Z.
  • the surface shape measurement program may be provided by being recorded on a computer readable storage medium (eg, non-transitory storage medium, non-transitory tangible media).
  • the expressions "match”, “parallel”, “orthogonal”, “vertical”, “in plane”, etc. include substantially match, parallel, orthogonal, vertical, in plane, etc. It is a meaning.
  • “substantially” or “approximately” described above is used in a sense including the case that occurs due to manufacturing errors of parts, variations due to assembly, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Forging (AREA)

Abstract

[Problem] To further simplify the configuration of a surface-shape measuring device. [Solution] A surface-shape measuring device 100 (device) that measures the surface shape of an object to be measured W is provided with: a θZ stage 14 (stage) that is rotatable about a Z axis (first axis) while supporting the object to be measured W; an optical unit 20 (measuring unit) that is disposed so as to face the θZ stage 14, that is rotatable about an X axis (second axis) orthogonal to the Z axis, and that detects the distance to a measurement point P on the object to be measured W and/or the inclination of the surface of the object to be measured W at the measurement point P; and a control unit 50 (controlling unit) that rotates the θZ stage 14 about the Z axis and rotates the optical unit 20 about the X axis on the basis of reference shape data of the object to be measured W, obtained in advance, such that a reference axis S of the optical unit 20 makes a predetermined angle with the tangential plane of a reference shape of the object to be measured W at the measurement point P.

Description

表面形状測定装置、表面形状測定方法、構造物製造システム、構造物製造方法、及び表面形状測定プログラムSurface shape measuring apparatus, surface shape measuring method, structure manufacturing system, structure manufacturing method, and surface shape measuring program
 本発明は、表面形状測定装置、表面形状測定方法、構造物製造システム、構造物製造方法、及び表面形状測定プログラムに関する。 The present invention relates to a surface shape measuring device, a surface shape measuring method, a structure manufacturing system, a structure manufacturing method, and a surface shape measuring program.
 被測定物の表面形状を非接触で測定する表面形状測定装置として、レーザ測長器を利用した表面形状測定装置が知られている(例えば特許文献1を参照)。 DESCRIPTION OF RELATED ART As a surface shape measuring device which measures the surface shape of to-be-measured object non-contactingly, the surface shape measuring device using a laser length measuring device is known (refer the patent document 1).
特開平11-51624号公報Japanese Patent Application Laid-Open No. 11-51624
 本発明の第1態様によれば、被測定物の表面形状を測定する装置であって、被測定物を支持して第1軸まわりに回転可能なステージと、ステージに対向して配置され、第1軸に直交する第2軸まわりに回転可能であり、被測定物の測定点までの距離、及び/又は、測定点での被測定物の表面の傾きを検出する測定部と、予め取得した被測定物の基準形状データに基づいて、測定点において被測定物の基準形状の接平面に対して測定部の基準軸が予め定められた角度となるように、ステージを第1軸まわりに回転させ、かつ測定部を第2軸まわりに回転させる制御部と、を備える、表面形状測定装置が提供される。 According to a first aspect of the present invention, an apparatus for measuring the surface shape of an object to be measured, which is supported by the object to be measured and which is rotatable about a first axis, and is disposed opposite to the stage A measurement unit that is rotatable about a second axis orthogonal to the first axis and detects the distance to the measurement point of the measurement object and / or the inclination of the surface of the measurement object at the measurement point; Based on the reference shape data of the measured object, the stage is placed around the first axis such that the reference axis of the measuring unit is at a predetermined angle with respect to the tangent plane of the reference shape of the measured object at the measurement point. There is provided a surface shape measuring apparatus, comprising: a control unit that rotates and rotates the measuring unit about a second axis.
 本発明の第2態様によれば、被測定物の表面形状を測定する装置であって、被測定物を支持して第1軸まわりに回転可能なステージと、ステージに対向して配置され、第1軸に直交する第2軸まわりに回転可能であり、被測定物の測定点までの距離、及び/又は、測定点での被測定物の表面の傾きを検出する測定部と、を備え、第2軸は、被測定物の測定点を通るように配置される、表面形状測定装置が提供される。 According to a second aspect of the present invention, there is provided an apparatus for measuring the surface shape of an object to be measured, the stage being capable of supporting the object to be measured and being rotatable about a first axis, and disposed opposite the stage And a measurement unit that is rotatable about a second axis orthogonal to the first axis and that detects the distance to the measurement point of the measurement object and / or the inclination of the surface of the measurement object at the measurement point The surface shape measuring apparatus is provided, wherein the second axis is arranged to pass through the measurement point of the object to be measured.
 本発明の第3態様によれば、被測定物の表面形状を測定する方法であって、予め取得した被測定物の基準形状データに基づいて、被測定物を支持するステージを、第1軸まわりに回転させることと、ステージに対向して配置されて、被測定物の測定点までの距離、及び/又は、測定点での被測定物の表面の傾きを検出する測定部を、測定点において被測定物の基準形状の接平面に対して測定部の基準軸が予め定められた角度となるように、第1軸に直交する第2軸まわりに回転させることと、を含む、表面形状測定方法が提供される。 According to a third aspect of the present invention, there is provided a method of measuring the surface shape of an object to be measured, the stage supporting the object to be measured based on reference shape data of the object to be measured acquired in advance, the first axis A measuring unit that rotates around, measures the distance to the measurement point of the object to be measured, and / or detects the inclination of the surface of the object at the measurement point Rotating around a second axis orthogonal to the first axis such that the reference axis of the measurement unit is at a predetermined angle with respect to the tangent plane of the reference shape of the object at A measurement method is provided.
 本発明の第4態様によれば、構造物の形状に関する基準形状データを作製する設計装置と、基準形状データに基づいて構造物を成形する成形装置と、成形された構造物の表面形状を測定する上記の表面形状測定装置と、表面形状測定装置によって得られた構造物の表面形状に関する測定データと基準形状データとを比較する検査装置と、を含む、構造物製造システムが提供される。 According to the fourth aspect of the present invention, a design device for producing reference shape data regarding the shape of a structure, a molding device for molding a structure based on the reference shape data, and measurement of the surface shape of the molded structure A structure manufacturing system is provided that includes the surface shape measurement device described above, and an inspection device that compares measurement data regarding the surface shape of the structure obtained by the surface shape measurement device with reference shape data.
 本発明の第5態様によれば、構造物の形状に関する基準形状データを作製することと、基準形状データに基づいて構造物を成形することと、成形された構造物の表面形状を測定する上記の表面形状測定方法と、表面形状測定方法によって得られた構造物の表面形状に関する測定データと基準形状データとを比較することと、を含む、構造物製造方法が提供される。 According to a fifth aspect of the present invention, there is provided a method of preparing reference shape data on a shape of a structure, forming a structure based on the reference shape data, and measuring a surface shape of the formed structure. A method of manufacturing a structure is provided, comprising: measuring the surface shape of the surface shape; and comparing measurement data on the surface shape of the structure obtained by the surface shape measuring method with reference shape data.
 本発明の第6態様によれば、被測定物の表面形状を測定する表面形状測定装置に含まれるコンピュータに、予め取得した被測定物の基準形状データに基づいて、被測定物を支持するステージを、第1軸まわりに回転させる処理と、ステージに対向して配置されて被測定物の測定点までの距離、及び/又は、測定点での被測定物の表面の傾きを検出する測定部を、測定点において被測定物の基準形状の接平面に対して測定部の基準軸が予め定められた角度となるように、第1軸に直交する第2軸まわりに回転させる処理と、を実行させる、表面形状測定プログラムが提供される。 According to the sixth aspect of the present invention, a stage included in a surface shape measuring apparatus for measuring the surface shape of an object to be measured, based on reference shape data of the object to be measured acquired in advance, is a stage for supporting the object A process of rotating the first axis about the first axis, a distance between the object and the measuring point, and / or a measuring unit for detecting the inclination of the surface of the object at the measuring point A process of rotating around a second axis orthogonal to the first axis such that the reference axis of the measurement unit is at a predetermined angle with respect to the tangent plane of the reference shape of the object at the measurement point A surface shape measurement program to be executed is provided.
第1実施形態に係る表面形状測定装置の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the surface shape measuring apparatus which concerns on 1st Embodiment. 表面形状測定装置の光学ユニット及びヘッドステージユニットの一例を拡大して示す斜視図である。It is a perspective view expanding and showing an example of an optical unit of a surface shape measuring device, and a head stage unit. 光学ユニットの概要の一例を示す図である。It is a figure which shows an example of the outline | summary of an optical unit. 表面形状測定装置の制御ユニット(制御部)の一例を機能ブロックで示す図である。It is a figure which shows an example of the control unit (control part) of a surface shape measuring apparatus by a functional block. 表面形状を測定するための概念を説明する図である。It is a figure explaining the concept for measuring surface shape. 表面形状を測定するために球面座標から2次元の角度を用いることを説明する図である。It is a figure explaining using a two-dimensional angle from spherical coordinates to measure surface shape. プローブ光を被測定物の測定点に沿って移動させる一例を示す図である。It is a figure which shows an example which moves probe light along the measurement point of a to-be-measured object. プローブ光を被測定物の測定点に沿って移動させる他の例を示す図である。It is a figure which shows the other example which moves probe light along the measurement point of a to-be-measured object. プローブ光を被測定物の測定点に沿って移動させる他の例を示す図である。It is a figure which shows the other example which moves probe light along the measurement point of a to-be-measured object. 表面形状を算出する一例を示す図である。It is a figure which shows an example which calculates surface shape. (A)は、距離検出器の測定原理を説明する図、(B)は、角度検出器の測定原理を説明する図である。(A) is a figure explaining the measurement principle of a distance detector, (B) is a figure explaining the measurement principle of an angle detector. (A)は、距離検出器における第1プローブ光を説明する図、(B)は、角度検出器における第2プローブ光を説明する図である。(A) is a figure explaining the 1st probe light in a distance detector, (B) is a figure explaining the 2nd probe light in an angle detector. 角度検出器の他の例を示す図である。It is a figure which shows the other example of an angle detector. 表面形状を測定する際の表面形状測定装置の動作の一例を模式的に示す図である。It is a figure which shows typically an example of operation | movement of the surface shape measuring apparatus at the time of measuring surface shape. Y軸まわりのZステージの傾き検出を説明する図である。It is a figure explaining the inclination detection of Z stage around Y-axis. X軸まわりのZステージの傾き検出を説明する図である。It is a figure explaining the inclination detection of Z stage around an X-axis. 光学ユニットの他の例を模式的に示す図である。It is a figure which shows typically the other example of an optical unit. 第2実施形態に係る表面形状測定装置の一例を示す図である。It is a figure showing an example of the surface shape measuring device concerning a 2nd embodiment. 実施形態に係る構造物製造システムの一例を機能ブロックで示す図である。It is a figure showing an example of a structure manufacturing system concerning an embodiment by a functional block. 実施形態に係る構造物製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the structure manufacturing method which concerns on embodiment.
 上記した特許文献1に記載の表面形状測定装置では、被測定部分がZ軸の軸まわりに回転対称な回転対称物である場合について説明されている。ただし、自由曲面等のように被測定物が回転対称でない場合でも、装置構成をシンプルにしつつ、高精度に被測定物の表面形状を測定可能な表面形状測定装置が求められている。本実施形態では、回転対称でない被測定物であっても、装置構成をシンプルにしつつ、高精度に被測定物の表面形状を測定することを実現する。 In the surface shape measuring apparatus described in Patent Document 1 described above, the case where the measured portion is a rotationally symmetric object rotationally symmetric about the Z-axis is described. However, even when the object to be measured is not rotationally symmetrical like a free-form surface, a surface shape measuring device capable of measuring the surface shape of the object to be measured with high accuracy is required while simplifying the device configuration. In the present embodiment, it is possible to measure the surface shape of the object to be measured with high accuracy while simplifying the apparatus configuration even if the object is not rotationally symmetrical.
 以下、本発明の実施形態について図面を参照しながら説明する。ただし、本発明は以下の説明に限定されない。また、図面においては実施形態を説明するため、一部分を大きく又は強調して記載するなど適宜縮尺を変更して表現している。図面の各図では、XYZ座標系を用いて図中の方向を説明している場合がある。このXYZ座標系においては、水平面に平行な平面をXY平面とする。このXY平面に沿った一方向をX方向と表記し、X方向に直交する方向をY方向と表記する。また、XY平面に垂直な方向はZ方向と表記する。Z方向は、鉛直方向である。X方向、Y方向及びZ方向のそれぞれは、図中の矢印の方向が+方向であり、矢印の方向とは反対の方向が-方向であるとして説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following description. Further, in the drawings, in order to explain the embodiment, the scale is appropriately changed and expressed such that a part is described in a large or emphasized manner. In each drawing of the drawings, directions in the drawings may be described using an XYZ coordinate system. In this XYZ coordinate system, a plane parallel to the horizontal plane is taken as an XY plane. One direction along the XY plane is described as an X direction, and a direction orthogonal to the X direction is described as a Y direction. Also, the direction perpendicular to the XY plane is referred to as the Z direction. The Z direction is the vertical direction. In each of the X direction, the Y direction, and the Z direction, the direction of the arrow in the figure is the + direction, and the direction opposite to the direction of the arrow is the − direction.
 [第1実施形態]
 第1実施形態に係る表面形状測定装置100について図面を参照して説明する。本実施形態の表面形状測定装置100は、被測定物Wの基準形状データに基づいて、被測定物Wの複数の測定対象点Piを順次測定点Pに位置付け、各測定点Pにおいて被測定物Wの基準形状の接平面に対して光学ユニット(測定部)20の基準軸Sを予め定められた角度にして、プローブ光を測定点Pに向けて照射することにより、測定点Pにおける位置(測定点Pまでの距離)、及び/又は、測定点Pでの被測定物Wの表面の傾きを測定し、被測定物Wの各測定対象点Piについて、基準形状との偏差を算出することにより、被測定物Wの表面形状を測定する。基準形状に対する偏差は、例えば、2つのプローブ光を用いて、位置偏差と角度偏差とをそれぞれ測定することにより行う。なお、基準形状データは、被測定物Wの表面形状を示す三次元の設計データであり、予め生成されている。測定点Pは、光学ユニット20がどのような向きになってもプローブ光が必ず通る、三次元座標上に定められた1点である。また、被測定物Wの測定対象点Piは、被測定物Wの基準形状の表面(測定面WS)において測定の対象となる点であり、被測定物Wの測定対象となる表面に複数存在する。なお、本明細書において、測定点Pに位置付けられた被測定物Wの測定対象点Piを、単に「被測定物Wの測定点P」又は「測定対象点Pi(測定点P)」と称する場合がある。また、本実施形態に係る表面形状測定方法は、表面形状測定装置100又は後述する表面形状測定装置200により実施される。
First Embodiment
A surface shape measuring apparatus 100 according to a first embodiment will be described with reference to the drawings. The surface shape measuring apparatus 100 according to the present embodiment positions the plurality of measurement target points Pi of the object to be measured W sequentially on the measurement points P based on the reference shape data of the object to be measured W. By irradiating the probe light toward the measurement point P with the reference axis S of the optical unit (measurement unit) 20 at a predetermined angle with respect to the tangent plane of the reference shape of W, the position at the measurement point P ( Measuring the distance to the measurement point P) and / or the inclination of the surface of the measurement object W at the measurement point P, and calculating the deviation from the reference shape for each measurement object point Pi of the measurement object W The surface shape of the object to be measured W is measured by this method. Deviation with respect to the reference shape is performed, for example, by measuring the positional deviation and the angular deviation, respectively, using two probe lights. The reference shape data is three-dimensional design data indicating the surface shape of the workpiece W, and is generated in advance. The measurement point P is one point defined on a three-dimensional coordinate where the probe light always passes regardless of the orientation of the optical unit 20. Further, the measurement target points Pi of the object to be measured W are points to be measured on the surface (measurement surface WS) of the reference shape of the object to be measured W, and plural points exist on the surface to be measured of the object to be measured W Do. In the present specification, the measurement target point Pi of the object to be measured W positioned at the measurement point P is simply referred to as “measurement point P of the object to be measured W” or “measurement target point Pi (measurement point P)”. There is a case. Further, the surface shape measuring method according to the present embodiment is implemented by the surface shape measuring device 100 or the surface shape measuring device 200 described later.
 図1は、第1実施形態に係る表面形状測定装置100の一例を模式的に示す斜視図である。図1に示すように、表面形状測定装置100は、ワークステージユニット10と、光学ユニット20と、ヘッドステージユニット30と、制御ユニット50と、を備える。 FIG. 1: is a perspective view which shows typically an example of the surface shape measuring apparatus 100 which concerns on 1st Embodiment. As shown in FIG. 1, the surface shape measuring apparatus 100 includes a work stage unit 10, an optical unit 20, a head stage unit 30, and a control unit 50.
 ワークステージユニット10は、被測定物Wを保持し、かつ被測定物WをX軸、Y軸、及びZ軸の各軸方向に移動させることができる。ワークステージユニット10は、被測定物Wの測定対象点Piを測定点Pに位置付けることができる。光学ユニット20は、被測定物Wの測定対象点Piを測定点Pに位置付け、測定点Pにプローブ光(図6の第1プローブ光PL1及び第2プローブ光PL2を参照。以下、第1プローブ光PL1及び第2プローブ光PL2を総称する場合、単にプローブ光と称す。)を照射し、測定対象点Pi(測定点P)からの反射光を受光して測定対象点Pi(測定点P)の位置(座標値、又は基準位置から測定点Pまでの距離)と、測定点Pでの被測定物Wの表面(図3に示す測定面WS)の角度とを測定する。ヘッドステージユニット30は、光学ユニット20を支持し、光学ユニット20を測定点Pに向けるように、光学ユニット20をX軸と平行の第2回転軸(第2軸)A2Xの軸まわりに回転させる。光学ユニット20は、どの回転位置であっても、プローブ光が必ず測定点Pを通るように構成されており、この測定点Pに被測定物Wの測定対象点Piを位置付けることで、被測定物Wの測定対象点Piにはプローブ光が照射される。制御ユニット50は、オペレータの操作あるいは予め設定された手順等に基づいてワークステージユニット10、光学ユニット20及びヘッドステージユニット30等の各部の動作を制御する。以下、各部について説明する。 The work stage unit 10 can hold the object W and move the object W in the X-axis, Y-axis, and Z-axis directions. The work stage unit 10 can position the measurement target point Pi of the object to be measured W on the measurement point P. The optical unit 20 positions the measurement target point Pi of the object to be measured W at the measurement point P, and the probe light at the measurement point P (refer to the first probe light PL1 and the second probe light PL2 in FIG. When collectively referring to the light PL1 and the second probe light PL2, the light PL1 and the second probe light PL2 are simply referred to as probe light, and the reflected light from the measurement target point Pi (measurement point P) is received and the measurement target point Pi (measurement point P) Position (coordinate value or the distance from the reference position to the measurement point P) and the angle of the surface (the measurement surface WS shown in FIG. 3) of the object W at the measurement point P are measured. The head stage unit 30 supports the optical unit 20 and rotates the optical unit 20 around the second rotation axis (second axis) A2X parallel to the X axis so as to direct the optical unit 20 to the measurement point P. . The optical unit 20 is configured such that the probe light always passes the measurement point P at any rotational position, and the measurement target point Pi of the object to be measured W is positioned at the measurement point P, thereby making the measurement possible. The probe light is irradiated to the measurement target point Pi of the object W. The control unit 50 controls the operations of the work stage unit 10, the optical unit 20, the head stage unit 30, and the like based on the operation of the operator or a preset procedure. Each part will be described below.
 ワークステージユニット10は、基台部としてのベース80上に設けられている。ベース80は、例えば金属、自然石、樹脂、木材等により形成され、床面上あるいは机上に配置される。なお、ベース80の下面側にキャスタ等が設けられて、表面形状測定装置100が床面上等を移動可能であってもよい。ワークステージユニット10は、図1に示すように、Xステージ11と、Yステージ12と、Zステージ13と、θZステージ(ステージ)14と、チルト調整機構15と、を備える。 The work stage unit 10 is provided on a base 80 as a base. The base 80 is made of, for example, metal, natural stone, resin, wood or the like, and is disposed on a floor surface or a desk. In addition, a caster etc. may be provided in the lower surface side of the base 80, and the surface shape measuring apparatus 100 may be movable on a floor surface etc. As shown in FIG. 1, the work stage unit 10 includes an X stage 11, a Y stage 12, a Z stage 13, a θZ stage (stage) 14, and a tilt adjustment mechanism 15.
 Xステージ11、Yステージ12、Zステージ13、θZステージ14、及びチルト調整機構15の上下方向の配置は、図1に示す構成に限定されず、任意に配置することが可能である。また、例えば平面モータ等により1つのステージがXY平面に沿って移動可能である場合は、Xステージ11及びYステージ12を1つのステージで実現してもよい。Xステージ11は、被測定物WをX軸方向に移動させるように、ベース80に対してX軸方向に移動可能に設けられている。Xステージ11は、例えば、ベース80上に設けられた不図示のX軸方向のガイドに沿って、不図示のX軸駆動装置を駆動することによりX軸方向に移動する。X軸駆動装置は、例えば、リニアモータが用いられてもよいし、電動回転モータを用いたボールねじ機構あるいはラックアンドピニオン機構など、任意の駆動装置が使用される。X軸駆動装置は、例えば、ベース80に配置される。 The arrangement of the X stage 11, the Y stage 12, the Z stage 13, the θZ stage 14, and the tilt adjustment mechanism 15 in the vertical direction is not limited to the configuration shown in FIG. 1 and can be arbitrarily arranged. Further, for example, when one stage can be moved along the XY plane by a planar motor or the like, the X stage 11 and the Y stage 12 may be realized by one stage. The X-stage 11 is provided movably in the X-axis direction with respect to the base 80 so as to move the object W in the X-axis direction. The X stage 11 moves in the X axis direction by driving an X axis driving device (not shown) along a guide in the X axis direction (not shown) provided on the base 80, for example. For example, a linear motor may be used as the X-axis drive device, and any drive device such as a ball screw mechanism or a rack and pinion mechanism using an electric rotary motor may be used. The X-axis drive is disposed, for example, on the base 80.
 Yステージ12は、被測定物WをY軸方向に移動させるように、Xステージ11(ベース80)に対してY軸方向に移動可能に設けられている。Yステージ12は、例えば、Xステージ11上に設けられた不図示のY軸方向のガイドに沿って、不図示のY軸駆動装置を駆動することによりY軸方向に移動する。Y軸駆動装置は、例えば、リニアモータが用いられてもよいし、電動回転モータを用いたボールねじ機構あるいはラックアンドピニオン機構など、任意の駆動装置が使用される。Y軸駆動装置は、例えば、Xステージ11に配置される。 The Y stage 12 is provided movably in the Y axis direction with respect to the X stage 11 (base 80) so as to move the object W in the Y axis direction. The Y stage 12 moves in the Y axis direction by driving a Y axis driving device (not shown) along a guide in the Y axis direction (not shown) provided on the X stage 11, for example. For example, a linear motor may be used as the Y-axis drive device, and any drive device such as a ball screw mechanism or a rack and pinion mechanism using an electric rotary motor may be used. The Y-axis drive device is disposed, for example, on the X stage 11.
 Zステージ13は、被測定物WをZ軸方向に移動させるように、Yステージ12(ベース80)に対してZ軸方向に移動可能に設けられている。Zステージ13は、例えば、Yステージ12上に設けられた不図示のZ軸方向のガイドに沿って、不図示のZ軸駆動装置を駆動することによりZ軸方向に移動する。Z軸駆動装置は、例えば、リニアモータが用いられてもよいし、電動回転モータを用いたボールねじ機構あるいはラックアンドピニオン機構など、任意の駆動装置が使用される。Z軸駆動装置は、例えば、Yステージ12に配置される。 The Z stage 13 is provided movably in the Z axis direction with respect to the Y stage 12 (base 80) so as to move the object W in the Z axis direction. The Z stage 13 moves in the Z axis direction by driving a Z axis driving device (not shown) along a guide in the Z axis direction (not shown) provided on the Y stage 12, for example. As the Z-axis drive device, for example, a linear motor may be used, or any drive device such as a ball screw mechanism or a rack and pinion mechanism using an electric rotary motor may be used. The Z-axis driving device is disposed, for example, on the Y stage 12.
 θZステージ14は、被測定物WをZ軸方向と平行な第1回転軸(第1軸)A1Zまわりに回転させるように、Zステージ13(ベース80)に対して回転可能に設けられている。θZステージ14は、例えば、Yステージ12上に設けられた不図示の軸受に回転可能に支持され、不図示のZ軸回転装置を駆動することにより第1回転軸A1Zの軸まわり方向に回転する。Z軸回転装置は、例えば、電動回転モータ及び減速機など、任意の回転装置が使用される。Z軸回転装置は、例えば、Zステージ13に配置される。θZステージ14は、Xステージ11、Yステージ12、Zステージ13により、第1回転軸A1Zに垂直なXY平面(第1平面)に沿った方向への移動、及び第1回転軸A1Z方向への移動が可能である The θZ stage 14 is rotatably provided with respect to the Z stage 13 (base 80) so as to rotate the object W around a first rotation axis (first axis) A1Z parallel to the Z axis direction. . The θZ stage 14 is rotatably supported by, for example, a bearing (not shown) provided on the Y stage 12 and rotates about the axis of the first rotation axis A1Z by driving a Z axis rotating device (not shown). . As the Z-axis rotation device, any rotation device such as, for example, an electric rotation motor and a reduction gear is used. The Z-axis rotation device is disposed, for example, on the Z stage 13. The θZ stage 14 is moved by the X stage 11, Y stage 12 and Z stage 13 in the direction along the XY plane (first plane) perpendicular to the first rotation axis A1Z, and in the first rotation axis A1Z direction. It is possible to move
 チルト調整機構15は、上面に被測定物Wを保持するための不図示の保持部を備えている。この保持部は、例えば、真空吸着等により被測定物Wを所定位置に保持する。なお、被測定物Wを保持する構成については、他の任意の機構を適用可能である。チルト調整機構15は、被測定物Wを基準となる所定平面(例えばXY平面)に合わせるように、被測定物WのX軸まわり及びY軸まわりの角度を微調整させる。チルト調整機構15は、光学ユニット20に対する被測定物Wの角度を微調整させることが可能である。チルト調整機構15は、例えば、パラレルリンク機構が適用され、ピエゾ素子等のアクチュエータを駆動することにより、被測定物Wを保持した保持部をX軸まわり及びY軸まわりの一方又は双方に傾けることが可能である。 The tilt adjustment mechanism 15 includes a holding unit (not shown) for holding the object W on the top surface. The holder holds the object W at a predetermined position by, for example, vacuum suction. In addition, about the structure which hold | maintains the to-be-measured object W, another arbitrary mechanism is applicable. The tilt adjusting mechanism 15 finely adjusts the angles around the X axis and the Y axis of the object W so that the object W is aligned with a predetermined plane (for example, the XY plane) as a reference. The tilt adjustment mechanism 15 can finely adjust the angle of the object W to be measured with respect to the optical unit 20. For example, a parallel link mechanism is applied to the tilt adjustment mechanism 15, and by tilting an actuator such as a piezoelectric element, the holding unit holding the object W is tilted about one or both of the X axis and the Y axis. Is possible.
 なお、チルト調整機構15を備えるか否かは任意であり、チルト調整機構15がなくてもよい。また、上記したX軸駆動装置、Y軸駆動装置、Z軸駆動装置、Z軸回転装置、及びアクチュエータのそれぞれの駆動は、制御ユニット50により制御される。なお、制御ユニット50については後述する。 Note that whether or not the tilt adjustment mechanism 15 is provided is optional, and the tilt adjustment mechanism 15 may not be provided. Further, the drive of each of the above-described X-axis drive device, Y-axis drive device, Z-axis drive device, Z-axis rotation device, and actuator is controlled by the control unit 50. The control unit 50 will be described later.
 表面形状測定装置100は、図1に示すように、被測定物Wを保持するZステージ13の位置(基準位置からの被測定物Wの移動量)を検出するために、干渉計ユニット40Aと、干渉計ユニット40Bと、干渉計ユニット40Cと、を備える。干渉計ユニット40Aは、Zステージ13のX軸方向の位置を検出し、Zステージ13に対して+X軸方向に離間して配置される。干渉計ユニット40Aは、ベース80上から起立する第1フレーム81の上端に固定されている。干渉計ユニット40Aは、Zステージ13のX軸方向の位置を検出するために、X干渉計41、42、46を備える(図3参照)。なお、図1では、X干渉計46を省略している。 The surface shape measuring apparatus 100, as shown in FIG. 1, includes an interferometer unit 40A to detect the position of the Z stage 13 holding the object W (the amount of movement of the object W from the reference position). , An interferometer unit 40B, and an interferometer unit 40C. The interferometer unit 40A detects the position of the Z stage 13 in the X-axis direction, and is disposed apart from the Z stage 13 in the + X-axis direction. The interferometer unit 40A is fixed to the upper end of the first frame 81 which rises from above the base 80. The interferometer unit 40A includes X interferometers 41, 42, 46 in order to detect the position of the Z stage 13 in the X axis direction (see FIG. 3). In FIG. 1, the X interferometer 46 is omitted.
 干渉計ユニット40AのX干渉計41、42、46は、Zステージ13に設けられている移動鏡61に向けて検出光(レーザ光)を出射し、移動鏡61からの反射光を受光することにより、移動鏡61までの距離(Zステージ13のX軸方向の位置)を検出する。移動鏡61は、Zステージ13上の+X側に配置され、反射面がYZ平面と平行又はほぼ平行となるように設けられている。 The X interferometers 41, 42, 46 of the interferometer unit 40A emit detection light (laser light) toward the movable mirror 61 provided on the Z stage 13 and receive reflected light from the movable mirror 61. Thus, the distance to the movable mirror 61 (the position of the Z stage 13 in the X-axis direction) is detected. The moving mirror 61 is disposed on the + X side on the Z stage 13 and provided so that the reflecting surface is parallel to or substantially parallel to the YZ plane.
 X干渉計41は、検出光の光軸がX軸方向と平行であり、かつ、測定点Pを通るように設定されている。X干渉計42は、検出光の光軸がX軸方向と平行でありX干渉計41に対して+Z方向に所定距離(例えば、図15に示す距離LA参照)だけ離れて配置されている。従って、X干渉計41、42から出射される2つの検出光は、Z軸方向に離間した平行な状態で移動鏡61に入射する。X干渉計42は、Zステージ13のY軸まわりの角度を検出するために用いられてもよいし、X干渉計41のバックアップとして用いられてもよい。また、X干渉計46は、X干渉計41に対してY軸方向に離間して配置され、検出光の光軸がX軸方向と平行である。X干渉計46は、移動鏡62までの距離に計測して、Zステージ13のZ軸まわりの回転角度を検出するために用いられる。なお、これらX干渉計41、42、46を用いたZステージ13の位置の検出については後述する。 The X interferometer 41 is set such that the optical axis of the detection light is parallel to the X axis direction and passes through the measurement point P. The X interferometer 42 is arranged such that the optical axis of the detection light is parallel to the X axis direction, and is separated from the X interferometer 41 by a predetermined distance (for example, the distance LA shown in FIG. 15) in the + Z direction. Therefore, the two detection lights emitted from the X interferometers 41 and 42 are incident on the moving mirror 61 in a parallel state separated in the Z-axis direction. The X interferometer 42 may be used to detect the angle around the Y axis of the Z stage 13 or may be used as a backup of the X interferometer 41. In addition, the X interferometer 46 is disposed apart from the X interferometer 41 in the Y axis direction, and the optical axis of the detection light is parallel to the X axis direction. The X interferometer 46 is used to detect the rotation angle around the Z axis of the Z stage 13 by measuring the distance to the moving mirror 62. The detection of the position of the Z stage 13 using the X interferometers 41, 42 and 46 will be described later.
 干渉計ユニット40Bは、Zステージ13のY軸方向の位置を検出し、Zステージ13に対して+Y軸方向に離間して配置される。干渉計ユニット40Bは、ベース80上から起立する第2フレーム82の上端に固定されている。干渉計ユニット40Bは、Zステージ13のY軸方向の位置を検出するために、Y干渉計43、44を備える。 Interferometer unit 40 B detects the position of Z stage 13 in the Y-axis direction, and is arranged separately from Z stage 13 in the + Y-axis direction. The interferometer unit 40B is fixed to the upper end of the second frame 82 which rises from above the base 80. The interferometer unit 40B includes Y interferometers 43 and 44 in order to detect the position of the Z stage 13 in the Y-axis direction.
 干渉計ユニット40BのY干渉計43、44は、Zステージ13に設けられている移動鏡62に向けて検出光(レーザ光)を出射し、移動鏡61からの反射光を受光することにより、移動鏡62までの距離(Zステージ13のY軸方向の位置)を検出する。移動鏡62は、Zステージ13上の+Y側に配置され、反射面がXZ平面と平行又はほぼ平行となるように設けられている。 The Y interferometers 43 and 44 of the interferometer unit 40 B emit detection light (laser light) toward the movable mirror 62 provided on the Z stage 13, and receive reflected light from the movable mirror 61, The distance to the movable mirror 62 (the position of the Z stage 13 in the Y-axis direction) is detected. The movable mirror 62 is disposed on the + Y side on the Z stage 13 and provided so that the reflecting surface is parallel or almost parallel to the XZ plane.
 Y干渉計43は、検出光の光軸がY軸方向と平行であり、かつ、測定点Pを通るように設定されている。Y干渉計44は、検出光の光軸がY軸方向と平行でありY干渉計43に対して+Z方向に所定距離(例えば、図16に示す距離LB参照)だけ離れて配置されている。従って、Y干渉計43、44から出射される2つの検出光は、Z軸方向に離間した平行な状態で移動鏡62に入射する。Y干渉計44は、Zステージ13のX軸まわりの角度を検出するために用いられてもよいし、Y干渉計43のバックアップとして用いられてもよい。なお、これらY干渉計43、44を用いたZステージ13の位置の検出については後述する。 The Y interferometer 43 is set so that the optical axis of the detection light is parallel to the Y-axis direction and passes through the measurement point P. The Y interferometer 44 is arranged such that the optical axis of the detection light is parallel to the Y axis direction and is separated from the Y interferometer 43 by a predetermined distance (for example, refer to the distance LB shown in FIG. 16) in the + Z direction. Therefore, the two detection lights emitted from the Y interferometers 43 and 44 enter the moving mirror 62 in a parallel state separated in the Z-axis direction. The Y interferometer 44 may be used to detect an angle around the X axis of the Z stage 13 or may be used as a backup of the Y interferometer 43. The detection of the position of the Z stage 13 using the Y interferometers 43 and 44 will be described later.
 干渉計ユニット40Cは、Zステージ13のZ軸方向の位置を検出し、Zステージ13の下方である、例えば、ベース80に設けられる。干渉計ユニット40Cは、Zステージ13のZ軸方向の位置を検出するために、Z干渉計45を備える。干渉計ユニット40CのZ干渉計45は、Zステージ13に設けられている不図示の移動鏡に向けて検出光(レーザ光)を出射し、この移動鏡からの反射光を受光することにより、Zステージ13のZ軸方向の位置を検出する。不図示の移動鏡は、例えばZステージ13の下面に配置され、反射面がXY平面と平行又はほぼ平行となるように設けられている。Z干渉計45は、検出光の光軸がZ軸方向と平行である。なお、Z干渉計45からの検出光は、測定点Pを通るように設定されてもよい。 The interferometer unit 40C detects the position of the Z stage 13 in the Z-axis direction, and is provided below the Z stage 13, for example, on the base 80. The interferometer unit 40C includes a Z interferometer 45 in order to detect the position of the Z stage 13 in the Z axis direction. The Z interferometer 45 of the interferometer unit 40C emits detection light (laser light) toward a movable mirror (not shown) provided on the Z stage 13 and receives reflected light from the movable mirror. The position of the Z stage 13 in the Z axis direction is detected. A movable mirror (not shown) is disposed, for example, on the lower surface of the Z stage 13 and provided so that the reflecting surface is parallel or substantially parallel to the XY plane. In the Z interferometer 45, the optical axis of the detection light is parallel to the Z axis direction. The detection light from the Z interferometer 45 may be set to pass through the measurement point P.
 X干渉計41、42、46、Y干渉計43、44、及びZ干渉計45は、それぞれの移動鏡61、62等の位置(又は移動鏡61等までの距離)を検出すると、位置を示す信号を制御ユニット50に出力する。なお、X干渉計41、42、46、及びY干渉計43、44は、Zステージ13(θZステージ14)のXY平面(第1平面)に沿った方向における移動位置、及び/又は、第1回転軸A1Zまわりの回転位置を検出する位置検出部である。 When X interferometers 41, 42, 46, Y interferometers 43, 44, and Z interferometer 45 detect the position (or the distance to movable mirror 61) of each movable mirror 61, 62 etc., the position is indicated. A signal is output to the control unit 50. The X interferometers 41, 42, 46 and the Y interferometers 43, 44 are the moving position of the Z stage 13 (θZ stage 14) in the direction along the XY plane (first plane) and / or the first It is a position detection unit that detects the rotational position around the rotation axis A1Z.
 光学ユニット20は、距離検出器21と、角度検出器22と、を備える。距離検出器21は、被測定物Wの測定点Pに向けてプローブ光としての第1プローブ光PL1(図3等参照)を照射し、測定点Pで反射された第1反射光RL1(図3等参照)を受光して測定点Pまでの距離を測定する。角度検出器22は、被測定物Wの測定点Pに向けてプローブ光としての第2プローブ光PL2(図3等参照)を照射し、測定点Pで反射された第2反射光RL2(図3等参照)を受光して測定点Pでの測定面WSの角度を測定する。なお、測定面WSの角度とは、予め定められた基準面(例えばXY平面)と測定面WSとの角度を示す。光学ユニット20は、ヘッドステージユニット30に支持される。光学ユニット20の詳細については後述する。 The optical unit 20 includes a distance detector 21 and an angle detector 22. The distance detector 21 irradiates the first probe light PL1 (see FIG. 3 etc.) as the probe light toward the measurement point P of the object to be measured W, and the first reflected light RL1 (see FIG. 3) reflected at the measurement point P. 3), and measure the distance to the measurement point P. The angle detector 22 irradiates the second probe light PL2 (see FIG. 3 etc.) as the probe light toward the measurement point P of the object to be measured W, and the second reflected light RL2 (see FIG. 3) reflected at the measurement point P. 3) is received to measure the angle of the measurement surface WS at the measurement point P. The angle of the measurement surface WS indicates the angle between a predetermined reference surface (for example, the XY plane) and the measurement surface WS. The optical unit 20 is supported by the head stage unit 30. Details of the optical unit 20 will be described later.
 図2は、表面形状測定装置100における光学ユニット20とヘッドステージユニット30の一例を拡大して示す斜視図である。図1及び図2に示すように、ヘッドステージユニット30は、光学ユニット20を第2回転軸A2Xまわりに回転させるθXステージ(第2軸回転ステージ)31を備える。θXステージ31は、ベース80上から起立する第3フレーム83の+X側に配置され、第2回転軸A2Xの軸まわりに回転可能に設けられている。θXステージ31の+X側の面には、第2回転軸A2Xから離れた位置(第2回転軸A2Xから偏心した位置)にアーム部32を備えている。アーム部32は、θXステージ31から+X軸方向に延びて設けられている。 FIG. 2 is an enlarged perspective view showing an example of the optical unit 20 and the head stage unit 30 in the surface shape measuring apparatus 100. As shown in FIG. As shown in FIGS. 1 and 2, the head stage unit 30 includes a θX stage (second axis rotation stage) 31 that rotates the optical unit 20 around the second rotation axis A2X. The θX stage 31 is disposed on the + X side of the third frame 83 rising from above the base 80, and is rotatably provided around the axis of the second rotation axis A2X. An arm portion 32 is provided on a surface on the + X side of the θX stage 31 at a position away from the second rotation axis A2X (a position decentered from the second rotation axis A2X). The arm portion 32 is provided to extend from the θX stage 31 in the + X axis direction.
 光学ユニット20は、アーム部32の+X側の先端部分に取り付けられる。θXステージ31が第2回転軸A2Xの軸まわりに回転することにより、光学ユニット20は、プローブ光を測定点Pに向けた状態で第2回転軸A2Xの軸まわりを周回移動する。すなわち、光学ユニット20は、後述する制御ユニット50のステージ制御部54に制御されて、第2回転軸A2Xまわりの回転のみの1自由度で回転する。アーム部32のX軸方向の長さは、光学ユニット20が測定点Pの+Z軸上方に配置可能な長さに設定される。なお、アーム部32は、光学ユニット20のX軸方向に位置を調整可能な調整部を備えてもよい。 The optical unit 20 is attached to the tip portion on the + X side of the arm portion 32. As the θX stage 31 rotates around the axis of the second rotation axis A2X, the optical unit 20 orbits around the axis of the second rotation axis A2X with the probe light directed to the measurement point P. That is, the optical unit 20 is controlled by the stage control unit 54 of the control unit 50 described later, and rotates with one degree of freedom of rotation around the second rotation axis A2X. The length of the arm portion 32 in the X-axis direction is set to a length that allows the optical unit 20 to be disposed above the measurement point P + Z-axis. The arm unit 32 may include an adjustment unit capable of adjusting the position of the optical unit 20 in the X-axis direction.
 また、θXステージ31の+X側の面には、第2回転軸A2Xを挟んでアーム部32と対向する位置に重り31aが設けられている。この重り31aは、例えば、アーム部32及び光学ユニット20の重さと同一又はほぼ同一の重量が用いられる。この重り31aにより、θXステージ31の回転をスムーズに行うことができる。なお、θXステージ31に重り31aが設けられるか否かは任意であり、重り31aが設けられなくてもよい。また、重り31aは複数設けられてもよい。 Further, on the + X side surface of the θX stage 31, a weight 31a is provided at a position facing the arm portion 32 across the second rotation axis A2X. The weight 31 a is, for example, the same as or substantially the same as the weight of the arm 32 and the optical unit 20. The weight 31a allows the θX stage 31 to rotate smoothly. Note that whether or not the weight 31 a is provided on the θX stage 31 is optional, and the weight 31 a may not be provided. Also, a plurality of weights 31a may be provided.
 図3は、光学ユニット20の概要の一例を示す図である。光学ユニット20は、図3に示すように、光学ユニット20の基準位置Gと測定点Pとの距離が所定距離Dとなるように設定されている。また、第2回転軸A2Xは測定点Pを通るので、光学ユニット20は、基準位置Gと第2回転軸A2Xとの距離が所定距離Dとなり。かつ、どの回転位置であっても、プローブ光が必ず測定点Pを通るように設定されている。光学ユニット20の基準位置Gは、光学ユニット20の中心位置又は重心位置に設定されてもよいし、これら以外に設定されてもよい。光学ユニット20は、図3に示すように、距離検出器21と角度検出器22とを備えている。 FIG. 3 is a view showing an example of an outline of the optical unit 20. As shown in FIG. The optical unit 20 is set such that the distance between the reference position G of the optical unit 20 and the measurement point P is a predetermined distance D, as shown in FIG. Further, since the second rotation axis A2X passes through the measurement point P, in the optical unit 20, the distance between the reference position G and the second rotation axis A2X is the predetermined distance D. And, at any rotational position, the probe light is always set to pass through the measurement point P. The reference position G of the optical unit 20 may be set to the center position or the barycentric position of the optical unit 20, or may be set to other than these. The optical unit 20 includes a distance detector 21 and an angle detector 22 as shown in FIG.
 距離検出器21は、第1プローブ光PL1を出射する照射部21Aと、第1プローブ光PL1が測定点Pで反射した第1反射光RL1を受光する検出部21Bと、を備える。照射部21Aは、Z軸方向から傾いた状態で第1プローブ光PL1の光軸が測定点Pと重なるように第1プローブ光PL1を出射する。検出部21Bは、Z軸方向を中心として照射部21Aと対称に傾いた状態で配置されている。 The distance detector 21 includes an irradiation unit 21A that emits the first probe light PL1, and a detection unit 21B that receives the first reflected light RL1 that the first probe light PL1 reflects at the measurement point P. The irradiation unit 21A emits the first probe light PL1 such that the optical axis of the first probe light PL1 overlaps the measurement point P in a state of being inclined from the Z-axis direction. The detection unit 21B is disposed in a state of being inclined symmetrically with the irradiation unit 21A about the Z-axis direction.
 また、角度検出器22は、距離検出器21と同様に、第2プローブ光PL2を出射する照射部22Aと、第2プローブ光PL2が測定点Pで反射した第2反射光RL2を受光する検出部22Bと、を備える。図3では、照射部22A及び検出部22Bが重なるため符号22の括弧中に符号22A、22Bを記載している。図3では示していないが、照射部22Aは、Z軸方向から傾いた状態で第2プローブ光PL2の光軸が測定点Pと重なるように第2プローブ光PL2を出射する。検出部22Bは、Z軸方向を中心として照射部22Aと対称に傾いた状態で配置されている。 Further, similarly to the distance detector 21, the angle detector 22 detects the irradiation unit 22A that emits the second probe light PL2 and the second reflected light RL2 that is reflected by the second probe light PL2 at the measurement point P. And a unit 22B. In FIG. 3, since the irradiation unit 22A and the detection unit 22B overlap with each other, reference numerals 22A and 22B are written in parentheses of reference numeral 22. Although not shown in FIG. 3, the irradiating unit 22A emits the second probe light PL2 such that the optical axis of the second probe light PL2 overlaps the measurement point P in a state of being inclined from the Z-axis direction. The detection unit 22B is disposed in a state of being inclined symmetrically with the irradiation unit 22A centering on the Z-axis direction.
 第1プローブ光PL1の光軸と、第2プローブ光PL2の光軸とは、測定点Pで交差する。すなわち、光学ユニット20の基準位置Gから所定距離Dだけ離れた測定点P(第2回転軸A2X)において第1プローブ光PL1の光軸と、第2プローブ光PL2の光軸とが交差した状態となっている。光学ユニット20から測定点Pに照射されるプローブ光は、距離検出器21の第1プローブ光PL1と角度検出器22の第2プローブ光PL2とが重複し、これらが合成された状態となっている。なお、光学ユニット20は、図3に示す構成に限定されない。光学ユニット20は、測定点Pまでの距離及び測定点Pでの測定面WSの角度を測定可能な任意の構成を適用可能である。 The optical axis of the first probe light PL1 and the optical axis of the second probe light PL2 intersect at the measurement point P. That is, the state in which the optical axis of the first probe light PL1 intersects the optical axis of the second probe light PL2 at the measurement point P (second rotation axis A2X) separated from the reference position G of the optical unit 20 by the predetermined distance D It has become. In the probe light irradiated from the optical unit 20 to the measurement point P, the first probe light PL1 of the distance detector 21 and the second probe light PL2 of the angle detector 22 overlap, and these are combined. There is. The optical unit 20 is not limited to the configuration shown in FIG. The optical unit 20 is applicable to any configuration capable of measuring the distance to the measurement point P and the angle of the measurement surface WS at the measurement point P.
 また、第1プローブ光PL1の光軸と第2プローブ光PL2の光軸とが第2回転軸A2Xで交差するので、θXステージ31を回転させて光学ユニット20を周回させたときでも、第1プローブ光PL1の光軸と第2プローブ光PL2の光軸とが第2回転軸A2Xで交差することに変わりない。従って、測定点Pを第2回転軸A2X上に設定することで、測定点Pと光学ユニット20との距離を容易に制御することができる。 In addition, since the optical axis of the first probe light PL1 and the optical axis of the second probe light PL2 intersect at the second rotation axis A2X, even when the optical unit 20 is rotated by rotating the θX stage 31, the first The optical axis of the probe light PL1 and the optical axis of the second probe light PL2 do not change in that they intersect at the second rotation axis A2X. Therefore, the distance between the measurement point P and the optical unit 20 can be easily controlled by setting the measurement point P on the second rotation axis A2X.
 制御ユニット50は、光学ユニット20から出射されたプローブ光(第1プローブ光PL1及び第2プローブ光PL2)が測定点Pに照射されるように表面形状測定装置100の各部の動作を制御する。 The control unit 50 controls the operation of each part of the surface shape measuring apparatus 100 such that the probe light (first probe light PL1 and second probe light PL2) emitted from the optical unit 20 is irradiated to the measurement point P.
 図4は、表面形状測定装置100の制御ユニット(制御部)50の一例を機能ブロックで示す図である。制御ユニット50は、図4に示すように、操作部51と、記憶部52と、演算部53と、ステージ制御部54と、計測制御部55と、I/O部56と、を備える。 FIG. 4 is a diagram showing an example of a control unit (control unit) 50 of the surface shape measuring apparatus 100 by functional blocks. As shown in FIG. 4, the control unit 50 includes an operation unit 51, a storage unit 52, an operation unit 53, a stage control unit 54, a measurement control unit 55, and an I / O unit 56.
 操作部51は、オペレータが表面形状測定装置100の各部における動作を操作するためのインタフェースである。操作部51は、測定プログラム及び/又は測定結果等の情報を表示する液晶表示パネル、数値及び/又は文字情報を入力するキーボード、マウス、タッチパネル、各種スイッチ類、さらにCD(Compact Disk)、USB(Universal Serial Bus)メモリー等の記録媒体に記録された測定面WSの基準形状データ、光学ユニット20からの測定結果等を読み書き可能なリーダーライター等を備えている。表面形状測定装置100は、このような操作部51により、対話形式で測定面WSのタイプ、測定パターンに対応した表面形状の測定を行うことができる。 The operation unit 51 is an interface for the operator to operate an operation in each part of the surface shape measuring apparatus 100. The operation unit 51 is a liquid crystal display panel that displays information such as a measurement program and / or a measurement result, a keyboard that inputs numerical and / or character information, a mouse, a touch panel, various switches, and further CD (Compact Disk), USB ( A reader / writer capable of reading and writing reference shape data of the measurement surface WS recorded on a recording medium such as a Universal Serial Bus memory or the like, measurement results from the optical unit 20, and the like are provided. The surface shape measuring apparatus 100 can perform measurement of the surface shape corresponding to the type of the measurement surface WS and the measurement pattern in an interactive manner by such an operation unit 51.
 記憶部52は、ROM(Read Only Memory)、RAM(Random Access Memory)等の複数の記憶素子により構成される。ROMは、表面形状測定装置100の各部の動作を制御する制御プログラム、被測定物Wのタイプ、測定パターンに対応した測定プログラム等を予め記憶している。制御ユニット50は、操作部51において被測定物Wのタイプ、測定パターンが選択設定されると、対応する測定プログラムを制御プログラムに組み込む。RAMは、操作部51のリーダーライター又はI/O部56を介して読み込まれた被測定物Wの測定面WSの基準形状データ、測定プログラムに設定された測定ライン上の測定点Pでの基準傾斜角度、測定プログラムの実行中に距離検出器21から出力される各測定点Pの距離データ、測定プログラムの実行中に角度検出器22から出力される各測定点Pでの測定面WSの角度データ等を一時記憶する。 The storage unit 52 is configured of a plurality of storage elements such as a read only memory (ROM) and a random access memory (RAM). The ROM stores in advance a control program for controlling the operation of each part of the surface shape measuring apparatus 100, a type of the object to be measured W, a measurement program corresponding to a measurement pattern, and the like. When the type of the object to be measured W and the measurement pattern are selected and set in the operation unit 51, the control unit 50 incorporates the corresponding measurement program into the control program. The RAM is reference shape data of the measurement surface WS of the object to be measured W read via the reader / writer or the I / O unit 56 of the operation unit 51, a reference at the measurement point P on the measurement line set in the measurement program. Inclination angle, distance data of each measurement point P output from distance detector 21 during execution of measurement program, angle of measurement surface WS at each measurement point P output from angle detector 22 during execution of measurement program Temporarily store data etc.
 演算部53は、CPU(Central Processing Unit)やシフトレジスター等により構成され、記憶部52に予め設定記憶された制御プログラム及び測定プログラムに基づいて各種の演算処理を行い、ステージ制御部54、計測制御部55等に指令信号を出力して、ワークステージユニット10、光学ユニット20、及びヘッドステージユニット30の動作を制御する。ステージ制御部54は、演算部53から出力される指令信号に基づいて、Xステージ11、Yステージ12、Zステージ13、θZステージ14、チルト調整機構15及びθXステージ31の動作を制御する。 The arithmetic unit 53 includes a central processing unit (CPU), a shift register, and the like, and performs various arithmetic processing based on the control program and measurement program stored in advance in the storage unit 52. The stage control unit 54, measurement control A command signal is output to the unit 55 and the like to control the operation of the work stage unit 10, the optical unit 20, and the head stage unit 30. The stage control unit 54 controls operations of the X stage 11, the Y stage 12, the Z stage 13, the θZ stage 14, the tilt adjustment mechanism 15, and the θX stage 31 based on a command signal output from the computing unit 53.
 計測制御部55は、演算部53から出力される指令信号に基づいて光学ユニット20の距離検出器21及び角度検出器22に測定制御信号を出力し、測定面WSの形状測定を制御する。I/O部56は、外部と信号の入出力を行う。 The measurement control unit 55 outputs a measurement control signal to the distance detector 21 and the angle detector 22 of the optical unit 20 based on the command signal output from the calculation unit 53, and controls the shape measurement of the measurement surface WS. The I / O unit 56 exchanges signals with the outside.
 図5は、表面形状測定装置100により表面形状を測定するための概念を説明する図である。図5では、被測定物Wの測定面WSは、簡略化して平面形状で示しているが、実際には自由曲面による凹凸形状を有している。このような被測定物Wの測定面WSの任意の点において、接平面と垂直な方向を矢印で示すと、各点において矢印の向きはバラバラとなっている。例えば、一例としての表面形状測定装置は、被測定物Wの測定点Pに光学ユニット20を向ける場合、光学ユニット20をX軸まわりとY軸まわりとの双方にそれぞれ回転させて、被測定物Wの測定点Pに光学ユニット20を向けることが一般的である。このように光学ユニット20をX軸まわり及びY軸まわりに回転させる構成は、光学ユニット20を2つのステージで支持することになり、プローブ光の照射位置に誤差が生じやすく、公正も面倒な作業となる。 FIG. 5 is a view for explaining the concept of measuring the surface shape by the surface shape measuring apparatus 100. As shown in FIG. In FIG. 5, the measurement surface WS of the object to be measured W is simplified and shown in a planar shape, but actually, it has an uneven shape by a free curved surface. When the direction perpendicular to the tangent plane is indicated by an arrow at any point on the measurement surface WS of such an object to be measured W, the directions of the arrows at the respective points are apart. For example, in the case of pointing the optical unit 20 to the measurement point P of the object W to be measured, the surface shape measuring apparatus as an example rotates the optical unit 20 around both the X axis and the Y axis to measure the object It is general to direct the optical unit 20 to the measurement point P of W. As described above, the configuration in which the optical unit 20 is rotated about the X axis and the Y axis supports the optical unit 20 with two stages, which tends to cause an error in the irradiation position of the probe light, and is a troublesome operation It becomes.
 これに対し、本実施形態の表面形状測定装置100は、被測定物Wの測定点Pに光学ユニット20を向ける場合、図5に示すように、θZステージ14により被測定物WをZ軸まわりに回転させ、かつ、θXステージ31により光学ユニット20をX軸まわりに回転させることにより、被測定物Wの測定点Pに対して光学ユニット20を正確に向けることが可能となっている。 On the other hand, when the optical unit 20 is directed to the measurement point P of the object W to be measured, the surface shape measuring apparatus 100 according to the present embodiment rotates the object W around the Z axis by the θZ stage 14 as shown in FIG. By rotating the optical unit 20 around the X axis by the θX stage 31, the optical unit 20 can be accurately directed to the measurement point P of the object W to be measured.
 図6は、被測定物Wの表面形状を測定するために球面座標から2次元の角度を用いることを説明する図である。三次元座標を球面座標で表現すると、任意の点を2次元で表現することができる。図6に示すように、X軸まわりの回転角度がθ、Z軸まわりの回転角度がφ、原点から距離rだけ離れた測定点の球面座標(r、θ、φ)を考えると、この測定点のX座標は、x=rcosφcosθと表現することができる。また、この測定点のY座標は、y=rcosφsinθと表現することができる。この測定点のZ座標は、z=rcosθと表現することができる。 FIG. 6 is a diagram for explaining the use of a two-dimensional angle from spherical coordinates to measure the surface shape of the object W to be measured. Representing three-dimensional coordinates in spherical coordinates allows arbitrary points to be represented in two dimensions. As shown in FIG. 6, considering the spherical coordinates (r, θ, φ) of the measurement point at which the rotation angle around the X axis is θ, the rotation angle around the Z axis is φ, and the distance r from the origin is The X coordinate of a point can be expressed as x = r cos φ cos θ. Also, the Y coordinate of this measurement point can be expressed as y = r cos φ sin θ. The Z coordinate of this measurement point can be expressed as z = r cos θ.
 X座標、Y座標、Z座標から、図6に示すように、角度θx、θy、θzの3つの表現が可能である。なお、角度θxは、角度θyと角度θzとを用いて表現することができる。また、角度θyは、角度θxと角度θzとを用いて表現することができる。また、角度θzは、角度θxと角度θyとを用いて表現することができる。すなわち、角度θx、θy、θzのうち、2つの角度で残りの角度を表現することが可能である。従って、任意の2つの角度を制御すれば、光学ユニット20を測定点Pに向けることが可能となる。 From the X, Y, and Z coordinates, as shown in FIG. 6, three expressions of angles θx, θy, and θz are possible. The angle θx can be expressed using the angle θy and the angle θz. The angle θy can be expressed using the angle θx and the angle θz. Further, the angle θz can be expressed using the angle θx and the angle θy. That is, it is possible to express the remaining angle by two angles among the angles θx, θy, and θz. Therefore, it is possible to direct the optical unit 20 to the measurement point P by controlling any two angles.
 本実施形態では、角度θxと角度θzとを利用する。すなわち、制御ユニット50は、角度θxとなるように、ヘッドステージユニット30のθXステージ31の回転角度を制御し、かつ、角度θzとなるように、ワークステージユニット10のθZステージ14の回転角度を制御する。 In the present embodiment, the angle θx and the angle θz are used. That is, the control unit 50 controls the rotation angle of the θX stage 31 of the head stage unit 30 so as to become the angle θx, and the rotation angle of the θZ stage 14 of the work stage unit 10 so as to become the angle θz. Control.
 図7~図9は、光学ユニット20からのプローブ光と被測定物Wとを相対移動させ、プローブ光を測定ラインに沿って移動させる際における被測定物W上の移動パターンを例示する説明図である。図7~図9は、チルト調整機構15に保持された被測定物Wを上方から見たときの状態を模式的に示し、被測定物Wの測定面上においてプローブ光が移動する測定ラインをL1~L6で示している。 FIGS. 7 to 9 are explanatory views illustrating movement patterns on the object W when the probe light from the optical unit 20 and the object W are moved relative to each other and the probe light is moved along the measurement line. It is. FIGS. 7 to 9 schematically show the measurement object W held by the tilt adjustment mechanism 15 as viewed from above, and a measurement line along which the probe light moves on the measurement surface of the measurement object W is shown. It is indicated by L1 to L6.
 図7は、メニスカスレンズや非球面レンズ等のように測定面の表面形状が平面視で円形状又はほぼ円形状の被測定物Wを計測する場合において、プローブ光の移動パターン(測定点Pの測定ルート)の一例を示している。ステージ制御部54は、ヘッドステージユニット30におけるθXステージ31の回転、ワークステージユニット10のXステージ11、Yステージ12及びZステージ13の移動、θZステージ14の回転により、光学ユニット20からのプローブ光が図7に示す移動パターンで測定面WSを移動するように制御する。移動パターン中の各測定対象点Piに合わされた測定点Pにおいて、制御ユニット50は、上記したように、θXステージ31の回転角度及びθZステージ14の回転角度を制御することにより、測定点Pに対して適切に光学ユニット20を向けるようにしている。測定点Pに対して光学ユニット20を向ける態様については後述する。また、制御ユニット50は、各測定点Pが第2回転軸A2X上に位置するように、ワークステージユニット10のXステージ11等を制御している。 FIG. 7 shows a movement pattern of probe light (measurement point P in the case where a workpiece W having a circular or substantially circular surface shape in plan view is measured, such as a meniscus lens or an aspheric lens. Measurement route) is shown. The stage control unit 54 is configured to rotate the θX stage 31 in the head stage unit 30, move the X stage 11 of the work stage unit 10, move the Y stage 12 and Z stage 13, and rotate the θZ stage 14. Is controlled to move the measurement surface WS in the movement pattern shown in FIG. As described above, the control unit 50 controls the rotation angle of the θX stage 31 and the rotation angle of the θZ stage 14 to control the measurement points P at the measurement points P aligned with each measurement target point Pi in the movement pattern. The optical unit 20 is properly directed to the surface. The aspect which aims the optical unit 20 with respect to the measurement point P is mentioned later. Further, the control unit 50 controls the X stage 11 and the like of the work stage unit 10 so that each measurement point P is positioned on the second rotation axis A2X.
 図7では、ステージ制御部54は、プローブ光を被測定物Wの測定面WSにおけるスタートポイントSPに照射した状態から、プローブ光を直線状の測定ラインL1に沿って移動させる。計測制御部55は、測定ラインL1上の各測定対象点Piを順次測定点Pに位置付けることにより、各測定対象点Pi(測定点P)での距離及び測定面WSの角度を光学ユニット20により測定させる。続いて、ステージ制御部54は、図7に示すように、θZステージ14を所定角度回転(例えば時計回りに)させ、プローブ光を直線状の測定ラインL2に沿って移動させる。計測制御部55は、測定ラインL1と同様に、測定ラインL2上の各測定対象点Pi(測定点P)での距離及び測定面WSの角度を光学ユニット20により測定させる。 In FIG. 7, the stage control unit 54 moves the probe light along the linear measurement line L1 from the state where the probe light is irradiated to the start point SP on the measurement surface WS of the object to be measured W. The measurement control unit 55 sequentially positions each measurement target point Pi on the measurement line L1 as the measurement point P, thereby the distance at each measurement target point Pi (measurement point P) and the angle of the measurement surface WS by the optical unit 20. Let me measure. Subsequently, as shown in FIG. 7, the stage control unit 54 rotates the θZ stage 14 by a predetermined angle (for example, clockwise) to move the probe light along the linear measurement line L2. The measurement control unit 55 causes the optical unit 20 to measure the distance at each measurement target point Pi (measurement point P) on the measurement line L2 and the angle of the measurement surface WS, as in the measurement line L1.
 続いて、ステージ制御部54は、θZステージ14を所定角度回転させ、プローブ光を直線状の測定ラインL3に沿って移動させる。計測制御部55は、測定ラインL1、L2と同様に、測定ラインL3上の各測定対象点Pi(測定点P)での距離及び測定面WSの角度を光学ユニット20により測定させる。制御ユニット50は、複数の測定ラインに沿って距離及び角度の測定を繰り返すことにより、被測定物Wの測定面WS全体について距離及び角度の測定データを得ることができる。図7に示す場合は、被測定物Wについて測定面全体を放射方向のライン状に測定したデータを得ることができる。 Subsequently, the stage control unit 54 rotates the θZ stage 14 by a predetermined angle to move the probe light along the linear measurement line L3. The measurement control unit 55 causes the optical unit 20 to measure the distance at each measurement target point Pi (measurement point P) on the measurement line L3 and the angle of the measurement surface WS, as in the measurement lines L1 and L2. The control unit 50 can obtain distance and angle measurement data for the entire measurement surface WS of the object W by repeating measurement of distance and angle along a plurality of measurement lines. In the case shown in FIG. 7, it is possible to obtain data obtained by measuring the entire measurement surface of the object W in the form of a line in the radial direction.
 なお、上記では光学ユニット20により各測定点Pにおける距離及び測定面WSの角度の測定データを得ているが、この手法に限定されない。例えば、制御ユニット50は、各測定ラインL1等において、光学ユニット20から各測定対象点Piまでを距離D(図3参照)に一定に維持するように制御しつつ、各測定対象点Piに合わされた測定点Pにおいて光学ユニット20により測定面WSの角度データを取得する手法であってもよい。 In addition, although the measurement data of the distance in each measurement point P and the angle of the measurement surface WS are obtained by the optical unit 20 in the above, it is not limited to this method. For example, the control unit 50 is adjusted to each measurement target point Pi while controlling to keep the distance D (see FIG. 3) constant from the optical unit 20 to each measurement target point Pi in each measurement line L1 etc. A method may be used in which angle data of the measurement surface WS is acquired by the optical unit 20 at the measurement point P.
 図8は、被測定物Wの測定面WSが平面視で円形状である場合を示しているが、測定面が平面視で矩形状、楕円形状、長円形状など、非円形状の被測定物W(例えばシリンドリカルレンズ等)を計測する場合にも好適なプローブ光の移動パターンの一例を示している。図8に示すように、ステージ制御部54は、プローブ光を被測定物Wの測定面WSにおけるスタートポイントSPに照射した状態から、プローブ光を直線状の測定ラインL1に沿って移動させる。計測制御部55は、測定ラインL1上の各測定対象点Pi(測定点P)での距離及び測定面WSの角度を光学ユニット20により測定させる。 FIG. 8 shows the case where the measurement surface WS of the object W is circular in plan view, but the measurement surface is non-circular in shape such as rectangular, elliptical or oblong in plan view. An example of a movement pattern of probe light suitable for measuring an object W (for example, a cylindrical lens or the like) is shown. As shown in FIG. 8, the stage control unit 54 moves the probe light along the linear measurement line L1 from the state where the probe light is irradiated to the start point SP on the measurement surface WS of the object to be measured W. The measurement control unit 55 causes the optical unit 20 to measure the distance at each measurement target point Pi (measurement point P) on the measurement line L1 and the angle of the measurement surface WS.
 続いて、ステージ制御部54は、図8に示すように、ワークステージユニット10のXステージ11等を動作させて、被測定物Wを所定量だけ-X方向にシフトさせ、プローブ光を直線状の測定ラインL4に沿って移動させる。計測制御部55は、測定ラインL1と同様に、測定ラインL4上の各測定対象点Pi(測定点P)での距離及び測定面WSの角度を光学ユニット20により測定させる。続いて、ステージ制御部54は、ワークステージユニット10のXステージ11等を動作させて、さらに被測定物Wを所定量だけ-X方向にシフトさせ、プローブ光を直線状の測定ラインL5に沿って移動させる。計測制御部55は、測定ラインL1、L4と同様に、測定ラインL5上の各測定対象点Pi(測定点P)での距離及び測定面WSの角度を光学ユニット20により測定させる。 Subsequently, as shown in FIG. 8, the stage control unit 54 operates the X stage 11 or the like of the work stage unit 10 to shift the object W in the −X direction by a predetermined amount, thereby linearly forming the probe light. It moves along the measurement line L4 of. The measurement control unit 55 causes the optical unit 20 to measure the distance at each measurement target point Pi (measurement point P) on the measurement line L4 and the angle of the measurement surface WS as in the measurement line L1. Subsequently, the stage control unit 54 operates the X stage 11 or the like of the work stage unit 10 to further shift the object W in the −X direction by a predetermined amount, and the probe light is along the linear measurement line L5. Move. The measurement control unit 55 causes the optical unit 20 to measure the distance at each measurement target point Pi (measurement point P) on the measurement line L5 and the angle of the measurement surface WS, as in the measurement lines L1 and L4.
 制御ユニット50は、複数の測定ラインに沿って距離及び角度の測定を繰り返すことにより、被測定物Wの測定面WS全体について距離及び角度の測定データを得ることができる。図8に示す場合は、被測定物Wについて測定面全体を平行なライン状に測定したデータを得ることができる。なお、図8に示す場合においても、上記と同様に、制御ユニット50は、各測定ラインL1等において、光学ユニット20から各測定対象点Piまでを距離Dに一定に維持するように制御しつつ、各測定対象点Piを位置付けた測定点Pにおいて光学ユニット20により測定面WSの角度データを取得してもよい。 The control unit 50 can obtain distance and angle measurement data for the entire measurement surface WS of the object W by repeating measurement of distance and angle along a plurality of measurement lines. In the case shown in FIG. 8, it is possible to obtain data obtained by measuring the entire measurement surface of the object W in parallel lines. Also in the case shown in FIG. 8, in the same manner as described above, the control unit 50 controls to keep the distance D from the optical unit 20 to each measurement target point Pi constant at each measurement line L1 etc. The angle data of the measurement surface WS may be acquired by the optical unit 20 at the measurement point P where each measurement target point Pi is positioned.
 図9は、図7と同様に、測定面の表面形状が平面視で円形状又はほぼ円形状の被測定物Wを計測する場合において、プローブ光の移動パターンの一例を示している。図9に示すように、ステージ制御部54は、プローブ光を被測定物Wの測定面WSにおけるスタートポイントSPに照射した状態から、プローブ光を渦巻き状の測定ラインL6に沿って移動させる。計測制御部55は、測定ラインL6上の各測定対象点Pi(測定点P)での距離及び測定面WSの角度を光学ユニット20により測定させる。制御ユニット50は、渦巻き状の測定ラインL6に沿って距離及び角度の測定することにより、被測定物Wの測定面WS全体について渦巻き状の距離及び角度の測定データを得ることができる。 Similar to FIG. 7, FIG. 9 shows an example of the movement pattern of the probe light in the case where the measurement object W having a circular or substantially circular surface shape in plan view is measured, as in FIG. 7. As shown in FIG. 9, the stage control unit 54 moves the probe light along the spiral measurement line L6 from the state where the probe light is irradiated to the start point SP on the measurement surface WS of the object to be measured W. The measurement control unit 55 causes the optical unit 20 to measure the distance at each measurement target point Pi (measurement point P) on the measurement line L6 and the angle of the measurement surface WS. The control unit 50 can obtain measurement data of the spiral distance and angle for the entire measurement surface WS of the object W by measuring the distance and angle along the spiral measurement line L6.
 なお、図9では、測定面WSの中心から外側に向けて渦巻き状に測定ラインL6を設定しているが、これに限定されず、例えば、外側から中心に向けて渦巻き状の測定ラインが設定されてもよい。なお、図9に示す場合においても、上記と同様に、制御ユニット50は、測定ラインL6において、光学ユニット20から各測定点Pまでを距離Dに一定に維持するように制御しつつ、各測定点Pにおいて光学ユニット20により測定面WSの角度データを取得してもよい。 In addition, in FIG. 9, although the measurement line L6 is set spirally toward the outer side from the center of the measurement surface WS, it is not limited to this, for example, a spiral measurement line is set toward the center from the outer side It may be done. In the case shown in FIG. 9 as well, in the same manner as described above, the control unit 50 performs control while maintaining the distance D from the optical unit 20 to each measurement point P constant in the measurement line L6. Angle data of the measurement surface WS may be acquired by the optical unit 20 at the point P.
 上記した測定ラインL1等において各測定対象点Pi(測定点P)における距離と測定面WSの角度は、光学ユニット20から照射された第1プローブ光PL1及び第2プローブ光PL2が測定点Pで反射し、それぞれの第1反射光RL1及び第2反射光RL2を光学ユニット20で受光することにより求められる。制御ユニット50のステージ制御部54は、測定ラインL1等に沿った各測定対象点Piについて、記憶部52(図4参照)に予め記憶されている被測定物Wの基準形状データに基づき、測定対象点Piを第2回転軸A2X上に配置する測定点Pに位置付けるためにワークステージユニット10のXステージ11、Yステージ12、Zステージ13の移動位置を制御し、かつ、被測定物Wの測定点Pでの接平面に対して適切に光学ユニット20を向けるように、θXステージ31の回転角度及びθZステージ14の回転角度を制御する。なお、ステージ制御部54は、Xステージ11、Yステージ12、Zステージ13の移動位置の制御と、θXステージ31の回転角度及びθZステージ14の回転角度の制御とを同時に行ってもよいし、それぞれ独立して行ってもよい。 The distance between each measurement target point Pi (measurement point P) and the angle of the measurement surface WS in the measurement line L1 and the like are measured at the measurement point P by the first probe light PL1 and the second probe light PL2 emitted from the optical unit 20. It is calculated | required by reflecting and each 1st reflected light RL1 and 2nd reflected light RL2 being light-received by the optical unit 20. FIG. The stage control unit 54 of the control unit 50 measures, based on the reference shape data of the object to be measured W stored in advance in the storage unit 52 (see FIG. 4), each measurement target point Pi along the measurement line L1 etc. The movement position of X stage 11, Y stage 12, and Z stage 13 of work stage unit 10 is controlled to position target point Pi at measurement point P arranged on second rotation axis A2X, and The rotation angle of the θX stage 31 and the rotation angle of the θZ stage 14 are controlled so that the optical unit 20 is properly directed to the tangent plane at the measurement point P. The stage control unit 54 may simultaneously control the movement position of the X stage 11, the Y stage 12, and the Z stage 13, and control the rotation angle of the θX stage 31 and the rotation angle of the θZ stage 14. Each may be performed independently.
 制御ユニット50の計測制御部55(図4参照)は、測定ラインL1等に沿った各測定対象点Piの距離及び測定面WSの角度を順次計測するように光学ユニット20を制御する。制御ユニット50の演算部53は、各測定対象点Piについて検出された距離及び測定面WSの角度から、被測定物Wの測定面WSの形状を算出する。制御ユニット50の演算部53(図4参照)は、例えば、記憶部52に記憶されている基準形状データに対して測定点Pでの測定面WSの角度の差を抽出し、この角度の差のデータを積分処理又はフィッティング処理等の公知の手法を用いて演算処理することにより測定面WSの表面形状を算出してもよい。 The measurement control unit 55 (see FIG. 4) of the control unit 50 controls the optical unit 20 to sequentially measure the distance of each measurement target point Pi and the angle of the measurement surface WS along the measurement line L1 and the like. The calculation unit 53 of the control unit 50 calculates the shape of the measurement surface WS of the object to be measured W from the distance detected for each measurement target point Pi and the angle of the measurement surface WS. The arithmetic unit 53 (see FIG. 4) of the control unit 50 extracts, for example, the difference in the angle of the measurement surface WS at the measurement point P with respect to the reference shape data stored in the storage unit 52. The surface shape of the measurement surface WS may be calculated by arithmetic processing of the data of (1) using a known method such as integration processing or fitting processing.
 表面形状を算出する一例について説明する。図10は、被測定物Wの表面形状を算出する一例を示す図である。光学ユニット20は、上記したY方向である測定ラインL1等に沿って、図10において紙面左側から右側に移動し、所定のサンプリング間隔Lごとに測定を行う。所定のサンプリング間隔Lによって設定された点が、被測定物Wの測定対象点Piである。図10では、サンプリング回数をnとすると、n=i回目の測定と、n=i+1回目の測定における測定面WSの表面形状を表している。被測定物Wの表面形状は自由曲面であるため、各測定対象点で測定した法線は三次元の方向に向いているが、図10では、これらの法線を成分分解し、Y方向成分の傾きを抽出することにより、測定ラインに沿った測定面WSの角度変化を示している。なお、測定ラインに限らず、各測定対象点Piでの任意の方向(例えば、測定ラインに垂直な方向)成分の傾きを抽出することで、測定面WSの任意の方向に沿った表面形状を算出できる。 An example of calculating the surface shape will be described. FIG. 10 is a diagram showing an example of calculating the surface shape of the object W to be measured. The optical unit 20 moves from the left side to the right side of the drawing in FIG. 10 along the measurement line L1 or the like in the Y direction described above, and performs measurement at predetermined sampling intervals L. A point set by a predetermined sampling interval L is a measurement target point Pi of the object to be measured W. In FIG. 10, assuming that the number of times of sampling is n, surface shapes of the measurement surface WS in the n = i-th measurement and the n = i + 1-th measurement are shown. The surface shape of the object to be measured W is a free-form surface, the normals measured at each measurement target point are directed in the three-dimensional direction, but in FIG. The angle change of the measurement surface WS along the measurement line is indicated by extracting the inclination of the angle. In addition, by extracting the inclination of an arbitrary direction (for example, a direction perpendicular to the measurement line) component at each measurement target point Pi instead of the measurement line, the surface shape along the arbitrary direction of the measurement surface WS can be obtained. It can be calculated.
 図10に示すように、n=i回目の測定で角度検出器22により、測定対象点Piにおける接平面WAの傾きが傾斜角度αi(rad)と測定されると、傾斜角度αiが微小角ある場合には、n=i回目の測定対象点PiまでのX方向(上下方向、深さ方向)の変位量はtan(αi/L)で、変位量Lαiと近似される。従って、n=i回目(測定対象点Pi)のX方向の座標がf(i)であると、n=i+1回目の座標f(i+1)、すなわち測定対象点Pi+1のX方向の座標は、f(i)+Lαiと算出される。このような測定ラインL1等に沿った表面形状の算出を、複数の測定ラインにおいて行うことにより、被測定物Wの測定面WS全体の表面形状が算出される。 As shown in FIG. 10, when the inclination of the tangential plane WA at the measurement target point Pi is measured as the inclination angle αi (rad) by the angle detector 22 in the n = i-th measurement, the inclination angle αi has a small angle In this case, the displacement amount in the X direction (vertical direction, depth direction) up to the n = i-th measurement target point Pi is tan (αi / L), and is approximated as the displacement amount Lαi. Therefore, if the coordinate in the X direction of the n = i'th time (the measurement target point Pi) is f (i), the coordinate in the X direction of the n = i + 1'th coordinate f (i + 1), ie, the measurement target point Pi + 1 is f (I) It is calculated as + Lαi. The surface shape of the entire measurement surface WS of the object to be measured W is calculated by performing the calculation of the surface shape along the measurement line L1 and the like in a plurality of measurement lines.
 図11(A)は、距離検出器21により測定対象点Pi(測定点P)までの距離を測定する原理を説明する図であり、図11(B)は、角度検出器22により測定点Pでの測定面WSの角度を測定する原理を説明する図である。図11においては、距離検出器21の第1プローブ光PL1、及び角度検出器22の第2プローブ光PL2を、X-Y方向に水平に延びる測定面WSに入射させた状態を示す。 FIG. 11A is a diagram for explaining the principle of measuring the distance to the measurement target point Pi (the measurement point P) by the distance detector 21. FIG. 11B shows the measurement point P by the angle detector 22. It is a figure explaining the principle which measures the angle of measurement side WS in. FIG. 11 shows a state in which the first probe light PL1 of the distance detector 21 and the second probe light PL2 of the angle detector 22 are made incident on the measurement surface WS extending horizontally in the XY direction.
 距離検出器21は、光源211と、集光レンズ212と、集光レンズ213と、光検出器214とを備える。光源211及び集光レンズ212は、図3に示す照射部21Aに相当する。集光レンズ213及び光検出器214は、図3に示す検出部21Bに相当する。照射部21A(光源211及び集光レンズ212)と検出部21B(集光レンズ213及び光検出器214)は、基準軸Sとの相対角度が定められて設けられている。基準軸Sは、例えば、照射部21Aからの照射光の光軸と、測定点Pで反射した反射光の光軸との対称軸である。光源211は、第1プローブ光PL1を発生させる。光源211は、発振波長、光出力、ビーム径等を安定化させたレーザ光源であり、例えば、ファイバーレーザ、分布帰還型レーザ等が用いられる。光源211は、出力部にコリメータを備えており、平行光束とした第1プローブ光PL1を出力する。集光レンズ212は、光源211により発生された第1プローブ光PL1を集光して被測定物Wの測定面WS(測定対象点Pi、測定点P)に照射する。 The distance detector 21 includes a light source 211, a condensing lens 212, a condensing lens 213, and a light detector 214. The light source 211 and the condenser lens 212 correspond to the irradiation unit 21A shown in FIG. The condenser lens 213 and the light detector 214 correspond to the detection unit 21B shown in FIG. The irradiation unit 21A (light source 211 and condensing lens 212) and the detection unit 21B (condensing lens 213 and light detector 214) are provided with a relative angle with the reference axis S defined. The reference axis S is, for example, a symmetry axis between the optical axis of the irradiation light from the irradiation unit 21A and the optical axis of the reflected light reflected at the measurement point P. The light source 211 generates the first probe light PL1. The light source 211 is a laser light source whose oscillation wavelength, light output, beam diameter and the like are stabilized. For example, a fiber laser, a distributed feedback laser, or the like is used. The light source 211 includes a collimator at an output unit, and outputs the first probe light PL1 as a parallel light beam. The condensing lens 212 condenses the first probe light PL <b> 1 generated by the light source 211 and irradiates the measurement surface WS of the object to be measured W (measurement target point Pi, measurement point P).
 集光レンズ213は、測定面WS(測定対象点Pi、測定点P)で反射された第1反射光RL1を集光する。光検出器214は、第1反射光RL1の位置を検出して測定面WSまでの距離を測定するための検出器であり、例えば、CCD(Charge-Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等のイメージセンサ、あるいは有機フォトダイオードなどが用いられる。 The condensing lens 213 condenses the first reflected light RL1 reflected by the measurement surface WS (the measurement target point Pi, the measurement point P). The light detector 214 is a detector for detecting the position of the first reflected light RL1 and measuring the distance to the measurement surface WS, and may be, for example, a charge-coupled device (CCD) or a complementary metal oxide semiconductor (CMOS). Or an image sensor such as an organic photodiode.
 角度検出器22は、光源221と、集光レンズ222と、コリメートレンズ223と、光検出器224とを備える。光源221及び集光レンズ222は、図3に示す照射部22Aに相当する。コリメートレンズ223及び光検出器224は、図3に示す検出部22Bに相当する。照射部22A(光源221及び集光レンズ222)と検出部22B(コリメートレンズ223及び光検出器224)は、基準軸Sとの相対角度が定められて設けられている。基準軸Sは、例えば、照射部22Aからの照射光の光軸と、測定点Pで反射した反射光の光軸との対称軸である。光源221は、第2プローブ光PL2を発生させる。光源221は、発振波長、光出力、ビーム径等を安定化させたレーザ光源であり、例えば、ファイバーレーザ、分布帰還型レーザ等が用いられる。光源221は、出力部にコリメータを備えており、平行光束とした第2プローブ光PL2を出力する。集光レンズ222は、光源221により発生された第2プローブ光PL2を集光して被測定物Wの測定面WS(測定対象点Pi、測定点P)に照射する。 The angle detector 22 includes a light source 221, a condensing lens 222, a collimating lens 223, and a light detector 224. The light source 221 and the condenser lens 222 correspond to the irradiation unit 22A shown in FIG. The collimator lens 223 and the light detector 224 correspond to the detection unit 22B shown in FIG. The irradiation unit 22A (light source 221 and condenser lens 222) and the detection unit 22B (collimator lens 223 and light detector 224) are provided at a relative angle with the reference axis S. The reference axis S is, for example, an axis of symmetry between the optical axis of the irradiation light from the irradiation unit 22A and the optical axis of the reflected light reflected at the measurement point P. The light source 221 generates a second probe light PL2. The light source 221 is a laser light source whose oscillation wavelength, light output, beam diameter and the like are stabilized. For example, a fiber laser, a distributed feedback laser, etc. are used. The light source 221 includes a collimator at an output unit, and outputs the second probe light PL2 as a parallel light flux. The condensing lens 222 condenses the second probe light PL2 generated by the light source 221 and irradiates it on the measurement surface WS (measurement target point Pi, measurement point P) of the object W to be measured.
 コリメートレンズ223は、測定面WS(測定対象点Pi、測定点P)で反射された第2反射光RL2を平行光束とする。光検出器224は、第2反射光RL2の位置を検出して測定面WSの角度を測定するための検出器であり、例えば、CCD又はCMOS等のイメージセンサ、あるいは有機フォトダイオードなどが用いられる。 The collimating lens 223 converts the second reflected light RL2 reflected by the measurement surface WS (the measurement target point Pi, the measurement point P) into a parallel light flux. The photodetector 224 is a detector for detecting the position of the second reflected light RL2 to measure the angle of the measurement surface WS, and, for example, an image sensor such as a CCD or CMOS or an organic photodiode is used. .
 距離検出器21から照射される第1プローブ光PL1は、集光レンズ212により集光されて測定面WSに入射し、第1反射光RL1は、集光レンズ213により集光されて光検出器214に入射する。従って、光検出器214への第1反射光RL1の入射位置は、測定面WSの角度が変化しても変化しない。ただし、測定面WSがZ軸方向に変化すると、光検出器214への第1反射光RL1の入射位置が変化する。そのため、制御ユニット50は、光検出器214から出力される信号に基づくことにより、測定面WSの角度が変化した場合であっても、光学ユニット20の基準位置Gから測定面WS(測定対象点Pi、測定点P)までの距離を算出することができる。 The first probe light PL1 emitted from the distance detector 21 is collected by the collecting lens 212 and enters the measurement surface WS, and the first reflected light RL1 is collected by the collecting lens 213 and the light detector Incident on 214. Therefore, the incident position of the first reflected light RL1 to the light detector 214 does not change even if the angle of the measurement surface WS changes. However, when the measurement surface WS changes in the Z-axis direction, the incident position of the first reflected light RL1 on the light detector 214 changes. Therefore, the control unit 50 measures the measurement surface WS (the measurement target point from the reference position G of the optical unit 20 even when the angle of the measurement surface WS changes by the signal output from the light detector 214). The distance to Pi, measurement point P) can be calculated.
 また、角度検出器22から照射される第2プローブ光PL2は、集光レンズ222により集光されて測定面WSに入射し、第2反射光RL2は、コリメートレンズ223により平行光束となって光検出器224に入射する。第2反射光RL2の入射位置は、測定面WSのZ軸方向の位置が変化してもほとんど(大きくは)変化しない。ただし、測定面WSの角度が変化すると光検出器224への第2反射光RL2の入射位置が変化する。そのため、制御ユニット50は、光検出器224から出力される信号に基づくことにより、測定面WSのZ軸方向の位置が多少変化した場合であっても、測定面WS(図14に示す測定対象点Piにおける接平面WA)の角度を算出することができる。 In addition, the second probe light PL2 emitted from the angle detector 22 is condensed by the condensing lens 222 and is incident on the measurement surface WS, and the second reflected light RL2 is collimated by the collimate lens 223 and becomes light The light is incident on the detector 224. The incident position of the second reflected light RL2 hardly (largely) changes even if the position of the measurement surface WS in the Z-axis direction changes. However, when the angle of the measurement surface WS changes, the incident position of the second reflected light RL2 to the light detector 224 changes. Therefore, the control unit 50 measures the measurement surface WS (the measurement target WS shown in FIG. 14 even if the position of the measurement surface WS in the Z-axis direction changes slightly due to the signal output from the light detector 224). The angle of the tangent plane WA) at the point Pi can be calculated.
 図11において、符号Sは、仮想光軸であり、光学ユニット20の基準軸である。この基準軸Sは、光学ユニット20から照射されるプローブ光における仮想された光軸である。基準軸Sと測定面WSとの交点は測定点Pである。光学ユニット20は、基準軸Sが測定点Pにおいて被測定物Wの基準形状の接平面に対して予め定められた角度となるように、制御ユニット50により制御される。本実施形態において、光学ユニット20を測定点Pに向けることは、一例として、基準軸Sが測定点Pを通り、かつ測定点Pの接平面に対して基準軸Sが垂直となるように光学ユニット20を配置することを意味する。ただし、基準軸Sは、測定点Pにおいて被測定物Wの基準形状の接平面に対して垂直でなくてもよく、角度が予め定められていればよい。なお、基準軸Sは、光学ユニット20の基準位置G(図3参照)を通るように設定されてもよい。基準軸Sに対して、第1プローブ光PL1と第1反射光RL1とは対称となっている。また、基準軸Sに対して、第2プローブ光PL2と第2反射光RL2とは対称となっている。 In FIG. 11, reference symbol S denotes a virtual optical axis, which is a reference axis of the optical unit 20. The reference axis S is a virtual optical axis of probe light emitted from the optical unit 20. An intersection point of the reference axis S and the measurement surface WS is a measurement point P. The optical unit 20 is controlled by the control unit 50 such that the reference axis S is at a predetermined angle with respect to the tangent plane of the reference shape of the object W at the measurement point P. In the present embodiment, to direct the optical unit 20 to the measurement point P is, for example, optical so that the reference axis S passes the measurement point P and the reference axis S is perpendicular to the tangent plane of the measurement point P. It means arranging the unit 20. However, the reference axis S may not be perpendicular to the tangent plane of the reference shape of the workpiece W at the measurement point P, as long as the angle is determined in advance. The reference axis S may be set to pass through the reference position G (see FIG. 3) of the optical unit 20. The first probe light PL1 and the first reflected light RL1 are symmetrical with respect to the reference axis S. Further, the second probe light PL2 and the second reflected light RL2 are symmetrical with respect to the reference axis S.
 距離検出器21及び角度検出器22は、距離検出器21の第1プローブ光PL1の入射面と、角度検出器22の第2プローブ光PL2の入射面とが直交(あるいは交差)するように設定されている。距離検出器21は、第1プローブ光PL1の入射面が測定点Pを含むYZ平面に沿うように設定されている。角度検出器22は、第2プローブ光PL2の入射面がYZ平面と直交し、かつ測定点Pを含むXZ平面に沿うように設定されている。距離検出器21及び角度検出器22の配置については、図12を用いて説明する。 The distance detector 21 and the angle detector 22 are set such that the incident surface of the first probe light PL1 of the distance detector 21 and the incident surface of the second probe light PL2 of the angle detector 22 are orthogonal (or intersected) It is done. The distance detector 21 is set so that the incident surface of the first probe light PL1 is along the YZ plane including the measurement point P. The angle detector 22 is set so that the incident surface of the second probe light PL2 is orthogonal to the YZ plane and along the XZ plane including the measurement point P. The arrangement of the distance detector 21 and the angle detector 22 will be described with reference to FIG.
 図12(A)は、距離検出器21における第1プローブ光PL1及び第1反射光RL1を説明する図であり、図12(B)は、角度検出器22における第2プローブ光PL2及び第2反射光RL2を説明する図である。図12(A)に示すように、距離検出器21は、第1プローブ光PL1の入射面が測定点Pを含むYZ平面に沿うように設定される。YZ平面は、X軸と直交する面である。また、図12(B)に示すように、角度検出器22は、第2プローブ光PL2の入射面が測定点Pを含むXZ平面に沿うように設定される。XZ平面は、X軸を含んだ面である。 FIG. 12A is a diagram for explaining the first probe light PL1 and the first reflected light RL1 in the distance detector 21. FIG. 12B is a view for explaining the second probe light PL2 and the second probe light in the angle detector 22. It is a figure explaining reflected light RL2. As shown in FIG. 12A, the distance detector 21 is set so that the incident surface of the first probe light PL1 is along the YZ plane including the measurement point P. The YZ plane is a plane orthogonal to the X axis. Further, as shown in FIG. 12B, the angle detector 22 is set so that the incident surface of the second probe light PL2 is along the XZ plane including the measurement point P. The XZ plane is a plane including the X axis.
 光学ユニット20は、YZ平面に沿って配置された距離検出器21と、XZ平面に沿って配置された角度検出器22とを備えている。YZ平面に沿う第1プローブ光PL1と、XZ平面に沿う第2プローブ光PL2とは、第2回転軸A2X上の測定点Pで交差する。すなわち、光学ユニット20の基準位置Gから所定距離Dだけ離れた測定位置で第1プローブ光PL1と第2プローブ光PL2とが交差するように、光学ユニット20は調整されている。これにより、光学ユニット20は、第1プローブ光PL1と第2プローブ光PL2とを重複させ、これらを合成したプローブ光を測定点Pに照射する。 The optical unit 20 includes a distance detector 21 disposed along the YZ plane and an angle detector 22 disposed along the XZ plane. The first probe light PL1 along the YZ plane and the second probe light PL2 along the XZ plane intersect at the measurement point P on the second rotation axis A2X. That is, the optical unit 20 is adjusted so that the first probe light PL1 and the second probe light PL2 intersect at a measurement position separated by a predetermined distance D from the reference position G of the optical unit 20. Thereby, the optical unit 20 causes the first probe light PL1 and the second probe light PL2 to overlap, and irradiates the measurement light with the probe light obtained by combining these.
 なお、プローブ光の測定ラインL1等は、Y軸方向に設定されている。従って、距離検出器21の第1プローブ光PL1は、測定ラインL1等に沿ったYZ平面に照射される。一方、角度検出器22の第2プローブ光PL2は、測定ラインL1等と直交するXZ平面に照射される。ただし、このような設定に限定されず、例えば、距離検出器21の第1プローブ光PL1を測定ラインL1等と直交するXZ平面で照射してもよいし、角度検出器22の第2プローブ光PL2を測定ラインL1等に沿ったYZ平面に照射してもよい。また、第1プローブ光PL1の入射面と第2プローブ光PL2の入射面とが直交しない構成であってもよい。 The measurement line L1 and the like of the probe light are set in the Y-axis direction. Therefore, the first probe light PL1 of the distance detector 21 is irradiated to the YZ plane along the measurement line L1 and the like. On the other hand, the second probe light PL2 of the angle detector 22 is irradiated on the XZ plane orthogonal to the measurement line L1 and the like. However, the present invention is not limited to such a setting. For example, the first probe light PL1 of the distance detector 21 may be irradiated in the XZ plane orthogonal to the measurement line L1 etc., or the second probe light of the angle detector 22 PL2 may be irradiated to the YZ plane along the measurement line L1 and the like. In addition, the incident surface of the first probe light PL1 and the incident surface of the second probe light PL2 may not be orthogonal to each other.
 また、図12に示すように、光学ユニット20の基準軸Sは、Z軸方向と平行である。また、基準軸Sは、距離検出器21が配置されるYZ平面と、角度検出器22が配置されるXZ平面とが交わる線に一致している。 Further, as shown in FIG. 12, the reference axis S of the optical unit 20 is parallel to the Z-axis direction. The reference axis S coincides with a line where the YZ plane in which the distance detector 21 is disposed and the XZ plane in which the angle detector 22 is disposed.
 図13は、角度検出器の他の例を示す図である。図13に示す角度検出器122は、光源221と、光ファイバ225と、コリメータ226と、集光レンズ222Aと、ミラー227と、アパーチャ228と、光検出器224とを備える。光源221、光検出器224は、図14に示す構成と同様である。光ファイバ225は、光源221で発生した第2プローブ光を導光する。コリメータ226は、光ファイバ225の出射端部に設けられ、第2プローブ光を平行光束として出射する。集光レンズ222Aは、平行光束の第2プローブ光PL2を集光して測定面WS(測定点P)に照射する。ミラー227は、測定面WSで反射されて再び集光レンズ222Aを透過することにより平行光束となった第2反射光RL2を所定の向きに反射する。アパーチャ228は、例えば、被測定物Wの裏面で反射された第2裏面反射光を除去する。 FIG. 13 is a diagram showing another example of the angle detector. The angle detector 122 shown in FIG. 13 includes a light source 221, an optical fiber 225, a collimator 226, a condenser lens 222A, a mirror 227, an aperture 228, and a light detector 224. The light source 221 and the light detector 224 are the same as those shown in FIG. The optical fiber 225 guides the second probe light generated by the light source 221. The collimator 226 is provided at the output end of the optical fiber 225, and emits the second probe light as a parallel beam. Condenser lens 222A condenses the 2nd probe light PL2 of parallel light flux, and irradiates it on measurement surface WS (measurement point P). The mirror 227 reflects the second reflected light RL2 which has been collimated by being reflected by the measurement surface WS and transmitted again through the condenser lens 222A in a predetermined direction. The aperture 228 removes, for example, the second back surface reflected light reflected from the back surface of the object W to be measured.
 角度検出器122は、測定面WSに照射する第2プローブ光PL2と測定面WSで反射された第2反射光RL2とを同じ集光レンズ222Aを透過させることにより、図11(b)及び図12(b)に示すコリメートレンズ223を省略した構成となっている。これにより、光学ユニット20は、XZ平面に沿って形成される角度検出器122を小型化できるので、全体をコンパクトに構成することができる。また、角度検出器122は、被測定物Wの裏面で反射された第2裏面反射光を除去するアパーチャ228を光検出器224の直前に設けたので、仮に被測定物Wの厚さが薄い場合又は第2プローブ光PL2の入射角が小さい場合であっても、第2裏面反射光を効率よく除去することができる。 The angle detector 122 transmits the second probe light PL2 irradiated to the measurement surface WS and the second reflected light RL2 reflected by the measurement surface WS by transmitting the same condensing lens 222A, as shown in FIG. The collimator lens 223 shown in FIG. 12 (b) is omitted. Thus, the optical unit 20 can miniaturize the angle detector 122 formed along the XZ plane, so that the whole can be configured compact. Further, since the angle detector 122 has the aperture 228 for removing the second back surface reflected light reflected by the back surface of the object to be measured W just before the light detector 224, the thickness of the object to be measured W is temporarily thin. In the case or the case where the incident angle of the second probe light PL2 is small, it is possible to efficiently remove the second back surface reflected light.
 なお、角度検出器122の集光レンズ222Aは、焦点距離f2が80~160mm程度であればよく、例えばf2=120mmのアクロマートレンズを用いることができる。また、第2プローブ光PL2の測定面WSへの入射角θ2(図12(B)参照)は、3~8°程度であればよく、例えばθ2=5°に設定される。また、角度検出器22の集光レンズ222についても、同様である。 The condensing lens 222A of the angle detector 122 may have a focal length f2 of about 80 to 160 mm, and for example, an achromatic lens of f2 = 120 mm can be used. Further, the incident angle θ2 (see FIG. 12B) of the second probe light PL2 on the measurement surface WS may be about 3 to 8 °, and is set, for example, to θ2 = 5 °. The same applies to the condenser lens 222 of the angle detector 22.
 距離検出器21の集光レンズ212は、焦点距離f1を集光レンズ222Aと同様の範囲で設定することができる。なお、焦点距離f1は図示を省略している。集光レンズ212は、例えば、焦点距離f1が集光レンズ222Aの焦点距離f2と同一の120mmのアクロマートレンズを用いることができる。この場合、距離検出器21は、測定面WSに照射する第1プローブ光PL1と測定面WSで反射された第1反射光RL1とを同じ集光レンズを透過させることが可能となり、図11(a)及び図12(a)に示す集光レンズ213を省略することができる。 The condensing lens 212 of the distance detector 21 can set the focal distance f1 in the same range as the condensing lens 222A. The focal length f1 is not shown. The condensing lens 212 can use, for example, an achromatic lens having a focal length f1 of 120 mm, which is the same as the focal length f2 of the condensing lens 222A. In this case, the distance detector 21 can transmit the first probe light PL1 irradiated to the measurement surface WS and the first reflected light RL1 reflected by the measurement surface WS through the same condensing lens, as shown in FIG. a) and the condensing lens 213 shown to Fig.12 (a) can be abbreviate | omitted.
 また、第1プローブ光PL1及び第1反射光RL1(第2プローブ光PL2及び第2反射光RL2)を同じ集光レンズを透過させることにより、距離検出器21(角度検出器22)の焦点調整作業を共通化できる。また、距離検出器21と角度検出器22とで同一の集光レンズ222Aを用いることにより、測定点Pに集光される第1プローブ光PL1と第2プローブ光PL2との焦点深度が同一又はほぼ同一になり、焦点深度の相違に基づく誤差成分等の影響を排除することができる。なお、第1プローブ光PL1の測定面WSへの入射角θ1は、5~30°程度が好ましく、例えばθ1=25°に設定される。 In addition, the focal point adjustment of the distance detector 21 (angle detector 22) is performed by transmitting the first probe light PL1 and the first reflected light RL1 (the second probe light PL2 and the second reflected light RL2) through the same condensing lens. Work can be shared. Further, by using the same focusing lens 222A in the distance detector 21 and the angle detector 22, the focal depths of the first probe light PL1 and the second probe light PL2 focused on the measurement point P are the same or It becomes almost the same, and the influence of an error component etc. based on the difference in depth of focus can be eliminated. The incidence angle θ1 of the first probe light PL1 on the measurement surface WS is preferably about 5 to 30 °, and is set, for example, to θ1 = 25 °.
 測定点Pにおいてプローブ光が照射される範囲は、例えば、直径200μm程の円形状又はほぼ円形状のスポットである。距離検出器21は、このスポットの平均的な位置変位を測定する。角度検出器22は、このスポットの平均的なX軸まわり又はY軸まわりの角度を検出する。 The range to which the probe light is irradiated at the measurement point P is, for example, a circular or substantially circular spot having a diameter of about 200 μm. The distance detector 21 measures the average positional displacement of this spot. The angle detector 22 detects an angle around the average X axis or Y axis of this spot.
 図14は、被測定物Wの表面形状を測定する際の表面形状測定装置100の動作の一例を模式的に示す図である。制御ユニット50は、各測定点Pの距離及び角度を測定するのに際し、記憶部52に記憶されている基準形状データに基づいて、測定点Pが第2回転軸A2Xを通り、かつ、測定点Pの接平面における法線が光学ユニット20の基準位置Gを通る基準軸Sと一致するように、Xステージ11、Yステージ12、Zステージ13、θZステージ14及びθXステージ31の動作を制御する。図14において、被測定物Wの表面形状は、YZ断面において楕円形状で簡略化して示しているが、実際には自由曲面による微小な凹凸を有する。 FIG. 14 is a view schematically showing an example of the operation of the surface shape measuring apparatus 100 when measuring the surface shape of the object W to be measured. When the control unit 50 measures the distance and angle of each measurement point P, the measurement point P passes through the second rotation axis A2X based on the reference shape data stored in the storage unit 52, and the measurement point Control the operations of X stage 11, Y stage 12, Z stage 13, θZ stage 14, and θX stage 31 such that the normal line in the tangent plane of P coincides with reference axis S passing through reference position G of optical unit 20. . In FIG. 14, the surface shape of the object to be measured W is simplified and shown as an elliptical shape in the YZ cross section, but actually, it has minute unevenness due to a free curved surface.
 図14の一点鎖線で示すように、第2回転軸A2X上の測定点Pに、被測定物Wのほぼ中央の測定対象点Piを位置付けた場合、その測定対象点Pi(測定点P)の接平面WA0はXY平面とほぼ平行となり、その法線はZ軸方向とほぼ平行となる。制御ユニット50は、基準形状データに基づいて、基準軸Sをこの法線と一致させ、かつ測定対象点Pi(測定点P)から基準位置Gまでが距離Dとなるように、θZステージ14及びθXステージ31の回転角度を制御し、かつXステージ11、Yステージ12、Zステージ13の移動位置を制御する。 As shown by the alternate long and short dash line in FIG. 14, when the measurement target point Pi substantially at the center of the object W is positioned at the measurement point P on the second rotation axis A2X, the measurement target point Pi (measurement point P) The tangent plane WA0 is substantially parallel to the XY plane, and the normal is approximately parallel to the Z-axis direction. The control unit 50 aligns the reference axis S with the normal based on the reference shape data, and the θZ stage 14 and the distance Z from the measurement target point Pi (measurement point P) to the reference position G. The rotation angle of the θX stage 31 is controlled, and the movement positions of the X stage 11, the Y stage 12, and the Z stage 13 are controlled.
 また、図14の実線で示すように、第2回転軸A2X上の測定点Pに、被測定物Wの中央から離れた測定対象点Piを位置付けた場合、その測定対象点Pi(測定点P)の接平面WAはXY平面から傾いており、その法線はZ軸方向から傾いている。制御ユニット50は、基準形状データに基づいて、基準軸Sをこの法線と一致させ、かつ測定点Pから基準位置Gまでが距離Dとなるように、θZステージ14及びθXステージ31の回転角度を制御し、かつXステージ11、Yステージ12、Zステージ13の移動位置を制御する。 Further, as shown by the solid line in FIG. 14, when the measurement target point Pi separated from the center of the object to be measured W is positioned at the measurement point P on the second rotation axis A2X, the measurement target point Pi (measurement point P ) Is inclined from the XY plane, and its normal is inclined from the Z-axis direction. The control unit 50 aligns the reference axis S with the normal based on the reference shape data, and the rotation angles of the θZ stage 14 and the θX stage 31 so that the distance D from the measurement point P to the reference position G becomes And control the moving positions of the X stage 11, the Y stage 12, and the Z stage 13.
 制御ユニット50は、基準軸Sを測定面の法線に一致させ、且つ、測定点Pが第2回転軸A2Xを通るようにするため、Xステージ11、Yステージ12、Zステージ13、θZステージ14及びθXステージ31を以下のように制御する。以下の説明では、図4の機能ブロックに関する図を適宜参照する。まず、制御ユニット50の演算部53は、記憶部52に記憶された測定面WSの基準形状データから、測定ラインL1等に沿った各測定対象点Piの接平面WAを算出し、その接平面のX軸まわりの角度及びY軸まわりの角度(以下、測定対象点Piの傾斜角度と称す。)を算出する。 The control unit 50 aligns the reference axis S with the normal to the measurement surface, and allows the measurement point P to pass through the second rotation axis A2X, so that the X stage 11, Y stage 12, Z stage 13, θZ stage 14 and the θX stage 31 are controlled as follows. In the following description, the drawings relating to the functional blocks in FIG. 4 will be referred to as appropriate. First, the calculation unit 53 of the control unit 50 calculates the tangent plane WA of each measurement target point Pi along the measurement line L1 and the like from the reference shape data of the measurement surface WS stored in the storage unit 52, and the tangent plane WA The angle around the X axis and the angle around the Y axis (hereinafter referred to as the inclination angle of the measurement target point Pi) are calculated.
 次に、演算部53は、測定ラインL1等における各測定対象点Piを測定点Pに位置付けるためのXステージ11、Yステージ12、及びZステージ13の移動量の算出、並びに、算出された測定対象点Piの傾斜角度から、その測定対象点Pi(接平面WA)の法線と基準軸Sとが一致し、かつ光学ユニット20のプローブ光が測定対象点Pi(測定点P)を通るようなθZステージ14及びθXステージ31の回転量を算出する。次いで、ステージ制御部54は、演算部53により算出された各ステージの移動量及び回転量に基づいた駆動信号を生成し、Xステージ11、Yステージ12、Zステージ13、θZステージ14及びθXステージ31に駆動信号を出力して、被測定物W及び光学ユニット20を相対移動させる。なお、ステージ制御部54は、各ステージを同時に制御してもよいし、それぞれ異なる期間に独立して制御してもよい。 Next, the calculation unit 53 calculates movement amounts of the X stage 11, the Y stage 12, and the Z stage 13 for positioning each measurement target point Pi in the measurement line L1 and the like as the measurement point P, and the calculated measurement. From the inclination angle of the target point Pi, the normal of the measurement target point Pi (tangent plane WA) coincides with the reference axis S, and the probe light of the optical unit 20 passes through the measurement target point Pi (measurement point P) The amounts of rotation of the θZ stage 14 and the θX stage 31 are calculated. Next, the stage control unit 54 generates drive signals based on the movement amount and rotation amount of each stage calculated by the operation unit 53, and the X stage 11, Y stage 12, Z stage 13, θZ stage 14, and θX stage A drive signal is output to 31 to move the object W and the optical unit 20 relative to each other. The stage control unit 54 may control each stage at the same time, or may independently control each different period.
 続いて、光学ユニット20の距離検出器21は、計測制御部55から出力された計測制御信号に基づいて、被測定物Wに対して第1プローブ光PL1を照射する。同時又はほぼ同時に、光学ユニット20の角度検出器22は、計測制御部55から出力された計測制御信号に基づいて、被測定物Wに対して第2プローブ光PL2を照射する。光学ユニット20は、第1プローブ光PL1及び第2プローブ光PL2が測定対象点Pi(測定点P)に照射される。光学ユニット20は、第1反射光RL1及び第2反射光RL2を受光することにより、測定対象点Pi(測定点P)の距離及び測定対象点Piでの測定面WSの角度を測定する。 Subsequently, based on the measurement control signal output from the measurement control unit 55, the distance detector 21 of the optical unit 20 applies the first probe light PL1 to the object to be measured W. At the same time or almost simultaneously, the angle detector 22 of the optical unit 20 irradiates the second probe light PL2 to the object to be measured W based on the measurement control signal output from the measurement control unit 55. In the optical unit 20, the first probe light PL1 and the second probe light PL2 are irradiated to the measurement target point Pi (measurement point P). The optical unit 20 measures the distance of the measurement target point Pi (the measurement point P) and the angle of the measurement surface WS at the measurement target point Pi by receiving the first reflected light RL1 and the second reflected light RL2.
 制御ユニット50、各測定対象点Piにおける距離及び測定面WSの角度の測定結果から被測定物Wの表面形状を算出する点は上記のとおりである。なお、光学ユニット20は、光学ユニット20の基準位置Gと第2回転軸A2Xとの距離が一定となっている。従って、測定点Pを第2回転軸A2X上に配置することにより、基準位置Gと測定点Pとの距離が距離Dと一定となるように設定される。また、上記では基準形状データに基づいて、測定点Pと基準位置Gとが距離Dとなるように制御されているがこれに限定されない。例えば、制御ユニット50は、距離検出器21の出力を用いて各測定点Pで実際に距離DとなるようにXステージ11等を制御しながら、各測定対象点Piでの測定面WSの角度を角度検出器22により測定するような制御を行ってもよい。 As described above, the control unit 50 calculates the surface shape of the object W from the measurement results of the distance at each measurement target point Pi and the angle of the measurement surface WS. In the optical unit 20, the distance between the reference position G of the optical unit 20 and the second rotation axis A2X is constant. Therefore, by arranging the measurement point P on the second rotation axis A2X, the distance between the reference position G and the measurement point P is set to be constant as the distance D. In the above, the measurement point P and the reference position G are controlled to be the distance D based on the reference shape data, but the present invention is not limited to this. For example, the control unit 50 uses the output of the distance detector 21 to control the X stage 11 or the like so that the distance D is actually at each measurement point P, and the angle of the measurement surface WS at each measurement target point Pi May be controlled by the angle detector 22.
 上記した説明は、被測定物Wがワークステージユニット10に適切に(水平に)保持されていることが前提である。ワークステージユニット10のチルト調整機構15は、被測定物Wが適切に保持されるように調整することができる。また、被測定物Wの位置は、X干渉計41、42、46及びY干渉計43、44によりZステージ13の移動鏡61、62までの距離を検出することにより認識される。従って、Zステージ13が(あるいはZステージ13を載置するXステージ11、Yステージ12)が傾いていると、X干渉計41等により被測定物Wの正確な位置を検出できなくなる。 The above description is premised that the workpiece W is properly (horizontally) held by the work stage unit 10. The tilt adjustment mechanism 15 of the work stage unit 10 can be adjusted so that the object to be measured W is properly held. Further, the position of the object to be measured W is recognized by detecting the distance to the moving mirrors 61 and 62 of the Z stage 13 by the X interferometers 41, 42 and 46 and the Y interferometers 43 and 44. Therefore, when the Z stage 13 (or the X stage 11 and the Y stage 12 on which the Z stage 13 is mounted) is inclined, the X interferometer 41 or the like can not detect the accurate position of the object W to be measured.
 図15は、Y軸まわりのZステージ13の傾きの検出を説明する図である。図16は、X軸まわりのZステージ13の傾きの検出を説明する図である。図15では、X干渉計41、42により検出された距離から、Y軸まわりの角度を算出する手法を説明する。X干渉計41、42は、第1回転軸A1Zに垂直なXY平面(第1平面)に対するY軸まわりのZステージ13(θZステージ14)の傾きを検出する傾き検出部として機能する。X干渉計41は、移動鏡61に対してX軸方向と平行に(XY平面に沿って)検出光を出射し、移動鏡61で反射された反射光を受光する。この反射光と参照光とを干渉させた結果に基づいて、移動鏡61までの距離(X軸方向の位置)を検出する。同様に、X干渉計42は、移動鏡61までの距離(X軸方向の位置)を検出する。なお、X干渉計41は、検出光の光軸が第2回転軸A2Xと一致又はほぼ一致して配置されている。すなわち 、X干渉計41は、測定点Pを含むXY平面内を検出光の光軸が通るように配置されている。従って、このX干渉計41を用いることにより、X軸方向の位置(距離)をアッベ誤差が発生せずに検出(計測)することができる。 FIG. 15 is a diagram for explaining the detection of the tilt of the Z stage 13 around the Y axis. FIG. 16 is a diagram for explaining the detection of the tilt of the Z stage 13 around the X axis. In FIG. 15, a method of calculating the angle around the Y axis from the distances detected by the X interferometers 41 and 42 will be described. The X interferometers 41 and 42 function as an inclination detection unit that detects the inclination of the Z stage 13 (θZ stage 14) around the Y axis with respect to the XY plane (first plane) perpendicular to the first rotation axis A1Z. The X interferometer 41 emits detection light in parallel with the X-axis direction (along the XY plane) to the movable mirror 61, and receives the reflected light reflected by the movable mirror 61. Based on the result of interference between the reflected light and the reference light, the distance to the moving mirror 61 (the position in the X-axis direction) is detected. Similarly, the X interferometer 42 detects the distance to the movable mirror 61 (the position in the X-axis direction). The X interferometer 41 is disposed such that the optical axis of the detection light coincides with or substantially coincides with the second rotation axis A2X. That is, the X interferometer 41 is disposed such that the optical axis of the detection light passes in the XY plane including the measurement point P. Therefore, by using this X interferometer 41, the position (distance) in the X axis direction can be detected (measured) without the occurrence of Abbe error.
 図15(A)は、Zステージ13がXY平面に平行な水平の状態を示している。すなわち、Zステージ13は、Y軸まわりの角度が0°の状態である。この状態では、X干渉計41、42から出力される検出結果は同一の値となる。図15(B)は、Zステージ13がXY平面からY軸まわりに回転した状態を示している。すなわち、Zステージ13は、Y軸まわりに角度θ3°だけ傾いた状態である。この状態では、X干渉計41から出力される値と、X干渉計42から出力される値とで異なる。図15(B)に示す例の場合、X干渉計42から出力される値は、X干渉計41の光軸からX干渉計42の光軸までを距離LAとすると、X干渉計41から出力される値よりもLAtanθ3だけ長くなる。 FIG. 15A shows the Z stage 13 in a horizontal state parallel to the XY plane. That is, the Z stage 13 is in a state in which the angle around the Y axis is 0 °. In this state, the detection results output from the X interferometers 41 and 42 have the same value. FIG. 15B shows a state in which the Z stage 13 is rotated about the Y axis from the XY plane. That is, the Z stage 13 is in a state of being inclined about the Y axis by an angle θ3 °. In this state, the value output from the X interferometer 41 differs from the value output from the X interferometer. In the example shown in FIG. 15B, the value output from the X interferometer 42 is output from the X interferometer 41, where the distance LA from the optical axis of the X interferometer 41 to the optical axis of the X interferometer 42 is Is longer by LA tan θ3 than the value
 制御ユニット50は、X干渉計41、42から出力された値の差であるLAtanθ3に基づいて、Zステージ13がY軸まわりにθ3°傾いていることを算出する。制御ユニット50は、Zステージ13がY軸まわりにθ3°傾いていることから、測定点PにおけるX軸方向の変位を算出し、その変位をX軸方向のオフセット量としてXステージ11の移動量を制御する。 The control unit 50 calculates that the Z stage 13 is inclined by θ3 ° around the Y axis based on LAtan θ3 which is the difference between the values output from the X interferometers 41 and 42. The control unit 50 calculates the displacement in the X axis direction at the measurement point P since the Z stage 13 is inclined by θ3 ° around the Y axis, and uses the displacement as the offset amount in the X axis direction to move the X stage 11 Control.
 なお、X干渉計46(図4参照)は、X干渉計41からY軸方向に離れて配置されている。X干渉計46から出力される値を、X干渉計41から出力される値と比較することにより、上記と同様にZステージ13のZ軸まわりの回転量を算出可能である。制御ユニット50は、この回転量をオフセット量としてθZステージ14の回転量を制御することができる。 The X interferometer 46 (see FIG. 4) is disposed away from the X interferometer 41 in the Y-axis direction. By comparing the value output from the X interferometer 46 with the value output from the X interferometer 41, it is possible to calculate the amount of rotation around the Z axis of the Z stage 13 as described above. The control unit 50 can control the amount of rotation of the θZ stage 14 using this amount of rotation as an offset amount.
 図16では、図15と同様に、Y干渉計43、44により検出された距離から、X軸まわりの角度を算出する手法を説明する。Y干渉計43、44は、第1回転軸A1Zに垂直なXY平面(第1平面)に対するX軸まわりのZステージ13(θZステージ14)の傾きを検出する傾き検出部として機能する。Y干渉計43は、移動鏡62に対してY軸方向と平行に(XY平面に沿って)検出光を出射し、移動鏡62で反射された反射光を受光する。この反射光と参照光とを干渉させた結果に基づいて、移動鏡62までの距離(Y軸方向の位置)を検出する。同様に、Y干渉計44は、移動鏡62までの距離(Y軸方向の位置)を検出する。 In FIG. 16, as in FIG. 15, a method of calculating the angle around the X axis from the distances detected by the Y interferometers 43 and 44 will be described. The Y interferometers 43 and 44 function as an inclination detection unit that detects the inclination of the Z stage 13 (θZ stage 14) around the X axis with respect to the XY plane (first plane) perpendicular to the first rotation axis A1Z. The Y interferometer 43 emits detection light in parallel with the Y-axis direction (along the XY plane) to the movable mirror 62, and receives the reflected light reflected by the movable mirror 62. Based on the result of interference between the reflected light and the reference light, the distance to the movable mirror 62 (the position in the Y-axis direction) is detected. Similarly, the Y interferometer 44 detects the distance to the moving mirror 62 (the position in the Y-axis direction).
 図16(A)は、Zステージ13がXY平面に平行な水平の状態を示している。すなわち、Zステージ13は、X軸まわりの角度が0°の状態である。この状態では、Y干渉計43、44から出力される検出結果は同一の値となる。図16(B)は、Zステージ13がXY平面からX軸まわりに回転した状態を示している。すなわち、Zステージ13は、X軸まわりに角度θ4°だけ傾いた状態である。この状態では、Y干渉計43から出力される値と、Y干渉計44から出力される値とで異なる。図16(B)に示す例の場合、Y干渉計44から出力される値は、Y干渉計43の光軸からY干渉計44の光軸までを距離LBとすると、Y干渉計43から出力される値よりもLBtanθ4だけ長くなる。 FIG. 16A shows the Z stage 13 in a horizontal state parallel to the XY plane. That is, the Z stage 13 is in a state in which the angle around the X axis is 0 °. In this state, the detection results output from the Y interferometers 43 and 44 have the same value. FIG. 16B shows a state in which the Z stage 13 is rotated about the X axis from the XY plane. That is, the Z stage 13 is in a state of being inclined about the X axis by an angle θ4 °. In this state, the value output from the Y interferometer 43 and the value output from the Y interferometer 44 differ. In the case of the example shown in FIG. 16B, the value output from the Y interferometer 44 is output from the Y interferometer 43, where the distance LB from the optical axis of the Y interferometer 43 to the optical axis of the Y interferometer 44 is Is longer by LB tan θ 4 than the value
 制御ユニット50は、Y干渉計43、44から出力された値の差であるLBtanθ4に基づいて、Zステージ13がX軸まわりにθ4°傾いていることを算出する。制御ユニット50は、Zステージ13がX軸まわりにθ4°傾いていることから、測定点PにおけるY軸方向の変位を算出し、その変位をY軸方向のオフセット量としてYステージ12の移動量を制御する。 The control unit 50 calculates that the Z stage 13 is inclined by θ4 ° around the X axis based on LB tan θ4 which is a difference between values output from the Y interferometers 43 and 44. The control unit 50 calculates the displacement in the Y axis direction at the measurement point P since the Z stage 13 is inclined by θ4 ° around the X axis, and uses the displacement as the offset amount in the Y axis direction to move the Y stage 12 Control.
 なお、本実施形態では、光学ユニット20がθXステージ31により周回した場合でも、プローブ光が第2回転軸A2X上の測定点Pに向けて照射されるように設定されている。さらに、X干渉計41は、検出光の光軸が第2回転軸A2Xに沿って測定点Pを通過するように設定され、かつ、Y干渉計43は、検出光の光軸が測定点Pを通過するように設定されている。この構成により、アッベ誤差の発生が抑制され、被測定物Wの所望位置を精度よく測定点Pとして位置決めすることができる。 In the present embodiment, even when the optical unit 20 orbits by the θX stage 31, the probe light is set to be irradiated toward the measurement point P on the second rotation axis A2X. Furthermore, the X interferometer 41 is set so that the optical axis of the detection light passes the measurement point P along the second rotation axis A2X, and the Y interferometer 43 has the optical axis of the detection light the measurement point P It is set to pass through. With this configuration, occurrence of Abbe error can be suppressed, and the desired position of the object to be measured W can be accurately positioned as the measurement point P.
 なお、上記した実施形態では、光学ユニット20が距離検出器21と角度検出器22とを別に配置した構成を例に挙げて説明しているが、この構成に限定されない。例えば、光学ユニット20は、1つの光源を用いて距離の検出及び角度の検出を行ってもよい。図17は、光学ユニットの他の例を模式的に示す図である。図17に示す光学ユニット20Aは、光源301と、集光レンズ302と、コリメートレンズ303と、ハーフミラー304と、集光レンズ305と、距離検出用の光検出器306と、角度検出用の光検出器307と、を備える。 In the embodiment described above, the configuration in which the optical unit 20 separately arranges the distance detector 21 and the angle detector 22 is described as an example, but the present invention is not limited to this configuration. For example, the optical unit 20 may perform distance detection and angle detection using one light source. FIG. 17 is a view schematically showing another example of the optical unit. The optical unit 20A shown in FIG. 17 includes a light source 301, a condensing lens 302, a collimator lens 303, a half mirror 304, a condensing lens 305, a light detector 306 for detecting a distance, and light for detecting an angle. And a detector 307.
 光源301は、プローブ光PL3を発生させる。プローブ光PL3は、YZ平面に沿って照射させ、測定面WS(測定点P)に照射される。光源301は、発振波長、光出力、ビーム径等を安定化させたレーザ光源であり、例えば、ファイバーレーザ、分布帰還型レーザ等が用いられる。光源301は、出力部にコリメータを備えており、平行光束としたプローブ光PL3を出力する。集光レンズ302は、光源301により発生されたプローブ光PL3を集光して被測定物Wの測定面WS(測定点P)に照射する。 The light source 301 generates a probe light PL3. The probe light PL3 is irradiated along the YZ plane, and irradiated to the measurement surface WS (measurement point P). The light source 301 is a laser light source whose oscillation wavelength, light output, beam diameter and the like are stabilized. For example, a fiber laser, a distributed feedback laser, etc. are used. The light source 301 includes a collimator at an output unit, and outputs a probe light PL3 as a parallel light flux. The condenser lens 302 condenses the probe light PL3 generated by the light source 301 and irradiates the measurement surface WS (measurement point P) of the object W.
 コリメートレンズ303は、測定面WSで反射された反射光RL3を平行光束にする。ハーフミラー304は、コリメートレンズ303で平行光束となった反射光RL3の一部を反射し、残りを透過させる。集光レンズ305は、ハーフミラー304で反射された反射光(第1反射光)RL31を集光する。距離検出用の光検出器306は、集光レンズ305で集光された反射光RL31が入射し、反射光RL31の位置を検出して測定面WSまでの距離を測定するための検出器である。光検出器306は、例えば、CCD又はCMOS等のイメージセンサ、あるいは有機フォトダイオードなどが用いられる。 The collimating lens 303 converts the reflected light RL3 reflected by the measurement surface WS into a parallel light flux. The half mirror 304 reflects a part of the reflected light RL3 that has been collimated by the collimator lens 303, and transmits the remaining part. The condensing lens 305 condenses the reflected light (first reflected light) RL31 reflected by the half mirror 304. The light detector 306 for distance detection is a detector for receiving the reflected light RL31 condensed by the condensing lens 305 and detecting the position of the reflected light RL31 to measure the distance to the measurement surface WS. . As the light detector 306, for example, an image sensor such as a CCD or a CMOS or an organic photodiode is used.
 角度検出用の光検出器307は、ハーフミラー304を透過した反射光(第2反射光)RL32が入射し、反射光RL32の位置を検出して測定面WSの角度を測定する。光検出器307は、例えば、CCD又はCMOS等のイメージセンサ、あるいは有機フォトダイオードなどが用いられる。光検出器306における反射光RL31の入射位置は、測定面WSの角度が変化しても変化しないが、測定面WSのZ軸方向の位置が変化すると変化する。一方、光検出器307における反射光RL32の入射位置は、測定面WSのZ軸方向の位置が変化してもほとんど変化しないが、測定面WSの角度が変化すると変化する。そのため、制御ユニット50は、光検出器306、307から出力される信号に基づいて、測定面WSまでの距離及び測定面WSの角度を算出することができる。 The light detector 307 for angle detection receives the reflected light (second reflected light) RL32 transmitted through the half mirror 304 and detects the position of the reflected light RL32 to measure the angle of the measurement surface WS. As the light detector 307, for example, an image sensor such as a CCD or a CMOS, or an organic photodiode is used. The incident position of the reflected light RL31 on the light detector 306 does not change even if the angle of the measurement surface WS changes, but changes if the position of the measurement surface WS in the Z-axis direction changes. On the other hand, the incident position of the reflected light RL32 in the light detector 307 hardly changes even if the position of the measurement surface WS in the Z-axis direction changes, but changes when the angle of the measurement surface WS changes. Therefore, the control unit 50 can calculate the distance to the measurement surface WS and the angle of the measurement surface WS based on the signals output from the light detectors 306 and 307.
 このように、本実施形態の表面形状測定装置100によれば、制御ユニット(制御部)50によって、予め取得した被測定物Wの基準形状データに基づいて、測定点Pに光学ユニット20を向けるように、θXステージ31により光学ユニット20をX軸まわりに回転させ、かつ、θZステージ14により被測定物WをZ軸まわりに回転させるので、光学ユニット20を1つのθXステージ31により周回させるので、光学ユニット20をを正確に被測定物Wの測定点Pに向けることができ、これにより被測定物Wの表面形状を精度よく測定することができる。 As described above, according to the surface shape measuring apparatus 100 of the present embodiment, the control unit (control unit) 50 directs the optical unit 20 to the measurement point P based on the reference shape data of the measured object W acquired in advance. As described above, since the optical unit 20 is rotated around the X axis by the θX stage 31 and the object W is rotated around the Z axis by the θZ stage 14, the optical unit 20 is rotated by one θX stage 31. The optical unit 20 can be accurately directed to the measurement point P of the object W, whereby the surface shape of the object W can be measured accurately.
 また、本実施形態では、光学ユニット20をX軸まわりにのみ回転させるので、例えば、光学ユニット20をX軸まわりとY軸まわりとの双方にそれぞれ回転させる構成と比較して、装置構成をシンプルにすることができ、測定誤差が発生する要因を低減することができる。 Further, in the present embodiment, since the optical unit 20 is rotated only around the X axis, for example, the apparatus configuration is simplified as compared with a configuration in which the optical unit 20 is rotated around both the X axis and the Y axis. It is possible to reduce the cause of measurement errors.
 [第2実施形態]
 第2実施形態に係る表面形状測定装置200について図面を参照して説明する。図18は、第2実施形態に係る表面形状測定装置200の一例を示す図である。上記した第1実施形態では、ワークステージユニット10にθZステージ14を備えているが、表面形状測定装置200では、ワークステージユニット10にθZステージ14がなく、ヘッドステージユニット30にθZステージ40を備える。なお、以下の説明において、上記した実施形態と同一又は同等の構成については同一の符号を付けて説明を省略又は簡略化する。また、図18において、チルト調整機構15、干渉計ユニット40A等、及び制御ユニット50の記載を省略している。
Second Embodiment
A surface shape measuring apparatus 200 according to a second embodiment will be described with reference to the drawings. FIG. 18 is a view showing an example of the surface shape measuring apparatus 200 according to the second embodiment. In the first embodiment described above, the work stage unit 10 is provided with the θZ stage 14. However, in the surface shape measuring apparatus 200, the work stage unit 10 does not have the θZ stage 14, and the head stage unit 30 is provided with the θZ stage 40. . In the following description, the same or equivalent components as or to those of the embodiment described above are designated by the same reference numerals, and the description will be omitted or simplified. Further, in FIG. 18, the description of the tilt adjustment mechanism 15, the interferometer unit 40A, and the like, and the control unit 50 is omitted.
 表面形状測定装置200は、ベース80又は他の部分に支持された上部フレーム84の下面側(-Z側の面)に、第1回転軸A1Zの軸まわりに回転可能なθZステージ40を備えている。第1回転軸A1Zは、測定点Pを通るように設定されている。上部フレーム84は、ヘッドステージユニット30の上方(+Z軸方向から離れた位置)に設けられている。θZステージ40は、不図示のZ軸回転装置により回転する。Z軸回転装置は、例えば、電動回転モータ及び減速機など、任意の回転装置が使用される。Z軸回転装置は、例えば、上部フレーム84に配置される。また、Z軸回転装置は、制御ユニット50(図1参照)により制御される。 The surface shape measuring apparatus 200 includes the θZ stage 40 rotatable about the axis of the first rotation axis A1Z on the lower surface side (surface on the -Z side) of the upper frame 84 supported by the base 80 or another portion. There is. The first rotation axis A1Z is set to pass through the measurement point P. The upper frame 84 is provided above the head stage unit 30 (a position away from the + Z axis direction). The θZ stage 40 is rotated by a Z-axis rotating device (not shown). As the Z-axis rotation device, any rotation device such as, for example, an electric rotation motor and a reduction gear is used. The Z-axis rotation device is disposed, for example, on the upper frame 84. Also, the Z-axis rotation device is controlled by the control unit 50 (see FIG. 1).
 θZステージ40の下面側かつ外周部分には、水平部材85がθZステージ40の放射方向に延びて取り付けられている。第3フレーム83Aは、水平部材85の-X側の下面に取り付けられ、下方に延びるように設けられる。なお、第3フレーム83Aは、ベース80から離れて配置される。ヘッドステージユニット30は、第3フレーム83Aの+X側の側面に形成される。なお、θXステージ31の第2回転軸A2Xが測定点Pを通るように設定される点は、第1実施形態と同様である。 A horizontal member 85 is attached to the lower surface side and the outer peripheral portion of the θZ stage 40 so as to extend in the radial direction of the θZ stage 40. The third frame 83A is attached to the lower surface of the horizontal member 85 on the -X side, and is provided to extend downward. The third frame 83A is disposed apart from the base 80. The head stage unit 30 is formed on the + X side of the third frame 83A. The second rotation axis A2X of the θX stage 31 is set to pass through the measurement point P, as in the first embodiment.
 本実施形態では、θXステージ31及びθZステージ40を回転させることにより、被測定物Wの測定点Pに光学ユニット20の向きを合わせることができる。従って、制御ユニット50は、θXステージ31及びθZステージ40の回転角度、並びにワークステージユニット10のXステージ11等を制御することにより、第1実施形態と同様に、測定ラインL1等(図7等参照)に沿った各測定点Pに対して、光学ユニット20からのプローブ光を正確に向けることができる。 In the present embodiment, by rotating the θX stage 31 and the θZ stage 40, the direction of the optical unit 20 can be aligned with the measurement point P of the object W to be measured. Therefore, the control unit 50 controls the rotational angles of the θX stage 31 and the θZ stage 40, the X stage 11 of the work stage unit 10, and the like to measure the measurement line L1 etc. (FIG. 7 etc.). The probe light from the optical unit 20 can be accurately directed to each measurement point P along the reference).
 本実施形態では、光学ユニット20がθXステージ31及びθZステージ40により周回した場合でも、プローブ光が第2回転軸A2X上の測定点Pに向けて照射されるように設定されている。また、図18において図示を省略したX干渉計41及びY干渉計43は、双方の検出光がそれぞれ測定点Pを通るように設定されている。この構成により、第1実施形態と同様に、アッベ誤差の発生が抑制され、被測定物Wの所望位置を精度よく測定点Pとして位置決めすることができる。 In the present embodiment, even when the optical unit 20 is circulated by the θX stage 31 and the θZ stage 40, the probe light is set to be irradiated toward the measurement point P on the second rotation axis A2X. Further, the X interferometer 41 and the Y interferometer 43 which are not shown in FIG. 18 are set so that both detection lights pass through the measurement point P, respectively. With this configuration, as in the first embodiment, the occurrence of Abbe error can be suppressed, and the desired position of the object to be measured W can be accurately positioned as the measurement point P.
 [構造物製造システム]
 図19は、実施形態に係る構造物製造システムの一例を機能ブロックで示す図である。構造物製造システム400は、図19に示すように、上記した表面形状測定装置100、200、設計装置410、成形装置420、制御装置430(検査装置)、及びリペア装置440を有している。
[Structure manufacturing system]
FIG. 19 is a diagram showing an example of a structure manufacturing system according to the embodiment by functional blocks. As shown in FIG. 19, the structure manufacturing system 400 includes the surface shape measuring apparatus 100, 200, the designing apparatus 410, the molding apparatus 420, the control apparatus 430 (inspection apparatus), and the repair apparatus 440 described above.
 設計装置410は、構造物の形状に関する設計情報を作製する。そして、設計装置410は、作製した設計情報を成形装置420及び制御装置430に送信する。ここで、設計情報とは、構造物の各位置の座標を示す情報である。また、測定対象物は、構造物である。 The design device 410 produces design information on the shape of the structure. Then, the design device 410 transmits the created design information to the molding device 420 and the control device 430. Here, the design information is information indicating the coordinates of each position of the structure. Moreover, a measurement object is a structure.
 成形装置420は、設計装置410から送信された設計情報に基づいて構造物を成形する。この成形装置420の成形工程は、鋳造、鍛造、又は切削などが含まれる。表面形状測定装置100、200は、成形装置420により作製された構造物(被測定物W)の三次元形状、すなわち構造物の表面の座標を測定する。なお、表面形状測定装置100、200は、設計装置410により作製された設計情報が送信されて、基準形状データとして記憶部52(図4参照)に記憶している。表面形状測定装置100、200は、構造物について測定した座標を示す情報(以下、形状情報という。)を制御装置430に送信する。 The shaping device 420 shapes the structure based on the design information transmitted from the design device 410. The forming process of the forming apparatus 420 includes casting, forging, or cutting. The surface shape measuring apparatus 100, 200 measures the three-dimensional shape of the structure (the object to be measured W) produced by the forming apparatus 420, that is, the coordinates of the surface of the structure. In the surface shape measuring apparatus 100, 200, the design information produced by the design apparatus 410 is transmitted, and stored in the storage unit 52 (see FIG. 4) as reference shape data. The surface shape measuring apparatus 100, 200 transmits, to the control device 430, information (hereinafter referred to as shape information) indicating coordinates measured for the structure.
 制御装置430は、座標記憶部431及び検査部432を有している。座標記憶部431は、設計装置410から送信される設計情報を記憶する。検査部432は、座標記憶部431から設計情報を読み出す。また、検査部432は、座標記憶部431から読み出した設計情報と、表面形状測定装置100から送信される形状情報とを比較する。そして、検査部432は、比較結果に基づき、構造物が設計情報のとおり成形されたか否かを検査する。 The control device 430 includes a coordinate storage unit 431 and an inspection unit 432. The coordinate storage unit 431 stores design information transmitted from the design device 410. The inspection unit 432 reads the design information from the coordinate storage unit 431. Further, the inspection unit 432 compares the design information read from the coordinate storage unit 431 with the shape information transmitted from the surface shape measuring apparatus 100. Then, based on the comparison result, the inspection unit 432 inspects whether or not the structure is formed according to the design information.
 また、検査部432は、成形装置420により成形された構造物が良品であるか否かを判定する。構造物が良品であるか否かは、例えば、設計情報と形状情報との誤差が所定の閾値の範囲内であるか否かにより判定する。そして、検査部432は、構造物が設計情報のとおりに成形されていない場合は、その構造物を設計情報のとおりに修復することができるか否かを判定する。修復することができると判定した場合は、検査部432は、比較結果に基づき、不良部位と修復量を算出する。そして、検査部432は、不良部位を示す情報(以下、不良部位情報という。)と、修復量を示す情報(以下、修復量情報という。)と、をリペア装置440に送信する。 Further, the inspection unit 432 determines whether the structure formed by the forming device 420 is non-defective. Whether or not the structure is non-defective is determined based on, for example, whether or not the error between the design information and the shape information is within a predetermined threshold range. Then, when the structure is not shaped as the design information, the inspection unit 432 determines whether or not the structure can be repaired as the design information. If it is determined that the repair can be performed, the inspection unit 432 calculates the defective portion and the amount of repair based on the comparison result. Then, the inspection unit 432 transmits, to the repair device 440, information indicating a defective portion (hereinafter, referred to as defective portion information) and information indicating a repair amount (hereinafter, referred to as repair amount information).
 リペア装置440は、制御装置430から送信された不良部位情報と修復量情報とに基づいて、構造物の不良部位を加工する。 The repair device 440 processes the defective portion of the structure based on the defective portion information and the repair amount information transmitted from the control device 430.
 [構造物製造方法]
 図20は、構造物製造システム400による処理を示すフローチャートであり、構造物製造方法の実施形態の一例を示す。図20に示すように、設計装置410は、構造物の形状に関する設計情報を作製する(ステップS01)。設計装置410は、作製した設計情報を成形装置420及び制御装置430に送信する。制御装置430は、設計装置410から送信された設計情報を受信する。そして、制御装置430は、受信した設計情報を座標記憶部431に記憶する。
[Method of manufacturing structure]
FIG. 20 is a flowchart showing processing by the structure manufacturing system 400, and shows an example of an embodiment of a structure manufacturing method. As shown in FIG. 20, the design device 410 produces design information on the shape of the structure (step S01). The design device 410 transmits the created design information to the molding device 420 and the control device 430. Control device 430 receives the design information transmitted from design device 410. Then, the control device 430 stores the received design information in the coordinate storage unit 431.
 次に、成形装置420は、設計装置410が作製した設計情報に基づいて構造物を成形する(ステップS02)。そして、表面形状測定装置100、200は、成形装置420が成形した構造物の三次元形状(被測定物Wの表面形状)を測定する(ステップS03)。その後、表面形状測定装置100、200は、構造物の測定結果である形状情報を制御装置430に送信する。次に、検査部432は、表面形状測定装置100から送信された形状情報と、座標記憶部431に記憶されている設計情報とを比較して、構造物が設計情報のとおりに成形されたか否か検査する(ステップS04)。 Next, the forming apparatus 420 forms a structure based on the design information created by the design apparatus 410 (step S02). Then, the surface shape measuring apparatus 100, 200 measures the three-dimensional shape (the surface shape of the object to be measured W) of the structure formed by the forming device 420 (step S03). Thereafter, the surface shape measuring apparatus 100 200 transmits, to the control device 430, shape information which is a measurement result of the structure. Next, the inspection unit 432 compares the shape information transmitted from the surface shape measuring apparatus 100 with the design information stored in the coordinate storage unit 431, and determines whether the structure is formed according to the design information. Check (step S04).
 次に、検査部432は、構造物が良品であるか否かを判定する(ステップS05)。構造物が良品であると判定した場合は(ステップS05:YES)、構造物製造システム400による処理を終了する。一方、検査部432は、構造物が良品でないと判定した場合は(ステップS05:NO)、検査部432は、構造物を修復することができるか否かを判定する(ステップS06)。 Next, the inspection unit 432 determines whether the structure is non-defective (step S05). If it is determined that the structure is non-defective (step S05: YES), the process by the structure manufacturing system 400 is ended. On the other hand, when the inspection unit 432 determines that the structure is not good (step S05: NO), the inspection unit 432 determines whether the structure can be repaired (step S06).
 検査部432が構造物を修復することができると判定した場合は(ステップS06:YES)、検査部432は、ステップS04の比較結果に基づいて、構造物の不良部位と修復量を算出する。そして、検査部432は、不良部位情報と修復量情報とをリペア装置440に送信する。リペア装置440は、不良部位情報と修復量情報とに基づいて構造物のリペア(再加工)を実行する(ステップS07)。そして、ステップS03の処理に移行する。すなわち、リペア装置440がリペアを実行した構造物に対してステップS03以降の処理が再度実行される。一方、検査部432が構造物を修復することができないと判定した場合は(ステップS06:NO)、構造物製造システム400による処理を終了する。 When it is determined that the inspection unit 432 can repair the structure (step S06: YES), the inspection unit 432 calculates the defective portion and the amount of repair of the structure based on the comparison result of step S04. Then, the inspection unit 432 transmits the defect site information and the repair amount information to the repair device 440. Repair apparatus 440 performs repair (re-processing) of the structure based on the defect site information and the repair amount information (step S07). Then, the process proceeds to step S03. That is, the process after step S03 is performed again on the structure for which the repair device 440 has performed repair. On the other hand, when the inspection unit 432 determines that the structure can not be repaired (step S06: NO), the process by the structure manufacturing system 400 is ended.
 このように、構造物製造システム400及び構造物製造方法では、表面形状測定装置100、200による構造物(被測定物W)の表面形状の測定結果に基づいて、検査部432が設計情報のとおりに構造物が作製されたか否かを判定する。これにより、成形装置420により作製された構造物が良品であるか否か精度よく判定することができるとともに、その判定の時間を短縮することができる。また、上記した構造物製造システム400では、検査部432により構造物が良品でないと判定された場合に、直ちに構造物のリペアを実行することができる。 As described above, in the structure manufacturing system 400 and the structure manufacturing method, the inspection unit 432 follows the design information based on the measurement result of the surface shape of the structure (object W) by the surface shape measuring apparatus 100 and 200. It is determined whether or not a structure has been produced. As a result, it is possible to accurately determine whether or not the structure produced by the forming device 420 is non-defective, and the time of the determination can be shortened. Further, in the above-described structure manufacturing system 400, when it is determined by the inspection unit 432 that the structure is not good, repair of the structure can be performed immediately.
 なお、上記した構造物製造システム400及び構造物製造方法において、リペア装置440が加工を実行することに代えて、成形装置420が再度加工を実行するように構成してもよい。 In the structure manufacturing system 400 and the structure manufacturing method described above, instead of the repair device 440 performing the process, the forming device 420 may perform the process again.
 以上、実施形態について説明したが、本発明の趣旨を逸脱しない範囲で、各実施の形態に、多様な変更又は改良を加えることが可能である。また、各実施形態で説明した要件の1つ以上は、省略されることがある。そのような変更又は改良、省略した形態も本発明の技術的範囲に含まれる。また、各実施形態や変形例の構成を適宜組み合わせて適用することも可能である。また、法令で許容される限りにおいて、各実施形態及び変形例で引用した測定装置などに関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 As mentioned above, although embodiment was described, it is possible in the range which does not deviate from the meaning of the present invention to add various change or improvement to each embodiment. In addition, one or more of the requirements described in each embodiment may be omitted. Such modifications, improvements and omissions are also included in the technical scope of the present invention. Moreover, it is also possible to apply combining the structure of each embodiment or modification suitably. In addition, the disclosures of all of the published publications and US patents related to the measuring apparatus and the like cited in the respective embodiments and modifications are incorporated as part of the description of the text as far as the laws and regulations permit.
 上記の実施形態において、制御ユニット50は、例えばコンピュータシステムを含む。制御ユニット50は、記憶部52に記憶されている表面形状測定プログラムを読み出し、このプログラムに従って各種の処理を実行する。この表面形状測定プログラムは、コンピュータに、予め取得した被測定物Wの基準形状データに基づいて、被測定物Wを支持するθZステージ13(ステージ)を、第1回転軸(第1軸)A1Zまわりに回転させる処理と、θZステージ13に対向して配置されて、被測定物Wの測定点Pまでの距離及び/又は測定点Pでの被測定物Wの表面の傾きを検出する光学ユニット(測定部)20を、測定点Pにおいて被測定物Wの基準形状の接平面WAに対して光学ユニット20の基準軸Sが予め定められた角度となるように、第1回転軸(第1軸)A1Zに直交する第2回転軸(第2軸)A2Xまわりに回転させる処理と、を実行させる。この表面形状測定プログラムは、コンピュータ読み取り可能な記憶媒体(例えば、非一時的な記録媒体、non-transitory tangible media)に記録されて提供されてもよい。 In the above embodiment, the control unit 50 includes, for example, a computer system. The control unit 50 reads the surface shape measurement program stored in the storage unit 52, and executes various processes according to the program. The surface shape measurement program causes the computer to support the θZ stage 13 (stage) for supporting the object W based on the reference shape data of the object W acquired in advance, and the first rotation axis (first axis) A1Z. An optical unit arranged to face the θZ stage 13 to detect the distance to the measurement point P of the object W and / or the inclination of the surface of the object W at the measurement point P. The first rotation axis (first measurement unit) 20 is set such that the reference axis S of the optical unit 20 is at a predetermined angle with respect to the tangent plane WA of the reference shape of the object W at the measurement point P. Axis) A process of rotating around a second rotation axis (second axis) A2X orthogonal to A1Z. The surface shape measurement program may be provided by being recorded on a computer readable storage medium (eg, non-transitory storage medium, non-transitory tangible media).
 また、本明細書において用いられている「一致」、「平行」、「直交」、「垂直」「平面内」等の表現は、実質的に一致、平行、直交、垂直、平面内等を含む意味である。また、前述した「実質的に」「ほぼ」は、部品の製造誤差や、組み立てによるばらつき等によって生じる場合を含む意味で用いている。 Also, as used herein, the expressions "match", "parallel", "orthogonal", "vertical", "in plane", etc. include substantially match, parallel, orthogonal, vertical, in plane, etc. It is a meaning. In addition, "substantially" or "approximately" described above is used in a sense including the case that occurs due to manufacturing errors of parts, variations due to assembly, and the like.
 100、200・・・表面形状測定装置、P・・・測定点、Pi・・・測定対象点、PL1・・・第1プローブ光、PL2・・・第2プローブ光、RL1・・・第1反射光、RL2・・・第2反射光、S・・・基準軸、W・・・被測定物、WA・・・接平面、WS・・・測定面(表面形状)、10・・・ワークステージユニット、11・・・Xステージ、12・・・Yステージ、13・・・Zステージ、14・・・θZステージ(ステージ)、15・・・チルト調整機構、20、20A・・・光学ユニット(測定部)、21・・・距離検出器、21A、22A・・・照射部、21B、22B・・・検出部、22、122・・・角度検出器、30・・・ヘッドステージユニット、31・・・θXステージ(第2軸回転ステージ)、50・・・制御ユニット(制御部)
 
100, 200: surface shape measuring device, P: measuring point, Pi: measuring object point, PL1: first probe light, PL2: second probe light, RL1: first Reflected light, RL2: Second reflected light, S: Reference axis, W: Measured object, WA: Tangent surface, WS: Measurement surface (surface shape), 10: Workpiece Stage unit, 11 ... X stage, 12 ... Y stage, 13 ... Z stage, 14 ... θ Z stage (stage), 15 ... Tilt adjustment mechanism, 20, 20A ... Optical unit (Measuring part), 21 ... distance detector, 21A, 22A ... irradiating part, 21B, 22B ... detecting part 22, 22 ... angle detector, 30 ... head stage unit, 31 ... θX stage (second axis rotation stage), 50 ... control Unit (control unit)

Claims (23)

  1.  被測定物の表面形状を測定する装置であって、
     前記被測定物を支持して第1軸まわりに回転可能なステージと、
     前記ステージに対向して配置され、前記第1軸に直交する第2軸まわりに回転可能であり、前記被測定物の測定点までの距離、及び/又は、前記測定点での前記被測定物の表面の傾きを検出する測定部と、
     予め取得した前記被測定物の基準形状データに基づいて、前記測定点において前記被測定物の基準形状の接平面に対して前記測定部の基準軸が予め定められた角度となるように、前記ステージを前記第1軸まわりに回転させ、かつ前記測定部を前記第2軸まわりに回転させる制御部と、を備える、表面形状測定装置。
    An apparatus for measuring the surface shape of an object to be measured, wherein
    A stage capable of supporting the object to be measured and rotatable about a first axis;
    The object to be measured is disposed opposite to the stage and is rotatable about a second axis orthogonal to the first axis, and / or the distance to the measurement point of the object to be measured and / or the object to be measured at the measurement point A measuring unit that detects the inclination of the surface of the
    Based on the reference shape data of the object to be measured acquired in advance, the reference axis of the measurement unit is at a predetermined angle with respect to the tangent plane of the reference shape of the object at the measurement point. A control unit configured to rotate the stage about the first axis and rotate the measurement unit about the second axis.
  2.  前記測定部は、前記被測定物に照射光を照射する照射部と、前記被測定物からの反射光を検出する検出部とを有し、
     前記照射部と前記検出部は、前記基準軸との相対角度が定められて設けられる、請求項1に記載の表面形状測定装置。
    The measurement unit includes an irradiation unit that irradiates the object to be measured with irradiation light, and a detection unit that detects reflected light from the object to be measured.
    The surface shape measuring apparatus according to claim 1, wherein a relative angle between the irradiation unit and the detection unit is determined.
  3.  前記基準軸は、前記照射光の光軸と前記反射光の光軸との対称軸である、請求項2に記載の表面形状測定装置。 The surface shape measuring apparatus according to claim 2, wherein the reference axis is a symmetry axis between an optical axis of the irradiation light and an optical axis of the reflected light.
  4.  前記測定部は、前記第2軸まわりに回転する第2軸回転ステージに設けられる、請求項1から請求項3のいずれか一項に記載の表面形状測定装置。 The surface shape measuring apparatus according to any one of claims 1 to 3, wherein the measurement unit is provided on a second axis rotation stage that rotates around the second axis.
  5.  前記測定部は、前記第2軸から離れて前記第2軸回転ステージに設けられる、請求項4に記載の表面形状測定装置。 The surface shape measuring apparatus according to claim 4, wherein the measurement unit is provided on the second axis rotation stage away from the second axis.
  6.  前記第2軸回転ステージは、前記第2軸が前記測定点を通る状態で配置される、請求項4又は請求項5に記載の表面形状測定装置。 The surface shape measuring device according to claim 4 or 5, wherein the second axis rotation stage is disposed with the second axis passing through the measurement point.
  7.  前記測定部は、前記第2軸回転ステージから前記第2軸の方向に延びる腕部の先端部分に取り付けられる、請求項4から請求項6のいずれか一項に記載の表面形状測定装置。 The surface shape measuring apparatus according to any one of claims 4 to 6, wherein the measurement unit is attached to a tip portion of an arm extending in the direction of the second axis from the second axis rotation stage.
  8.  前記ステージは、前記第1軸に垂直な第1平面に沿った方向への移動、及び前記第1軸方向への移動が可能である、請求項1から請求項7のいずれか一項に記載の表面形状測定装置。 The stage according to any one of claims 1 to 7, wherein movement of the stage in a direction along a first plane perpendicular to the first axis and movement in the first axial direction are possible. Surface shape measuring device.
  9.  前記ステージは、前記被測定物の傾きを調整するチルト調整機構を備える、請求項1から請求項8のいずれか一項に記載の表面形状測定装置。 The surface shape measuring apparatus according to any one of claims 1 to 8, wherein the stage includes a tilt adjusting mechanism that adjusts the tilt of the object to be measured.
  10.  前記ステージの前記第1軸に垂直な第1平面に対する傾きを検出する傾き検出部を備える、請求項1から請求項9のいずれか一項に記載の表面形状測定装置。 The surface shape measuring apparatus according to any one of claims 1 to 9, further comprising: a tilt detection unit that detects a tilt of the stage relative to a first plane perpendicular to the first axis.
  11.  前記ステージの前記第1平面に沿った方向における移動位置、及び/又は、前記第1軸まわりの回転位置を検出する位置検出部を備える、請求項10に記載の表面形状測定装置。 The surface shape measuring apparatus according to claim 10, further comprising a position detection unit that detects a movement position of the stage in the direction along the first plane and / or a rotational position about the first axis.
  12.  前記位置検出部は、前記ステージに設けられた反射鏡に向けて検出光を照射し、前記反射鏡で反射した前記検出光を用いて前記移動位置及び/又は前記回転位置を検出する、請求項11に記載の表面形状測定装置。 The position detection unit irradiates detection light toward a reflecting mirror provided on the stage, and detects the movement position and / or the rotation position using the detection light reflected by the reflection mirror. The surface shape measuring device as described in 11.
  13.  前記位置検出部は、前記測定点を含む前記第1平面内を前記検出光の光軸が通るように配置される、請求項12に記載の表面形状測定装置。 The surface shape measuring apparatus according to claim 12, wherein the position detection unit is disposed such that an optical axis of the detection light passes in the first plane including the measurement point.
  14.  前記基準形状データと、前記測定部による検出結果とに基づいて、前記被測定物の表面形状を算出する演算部を備える、請求項1から請求項13のいずれか一項に記載の表面形状測定装置。 The surface shape measurement according to any one of claims 1 to 13, further comprising: a calculation unit that calculates a surface shape of the object based on the reference shape data and a detection result by the measurement unit. apparatus.
  15.  前記制御部は、前記第2軸まわりの回転のみの1自由度で前記測定部を回転させる、請求項1から請求項14のいずれか一項に記載の表面形状測定装置。 The surface shape measuring apparatus according to any one of claims 1 to 14, wherein the control unit rotates the measurement unit in one degree of freedom of rotation only about the second axis.
  16.  前記制御部は、前記測定部の基準軸が前記接平面に対して直交するように、前記ステージの回転及び移動、並びに前記測定部の回転を制御する、請求項1から請求項15のいずれか一項に記載の表面形状測定装置。 The control unit controls the rotation and movement of the stage and the rotation of the measurement unit such that the reference axis of the measurement unit is orthogonal to the tangential plane. The surface shape measuring device according to one item.
  17.  前記制御部は、予め定められた測定ラインに沿って設けられた、前記被測定物の表面上の複数の測定対象点を前記測定点に順次、位置付けるように前記ステージの回転及び移動を制御する、請求項1から請求項16のいずれか一項に記載の表面形状測定装置。 The control unit controls rotation and movement of the stage such that a plurality of measurement target points on the surface of the object to be measured, which are provided along a predetermined measurement line, are sequentially positioned at the measurement points. The surface shape measuring device according to any one of claims 1 to 16.
  18.  被測定物の表面形状を測定する装置であって、
     前記被測定物を支持して第1軸まわりに回転可能なステージと、
     前記ステージに対向して配置され、前記第1軸に直交する第2軸まわりに回転可能であり、前記被測定物の測定点までの距離、及び/又は、前記測定点での前記被測定物の表面の傾きを検出する測定部と、を備え、
     前記第2軸は、前記被測定物の前記測定点を通るように配置される、表面形状測定装置。
    An apparatus for measuring the surface shape of an object to be measured, wherein
    A stage capable of supporting the object to be measured and rotatable about a first axis;
    The object to be measured is disposed opposite to the stage and is rotatable about a second axis orthogonal to the first axis, and / or the distance to the measurement point of the object to be measured and / or the object to be measured at the measurement point A measuring unit for detecting the inclination of the surface of the
    The surface shape measuring device, wherein the second axis is disposed to pass through the measurement point of the object to be measured.
  19.  前記測定部は、前記第1軸まわり及び前記第2軸まわりにそれぞれ回転可能である、請求項18に記載の表面形状測定装置。 The surface shape measuring apparatus according to claim 18, wherein the measurement unit is rotatable around the first axis and the second axis.
  20.  被測定物の表面形状を測定する方法であって、
     予め取得した前記被測定物の基準形状データに基づいて、
     前記被測定物を支持するステージを、第1軸まわりに回転させることと、
     前記ステージに対向して配置されて、前記被測定物の測定点までの距離、及び/又は、前記測定点での前記被測定物の表面の傾きを検出する測定部を、前記測定点において前記被測定物の基準形状の接平面に対して前記測定部の基準軸が予め定められた角度となるように、前記第1軸に直交する第2軸まわりに回転させることと、を含む、表面形状測定方法。
    A method of measuring the surface shape of an object to be measured, wherein
    Based on the reference shape data of the object to be measured acquired in advance,
    Rotating the stage supporting the object to be measured about a first axis;
    A measurement unit disposed opposite to the stage to detect the distance to the measurement point of the object and / or the inclination of the surface of the object at the measurement point is the measurement point at the measurement point. Rotating around a second axis orthogonal to the first axis such that the reference axis of the measurement unit is at a predetermined angle with respect to the tangent plane of the reference shape of the object to be measured. Shape measurement method.
  21.  構造物の形状に関する基準形状データを作製する設計装置と、
     前記基準形状データに基づいて前記構造物を成形する成形装置と、
     成形された前記構造物の表面形状を測定する請求項1から請求項19のいずれか一項に記載の表面形状測定装置と、
     前記表面形状測定装置によって得られた前記構造物の表面形状に関する測定データと前記基準形状データとを比較する検査装置と、を含む、構造物製造システム。
    A design device for producing reference shape data on the shape of a structure;
    A forming apparatus for forming the structure based on the reference shape data;
    The surface shape measuring device according to any one of claims 1 to 19, which measures the surface shape of the formed structure.
    A structure manufacturing system, comprising: an inspection device which compares measurement data on the surface shape of the structure obtained by the surface shape measuring device with the reference shape data.
  22.  構造物の形状に関する基準形状データを作製することと、
     前記基準形状データに基づいて前記構造物を成形することと、
     成形された前記構造物の表面形状を測定する請求項20に記載の表面形状測定方法と、
     前記表面形状測定方法によって得られた前記構造物の表面形状に関する測定データと前記基準形状データとを比較することと、を含む、構造物製造方法。
    Generating reference shape data on the shape of the structure;
    Shaping the structure based on the reference shape data;
    The surface shape measuring method according to claim 20, wherein the surface shape of the molded structure is measured.
    Comparing the measurement data on the surface shape of the structure obtained by the surface shape measuring method with the reference shape data.
  23.  被測定物の表面形状を測定する表面形状測定装置に含まれるコンピュータに、
     予め取得した前記被測定物の基準形状データに基づいて、
     前記被測定物を支持するステージを、第1軸まわりに回転させる処理と、
     前記ステージに対向して配置されて、前記被測定物の測定点までの距離及び/又は前記測定点での前記被測定物の表面の傾きを検出する測定部を、前記測定点において前記被測定物の基準形状の接平面に対して前記測定部の基準軸が予め定められた角度となるように、前記第1軸に直交する第2軸まわりに回転させる処理と、を実行させる、表面形状測定プログラム。
     
    A computer included in a surface shape measuring device that measures the surface shape of an object to be measured;
    Based on the reference shape data of the object to be measured acquired in advance,
    A process of rotating a stage supporting the object to be measured about a first axis;
    A measurement unit disposed opposite to the stage and detecting the distance to the measurement point of the object and / or the inclination of the surface of the object at the measurement point is the measurement point at the measurement point A process of performing a process of rotating around a second axis orthogonal to the first axis such that the reference axis of the measurement unit is at a predetermined angle with respect to the tangent plane of the reference shape of the object Measurement program.
PCT/JP2018/036887 2017-10-06 2018-10-02 Surface-shape measuring device, surface-shape measuring method, structural-member manufacturing system, structural member manufacturing method, and surface-shape measuring program WO2019069926A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019546735A JP7120247B2 (en) 2017-10-06 2018-10-02 SURFACE PROFILE MEASURING DEVICE, SURFACE PROFILE MEASURING METHOD, STRUCTURE MANUFACTURING SYSTEM, STRUCTURE MANUFACTURING METHOD, AND SURFACE PROFILE MEASURING PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-196051 2017-10-06
JP2017196051 2017-10-06

Publications (1)

Publication Number Publication Date
WO2019069926A1 true WO2019069926A1 (en) 2019-04-11

Family

ID=65995085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036887 WO2019069926A1 (en) 2017-10-06 2018-10-02 Surface-shape measuring device, surface-shape measuring method, structural-member manufacturing system, structural member manufacturing method, and surface-shape measuring program

Country Status (2)

Country Link
JP (1) JP7120247B2 (en)
WO (1) WO2019069926A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112857182A (en) * 2021-01-11 2021-05-28 无锡工艺职业技术学院 Part contour detection device for factory automation processing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248213A (en) * 1994-03-11 1995-09-26 Nikon Corp Apparatus for measuring three-dimensional shape
JP2012002548A (en) * 2010-06-14 2012-01-05 Fujifilm Corp Light wave interference measurement device
US20150142360A1 (en) * 2012-07-19 2015-05-21 Taylor Hobson Limited Metrological apparatus and a method of determining a surface characteristic or characteristics
WO2016031935A1 (en) * 2014-08-29 2016-03-03 株式会社ニコン Surface shape measuring device
WO2017038903A1 (en) * 2015-08-31 2017-03-09 株式会社ニコン Surface-shape measuring device and surface-shape measuring program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232629A (en) * 2006-03-02 2007-09-13 Funai Electric Co Ltd Lens shape measuring instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248213A (en) * 1994-03-11 1995-09-26 Nikon Corp Apparatus for measuring three-dimensional shape
JP2012002548A (en) * 2010-06-14 2012-01-05 Fujifilm Corp Light wave interference measurement device
US20150142360A1 (en) * 2012-07-19 2015-05-21 Taylor Hobson Limited Metrological apparatus and a method of determining a surface characteristic or characteristics
WO2016031935A1 (en) * 2014-08-29 2016-03-03 株式会社ニコン Surface shape measuring device
WO2017038903A1 (en) * 2015-08-31 2017-03-09 株式会社ニコン Surface-shape measuring device and surface-shape measuring program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112857182A (en) * 2021-01-11 2021-05-28 无锡工艺职业技术学院 Part contour detection device for factory automation processing

Also Published As

Publication number Publication date
JPWO2019069926A1 (en) 2020-11-26
JP7120247B2 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
JP6385531B1 (en) Optical spindle multi-degree-of-freedom error measuring apparatus and method
JP6020593B2 (en) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, recording medium recording program
JP6288280B2 (en) Surface shape measuring device
US10712147B2 (en) Measurement system and method of manufacturing shaft with hole
JP2011215016A (en) Aspheric surface measuring apparatus
TW201913034A (en) Non-contact and optical measuring automation system for the profile accuracy of disk cams and method thereof
JP6147022B2 (en) Spatial accuracy measuring method and spatial accuracy measuring apparatus for machine tool
JP5242940B2 (en) Non-contact shape measuring device
JP4571256B2 (en) Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method
TWI502170B (en) Optical measurement system and method for measuring linear displacement, rotation and rolling angles
CN109974579A (en) The caliberating device of optics paraboloid of revolution standard array center distance
JP7120247B2 (en) SURFACE PROFILE MEASURING DEVICE, SURFACE PROFILE MEASURING METHOD, STRUCTURE MANUFACTURING SYSTEM, STRUCTURE MANUFACTURING METHOD, AND SURFACE PROFILE MEASURING PROGRAM
JP4067763B2 (en) Photoelectric device for checking the size and / or shape of a part having a complex three-dimensional shape
JPH1151624A (en) Surface shape measuring instrument
EP2236978B1 (en) Optical measuring device and method to determine the shape of an object and a machine to shape the object.
JP4646520B2 (en) Three-dimensional shape measuring method and apparatus
JP2012002548A (en) Light wave interference measurement device
JP2008268000A (en) Displacement measuring method and device
JP5358898B2 (en) Optical surface shape measuring method and apparatus, and recording medium
JP3702733B2 (en) Alignment method and mechanism of optical inspection apparatus
JP5655389B2 (en) Calibration jig, calibration method, and shape measuring device on which the calibration jig can be mounted
JP6986219B2 (en) Shape measuring device, shape measuring program and shape measuring method
JP2000121340A (en) Face inclination angle measuring apparatus
JP6980304B2 (en) Non-contact inner surface shape measuring device
JPH11211427A (en) Surface form measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546735

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864193

Country of ref document: EP

Kind code of ref document: A1