JPH0875597A - Non-spherical surface eccentricity measuring machine - Google Patents

Non-spherical surface eccentricity measuring machine

Info

Publication number
JPH0875597A
JPH0875597A JP20972794A JP20972794A JPH0875597A JP H0875597 A JPH0875597 A JP H0875597A JP 20972794 A JP20972794 A JP 20972794A JP 20972794 A JP20972794 A JP 20972794A JP H0875597 A JPH0875597 A JP H0875597A
Authority
JP
Japan
Prior art keywords
lens
aspherical
obtaining
inspected
aspherical lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20972794A
Other languages
Japanese (ja)
Inventor
Masaaki Takai
雅明 高井
Nobuhiro Morita
展弘 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP20972794A priority Critical patent/JPH0875597A/en
Publication of JPH0875597A publication Critical patent/JPH0875597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE: To provide a non-spherical surface eccentricity measuring machine which can measure the eccentricity of a non-spherical surface lens with a flange surface and can easily measure the eccentricity of the non-spherical surface lens in a complex configuration in reference to the flange surface. CONSTITUTION: This measuring machine is provided with a lens pad 2 for horizontally retaining a flange surface c-d of the reverse side of a non-spherical surface lens 1 to be inspected with a flange surface, a scanning-type-shaped measuring machine 3 for obtaining a shape by scanning the surface of the non-spherical surface lens 1 to be inspected, and a means for obtaining an inclination angle θof a flange surface a-b on the surface from the obtained shape, thus obtaining the amount of eccentricity from the above inclination angle. Therefore, the eccentricity of the non-spherical surface lens to be inspected is defined in reference to the flange surface which is the mounting reference of the non-spherical surface lens with the flange surface, is measured, and is analyzed, thus performing an evaluation (inspection) matched for product performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非球面光学素子の偏心
測定に用いられる非球面偏心測定機に関し、特に、カメ
ラ用の非球面レンズや光ピックアップ用の非球面レンズ
等でコバ面を持ち、そのコバ面で組み付けを行なう光学
素子の偏心測定及び検査に用いられる非球面偏心測定機
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aspherical surface eccentricity measuring device used for measuring the eccentricity of an aspherical optical element, and more particularly to an aspherical lens for a camera, an aspherical lens for an optical pickup, etc. The present invention relates to an aspherical surface eccentricity measuring machine used for measuring and inspecting eccentricity of an optical element to be assembled on its edge surface.

【0002】[0002]

【従来の技術】従来、非球面レンズの偏心測定は、表裏
各々の面の近軸曲率中心を結んだ線を基準軸とし、レン
ズ面(非球面部)の変位を回転させながら測定し、その
変位量から偏心量を算出するのが一般的な方法である。
また、その方法を用いた非球面レンズ偏心測定装置とし
ては、被検レンズ保持用のレンズ受け部を有するととも
に回転駆動自在に構成された回転レンズ支持部材と、回
転レンズ支持部材上の被検レンズの位置を移動調整する
ための機構部と、被検レンズにおける非球面の近軸曲率
中心の回転軸に対する偏心量を検出するための近軸偏心
測定部と、前記回転軸以外の軸を検出軸として前記レン
ズ受け部側の面とは反対側のレンズ面における非球面軸
の回転軸に対する傾き角を検出するための非球面軸測定
部とより構成したものが提案されている(特開平1−2
96132号公報)。
2. Description of the Related Art Conventionally, the eccentricity measurement of an aspherical lens is performed by rotating the displacement of the lens surface (aspherical surface) with a line connecting the paraxial curvature centers of the front and back surfaces as a reference axis. A common method is to calculate the amount of eccentricity from the amount of displacement.
Further, as an aspherical lens eccentricity measuring device using the method, there is provided a rotary lens supporting member which has a lens receiving portion for holding a lens to be tested and is rotatably driven, and a lens to be tested on the rotary lens supporting member. A mechanism part for moving and adjusting the position of, a paraxial eccentricity measuring part for detecting the amount of eccentricity with respect to the rotation axis of the paraxial curvature center of the aspherical surface of the lens to be measured, and a shaft other than the rotation shaft As one of the proposals, there is proposed a structure comprising an aspherical surface axis measuring portion for detecting an inclination angle of an aspherical surface axis with respect to a rotation axis on a lens surface opposite to the surface on the lens receiving portion side (JP-A-1- Two
96132).

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の非球面
レンズ偏心測定装置では、構成が複雑となり、測定が容
易に行なえないという問題がある。本発明は上記事情に
鑑みなされたものであって、コバ面を持つ非球面レンズ
を測定対象とし、該コバ面を持つ非球面レンズの偏心を
レンズ単体で測定することができ、複雑な構成になる非
球面レンズの偏心測定をコバ面を基準として容易に行な
えるようにした非球面偏心測定機を提供することを目的
としている。
However, the conventional aspherical lens eccentricity measuring device has a problem that the structure is complicated and the measurement cannot be easily performed. The present invention has been made in view of the above circumstances, and an aspherical lens having an edge surface is an object to be measured, and the decentering of the aspherical lens having the edge surface can be measured by a single lens, thereby providing a complicated configuration. SUMMARY OF THE INVENTION It is an object of the present invention to provide an aspherical surface eccentricity measuring device in which the eccentricity of an aspherical lens can be easily measured with reference to the edge surface.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の非球面偏心測定機は、コバ面を持った被
検非球面レンズの裏面のコバ面を水平に保持する手段
と、被検非球面レンズの表面を走査して形状を得る手段
と、得られた形状から表面のコバ面の傾斜角を得る手段
を備えたことを特徴としている。
In order to achieve the above object, the aspherical surface eccentricity measuring machine according to claim 1 has means for horizontally holding the edge surface of the back surface of the aspherical lens under test having an edge surface. It is characterized in that it is provided with a means for obtaining a shape by scanning the surface of the aspherical lens to be inspected and a means for obtaining an inclination angle of the edge surface of the surface from the obtained shape.

【0005】請求項2の非球面偏心測定機は、コバ面を
持った被検非球面レンズの裏面のコバ面を水平に保持す
る手段と、被検非球面レンズの表面を光軸を通るように
走査して形状を得る手段と、レンズ面の非球面形状か
ら、その面の傾斜角を得る手段を備えたことを特徴とし
ている。
An aspherical surface eccentricity measuring device according to a second aspect of the present invention comprises means for horizontally holding the edge surface of the back surface of the aspherical lens under test having the edge surface, and the surface of the aspherical lens under test for passing the optical axis. It is characterized in that it is provided with a means for obtaining a shape by scanning in and a means for obtaining an inclination angle of the surface from the aspherical shape of the lens surface.

【0006】請求項3の非球面偏心測定機は、コバ面を
持った被検非球面レンズの裏面のコバ面を水平に保持す
る手段と、前記保持部の中心軸を回転軸とし、その保持
部と一体となった回転機構と、被検非球面レンズを回転
させながら任意の点での表面のコバ面の変位を得る手段
と、その変位から被検非球面レンズ表面のコバ面の傾斜
角を得る手段を備えたことを特徴としている。
The aspherical surface eccentricity measuring machine according to a third aspect of the present invention comprises means for horizontally holding the edge surface of the back surface of the aspherical lens to be tested having the edge surface, and the central axis of the holding portion as a rotation axis. Rotation mechanism integrated with the section, a means for obtaining the displacement of the edge surface of the surface at any point while rotating the aspherical lens under test, and the inclination angle of the edge surface of the aspherical lens surface under test from the displacement It is characterized by having means for obtaining.

【0007】請求項4の非球面偏心測定機は、コバ面を
持った被検非球面レンズをそのコバ面で保持する手段
と、被検非球面レンズの表面を光軸を通るように走査し
て形状を得る手段と、得られた断面形状のうち、コバ面
の部分の傾斜角を得る手段と、レンズ面の非球面形状か
ら、その光軸の傾斜角を得る手段と、得られた2つの傾
斜角を比較する手段を備えたことを特徴としている。
An aspherical surface eccentricity measuring device according to a fourth aspect of the present invention comprises means for holding an aspherical lens to be inspected having an edge surface by the edge surface, and scanning the surface of the aspherical lens to be inspected so as to pass through the optical axis. To obtain the inclination angle of the edge surface of the obtained cross-sectional shape, and to obtain the inclination angle of the optical axis from the aspherical shape of the lens surface. It is characterized by having a means for comparing two inclination angles.

【0008】請求項5の非球面偏心測定機は、請求項1
もしくは請求項3記載の手段により、被検非球面レンズ
の表面と裏面のコバ面の相対的な傾斜角を得る手段と、
請求項4記載の手段により、被検非球面レンズの表面、
裏面それぞれのコバ面を基準としたレンズ面の傾斜角を
得る手段を備えたことを特徴としている。
An aspherical surface eccentricity measuring machine according to a fifth aspect is the first aspect.
Alternatively, by the means according to claim 3, a means for obtaining a relative inclination angle between the edge surface of the surface and the back surface of the aspherical lens under test,
The surface of the aspherical lens to be tested by the means according to claim 4,
It is characterized in that it is provided with a means for obtaining the inclination angle of the lens surface with respect to each edge surface of the back surface.

【0009】請求項6の非球面偏心測定機は、コバ面を
持った被検非球面レンズの裏面のコバ面を水平に保持す
る手段と、前記保持部と一体となった回転機構と、被検
非球面レンズの外筒軸を前記回転機構の回転軸と一致さ
せる手段と、被検非球面レンズの近軸付近からの反射光
を得るためのオートコリメート機構と、その反射光を検
知し、前記回転軸からのズレ量を検出する手段を備えた
ことを特徴としている。
An aspherical surface eccentricity measuring machine according to a sixth aspect of the present invention comprises means for horizontally holding the edge surface of the back surface of the aspherical lens under test having the edge surface, a rotating mechanism integrated with the holding portion, Means for matching the outer cylinder axis of the aspherical lens to be detected with the rotation axis of the rotating mechanism, an auto-collimating mechanism for obtaining reflected light from the vicinity of the paraxial of the aspherical lens to be detected, and detecting the reflected light, It is characterized in that a means for detecting the amount of deviation from the rotating shaft is provided.

【0010】[0010]

【作用】本発明の非球面偏心測定機においては、コバ面
を持つ非球面レンズを測定対象とし、そのレンズの取り
付け基準であるコバ面を基準として被検非球面レンズの
偏心(裏面側コバ面に対する表面側コバ面の傾斜、コバ
面に対するレンズ面の傾斜、表裏のコバ面をそれぞれ基
準とした光軸の傾斜、外筒軸(外筒部の中心軸)を基準
とした光軸の横ズレ等)を定義し、測定及び解析するこ
とで、製品性能に適合した評価(検査)を行なうことが
可能となる。
In the aspherical surface eccentricity measuring machine of the present invention, an aspherical lens having an edge surface is measured, and the eccentricity (back surface side edge surface) of the aspherical lens to be inspected is based on the edge surface which is the mounting reference of the lens. The inclination of the front side edge surface, the inclination of the lens surface with respect to the edge surface, the inclination of the optical axis with respect to the front and back edge surfaces respectively, and the lateral deviation of the optical axis with respect to the outer cylinder axis (center axis of the outer cylinder part) Etc.), and measurement and analysis make it possible to perform evaluation (inspection) suitable for product performance.

【0011】[0011]

【実施例】以下、本発明の構成・動作について図面を参
照して説明する。まず、本発明の請求項1,2,3で測
定対象としているコバ面を持つ非球面レンズの例を図1
に示す。この非球面レンズ1においては、表面側のレン
ズ面Aの光軸rA とコバ面a−bとは直交し、裏面側の
レンズ面Bの光軸rB とコバ面c−dも直交している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure and operation of the present invention will be described below with reference to the drawings. First, FIG. 1 shows an example of an aspherical lens having an edge surface, which is an object of measurement in claims 1, 2, and 3 of the present invention.
Shown in In this aspherical lens 1, the optical axis r A of the lens surface A on the front surface side is orthogonal to the edge surface a-b, and the optical axis r B of the lens surface B on the back surface side is also orthogonal to the edge surface cd. ing.

【0012】次に、請求項1の非球面偏心測定機の構成
・動作例を図2に示す。図2(a)において、符号2は
被検非球面レンズ1の裏面のコバ面c−dを水平に保持
するためのレンズ受け、3は被検非球面レンズ1の表面
を走査して形状を得るための走査型形状測定機を示して
おり、被検非球面レンズ1をレンズ受け2で保持し、そ
の保持面c−dと走査型形状測定機3の走査軸が平行に
なるように、レンズ受け2の角度を調整する。そして、
走査型形状測定機3により、被検非球面レンズ1の表面
の光軸を通る断面形状4を得る(図2(b))。そし
て、その断面形状4の表面のコバ面a−bの水平面(裏
面側コバ面に平行)に対する傾斜角θを得て、それをこ
のレンズの偏心量とする。
Next, FIG. 2 shows an example of the configuration and operation of the aspherical surface eccentricity measuring machine of claim 1. In FIG. 2A, reference numeral 2 is a lens receiver for holding the edge surface cd of the back surface of the aspherical lens 1 under test horizontally, and 3 is a shape obtained by scanning the surface of the aspherical lens 1 under test. The scanning type profiler for obtaining is shown, and the aspherical lens 1 to be tested is held by the lens receiver 2 so that the holding surface cd and the scanning axis of the scanning type profiler 3 are parallel to each other. Adjust the angle of the lens receiver 2. And
A cross-sectional shape 4 passing through the optical axis of the surface of the aspherical lens 1 to be tested is obtained by the scanning shape measuring machine 3 (FIG. 2B). Then, an inclination angle θ with respect to a horizontal plane (parallel to the back side edge surface) of the edge surfaces a-b on the surface of the cross-sectional shape 4 is obtained and used as an eccentric amount of this lens.

【0013】次に、請求項2の非球面偏心測定機の構成
は図2と同様であり、上記請求項1の動作と同様にして
被検非球面レンズ1の表面の光軸を通る断面形状5(図
3)を得る。そして、図3に示すように、その断面形状
5のレンズ面Aの非球面形状から、その面の傾斜角(走
査軸(水平面)に直交する軸に対する表面側レンズ面A
の光軸rA の傾斜角)θを得て、それをこのレンズの偏
心量とする。
Next, the structure of the aspherical surface eccentricity measuring device of claim 2 is the same as that of FIG. 2, and the cross-sectional shape of the surface of the aspherical lens 1 to be tested passing through the optical axis is the same as the operation of claim 1. 5 (FIG. 3). Then, as shown in FIG. 3, from the aspherical shape of the lens surface A having the sectional shape 5 to the inclination angle of the surface (the lens surface A on the front surface side with respect to the axis orthogonal to the scanning axis (horizontal plane)).
The angle of inclination of the optical axis r A ) θ is obtained, and this is taken as the decentering amount of this lens.

【0014】次に、請求項3の非球面偏心測定機の構成
・動作例を図4に示す。図4において、符号2は被検非
球面レンズ1の裏面のコバ面c−dを水平に保持するた
めのレンズ受け、6は前記保持部(レンズ受け2)の中
心軸を回転軸としその保持部と一体となった回転機構
(スピンドル)、7は被検非球面レンズ1を回転させな
がら任意の点での表面のコバ面a−bの変位を得る変位
計(電気マイクロや光マイクロ等)を示しており、ま
ず、被検非球面レンズ1をレンズ受け2で保持し、その
レンズ受け2の中心軸を回転軸としたスピンドル6で、
被検非球面レンズ1及びレンズ受け2を回転させる。そ
して、この被検非球面レンズ1のコバ面に電気マイクロ
や光マイクロ等の変位計7を接触させ、コバ面の変位量
を得る。例えば、最初に変位計7が接触していたときを
0°とし、そのときの変位量をαとし、その位置から1
80°回転したときの変位量をβとしたとき、レンズの
偏心量θは式(1)で得られる。 θ=tan~1{(α−β)/L} ・・・(1) ここで、Lは回転軸から変位計の接触点までの距離の2
倍である。
Next, FIG. 4 shows an example of the construction and operation of the aspherical surface eccentricity measuring machine according to the third aspect. In FIG. 4, reference numeral 2 is a lens receiver for horizontally holding the edge surfaces cd of the back surface of the aspherical lens 1 to be tested, and 6 is a holding shaft (lens receiver 2) having a central axis as a rotation axis and holding the same. A rotation mechanism (spindle) integrated with the unit, 7 is a displacement meter (electric micro, optical micro, etc.) for obtaining the displacement of the edge surface a-b of the surface at an arbitrary point while rotating the aspherical lens 1 to be tested. First, the aspherical lens 1 to be tested is held by the lens receiver 2, and the spindle 6 having the central axis of the lens receiver 2 as the rotation axis,
The aspherical lens 1 and the lens receiver 2 to be tested are rotated. Then, a displacement meter 7 such as an electric micro or an optical micro is brought into contact with the edge surface of the aspherical lens 1 to be tested to obtain the displacement amount of the edge surface. For example, when the displacement meter 7 is first in contact, it is set to 0 °, the displacement amount at that time is set to α, and 1 from that position.
When the displacement amount when rotated by 80 ° is β, the eccentricity amount θ of the lens is obtained by the equation (1). θ = tan ~ 1 {(α-β) / L} (1) where L is the distance from the rotation axis to the contact point of the displacement gauge, which is 2
Double.

【0015】次に、請求項4の非球面偏心測定機では、
図5に示すように、表面側のレンズ面Aの光軸rA とコ
バ面a−bが直交していない非球面レンズを測定対象と
している。請求項4の非球面偏心測定機の構成・動作例
を図6に示す。図6(a)において、符号2は被検非球
面レンズ1の裏面のコバ面c−dを水平に保持するため
のレンズ受け、3は被検非球面レンズ1の表面を走査し
て形状を得るための走査型形状測定機を示しており、被
検非球面レンズ1をレンズ受け2で保持し、コバ面も含
めて被検非球面レンズ1の表面の光軸を通る断面形状8
(図6(b))を走査型形状測定機3で得る。得られた
断面形状8からレンズ面Aとコバ面a−bの両方の形状
測定機3の走査軸からの傾斜角を得る。すなわち、図6
(b)に示すように、コバ面a−bの走査軸(水平面)
に対する傾斜角θ1と、レンズ面Aの光軸rA の走査軸
に直交する軸に対する傾斜角θ2を得れば、その差θ’
(=θ1−θ2)が、このレンズ面Aのコバ面a−bを
基準とした偏心量である。
Next, in the aspherical surface eccentricity measuring machine of claim 4,
As shown in FIG. 5, the measurement target is an aspherical lens in which the optical axis r A of the lens surface A on the front surface side and the edge surface ab are not orthogonal to each other. FIG. 6 shows an example of the configuration and operation of the aspherical surface eccentricity measuring machine of claim 4. In FIG. 6 (a), reference numeral 2 is a lens receiver for horizontally holding the edge surface cd of the back surface of the aspherical lens 1 to be tested, and 3 is a shape obtained by scanning the surface of the aspherical lens 1 to be tested. 1 shows a scanning shape measuring instrument for obtaining the aspherical lens 1 to be inspected, which is held by a lens receiver 2 and has a sectional shape 8 including the edge surface and passing through the optical axis of the surface of the aspherical lens 1 to be inspected.
(FIG. 6B) is obtained by the scanning shape measuring machine 3. From the obtained sectional shape 8, the tilt angles of the lens surface A and the edge surface a-b from the scanning axis of the shape measuring machine 3 are obtained. That is, FIG.
As shown in (b), the scanning axis (horizontal plane) of the edge surface a-b
If the inclination angle θ1 with respect to the angle θ2 and the inclination angle θ2 with respect to the axis orthogonal to the scanning axis of the optical axis r A of the lens surface A are obtained, the difference θ ′ is obtained.
(= Θ1−θ2) is the amount of eccentricity with reference to the edge surface ab of the lens surface A.

【0016】次に、請求項5の非球面偏心測定機では、
請求項1(図2)もしくは請求項3(図4)の方法によ
り、被検非球面レンズ1の表面と裏面のコバ面のなす角
度θを得、さらに上記請求項4(図6)の方法により、
表面側レンズ面Aのコバ面基準の偏心量θA'と裏面側レ
ンズ面Bのコバ面基準の偏心量θB'を得るものである。
すなわち、裏面側コバ面c−d(水平面)に対する表面
側コバ面a−bの傾斜角θを測定し、さらに図7に示す
ように、表面側コバ面a−bに直交する軸に対するレン
ズ面Aの光軸rA の傾斜角θA'と、裏面側コバ面c−d
に直交する軸に対するレンズ面Bの光軸rB の傾斜角θ
B'を測定して、それぞれの偏心量を得るものである。そ
して、これらθ,θA',θB'から、両面とも非球面であ
り、さらに両面とも光軸rA,rBとコバ面a−b,c−
dが直交していないような非球面レンズに対応する偏心
量を得ることができる。
Next, in the aspherical surface eccentricity measuring machine of claim 5,
By the method of claim 1 (FIG. 2) or claim 3 (FIG. 4), the angle θ formed by the edge surface of the aspherical lens 1 to be tested is obtained, and the method of claim 4 (FIG. 6) described above. Due to
The eccentricity amount θA ′ of the front surface side lens surface A and the edge surface reference eccentricity θB ′ of the back surface side lens surface B are obtained.
That is, the inclination angle θ of the front side edge surface a-b with respect to the back side edge surface cd (horizontal plane) is measured, and as shown in FIG. The tilt angle θA ′ of the optical axis r A of A and the back surface side edge surface cd
Angle θ of the optical axis r B of the lens surface B with respect to the axis orthogonal to
B'is measured to obtain the amount of eccentricity. From these θ, θA ′, θB ′, both surfaces are aspherical surfaces, and both surfaces have optical axes r A , r B and edge surfaces ab, c−.
It is possible to obtain the decentering amount corresponding to the aspherical lens in which d is not orthogonal.

【0017】次に、請求項6の非球面偏心測定機の構成
・動作例を図8に示す。図8において、符号1は被検非
球面レンズ、2は被検非球面レンズ1の裏面のコバ面を
水平に保持するためのレンズ受け、6はレンズ受けと一
体となった回転機構(スピンドル)、7は変位計、9は
光源、10はビームスプリッタ、11はコリメータレン
ズ,12は対物レンズ、13はチャート、14はCCD
カメラを示している。
Next, FIG. 8 shows an example of the configuration and operation of the aspherical surface eccentricity measuring machine according to the sixth aspect. In FIG. 8, reference numeral 1 is an aspherical lens to be inspected, 2 is a lens receiver for horizontally holding the edge surface of the back surface of the aspherical lens to be inspected 1, and 6 is a rotation mechanism (spindle) integrated with the lens receiver. , 7 is a displacement meter, 9 is a light source, 10 is a beam splitter, 11 is a collimator lens, 12 is an objective lens, 13 is a chart, and 14 is a CCD.
Shows the camera.

【0018】この非球面偏心測定機においては、被検非
球面レンズ1をレンズ受け2で保持し、そのレンズ受け
2の中心軸を回転軸としたスピンドル6で、被検非球面
レンズ1及びレンズ受け2を回転させる。そして、この
被検非球面レンズ1の外筒面に電気マイクロや光マイク
ロ等の変位計7を接触させ、その変位が一定になるよう
に被検非球面レンズ1を横方向に動かして調整する。ま
た、光源(レーザ等)9から出射した光はビームスプリ
ッタ10で折り返され、コリメータレンズ11により平
行光となり、対物レンズ12で被検非球面レンズ1のA
面の近軸曲率中心A0に焦点を結ぶように集光する。そ
して、被検非球面レンズ1のA面からの反射光は対物レ
ンズ12、コリメータレンズ11、ビームスプリッタ1
0を通り、チャート13上に反射スポット像を写す。そ
の反射像をCCDカメラ14で観察する。この際、被検
非球面レンズ1の回転に伴い、反射像はチャート13上
で円を描くから、CCDカメラ14でその円の回転半径
を検出する。この回転半径が、すなわち被検非球面レン
ズ1の外筒軸(外筒部の中心軸)を基準とした光軸の横
ズレ量(シフト偏心量)となる。
In this aspherical surface eccentricity measuring device, the aspherical lens 1 to be tested is held by a lens receiver 2, and the spindle 6 with the central axis of the lens receiver 2 as a rotation axis is used to test the aspherical lens 1 and the lens to be tested. Rotate the receiver 2. Then, a displacement meter 7 such as an electric micro or an optical micro is brought into contact with the outer cylindrical surface of the aspherical lens 1 to be inspected, and the aspherical lens 1 to be inspected is laterally moved and adjusted so that the displacement becomes constant. . Further, the light emitted from the light source (laser or the like) 9 is reflected by the beam splitter 10, becomes a parallel light by the collimator lens 11, and the objective lens 12 makes A of the aspherical lens 1 to be tested.
The light is focused so as to focus on the paraxial curvature center A0 of the surface. Then, the reflected light from the surface A of the aspherical lens 1 to be tested is the objective lens 12, the collimator lens 11, and the beam splitter 1.
A reflection spot image is projected on the chart 13 through 0. The reflected image is observed by the CCD camera 14. At this time, since the reflected image draws a circle on the chart 13 as the aspherical lens 1 to be tested rotates, the CCD camera 14 detects the radius of gyration of the circle. This radius of gyration is the amount of lateral deviation (shift eccentricity) of the optical axis with reference to the outer cylinder axis (center axis of the outer cylinder portion) of the aspherical lens 1 to be tested.

【0019】[0019]

【発明の効果】以上説明したように、本発明の非球面偏
心測定機においては、コバ面を持つ非球面レンズを測定
対象とし、その非球面レンズの取り付け基準であるコバ
面を基準として被検非球面レンズの偏心(裏面側コバ面
に対する表面側コバ面の傾斜、コバ面に対するレンズ面
の傾斜、表裏のコバ面をそれぞれ基準とした光軸の傾
斜、外筒軸(外筒部の中心軸)を基準とした光軸の横ズ
レ等)を定義し、測定及び解析することで、製品性能に
適合した評価(検査)を行なうことができる。また、測
定対象となる被検非球面レンズは、片面のみ非球面、両
面とも非球面のどちらにも対応することができる。ま
た、被検非球面レンズの表面を走査して形状を得る手段
として、走査型形状測定機を利用することで、非球面形
状誤差と偏心の両方の測定(検査)を1度に行なうこと
ができる。
As described above, in the aspherical surface eccentricity measuring device of the present invention, an aspherical lens having an edge surface is used as the object of measurement, and the edge surface, which is the mounting reference for the aspherical lens, is used as the reference. Eccentricity of aspherical lens (tilt of front side edge surface with respect to back side edge surface, inclination of lens surface with respect to edge surface, inclination of optical axis with respect to front and back edge surfaces respectively, outer cylinder axis (center axis of outer cylinder part) ) Is defined as a reference, and the measurement and analysis can be performed to perform an evaluation (inspection) suitable for product performance. Further, the test aspherical lens to be measured can be either aspherical on one side or aspherical on both sides. Further, by using a scanning shape measuring instrument as a means for obtaining the shape by scanning the surface of the aspherical lens to be inspected, both the aspherical shape error and the eccentricity can be measured (inspected) at one time. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1〜3の非球面偏心測定機で測定対象と
している非球面レンズの一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an aspherical lens to be measured by the aspherical surface eccentricity measuring device according to any one of claims 1 to 3.

【図2】請求項1の非球面偏心測定機の構成・動作例を
示す図であって、(a)は非球面偏心測定機の概略構成
図、(b)は(a)の測定機により得られた被検非球面
レンズ表面の光軸を通る断面形状を示す図である。
2A and 2B are diagrams showing a configuration and an operation example of the aspherical surface eccentricity measuring machine according to claim 1, wherein FIG. 2A is a schematic configuration diagram of the aspherical surface eccentricity measuring machine, and FIG. It is a figure which shows the cross-sectional shape which passes along the optical axis of the obtained aspherical lens surface under test.

【図3】請求項2の動作例を示す図であって、図2
(a)と同様の構成の測定機により得られた被検非球面
レンズ表面の光軸を通る断面形状を示す図である。
FIG. 3 is a diagram showing an operation example of claim 2, wherein FIG.
It is a figure which shows the cross-sectional shape which passes along the optical axis of the to-be-tested aspherical lens surface obtained by the measuring machine of the structure similar to (a).

【図4】請求項3の非球面偏心測定機の一例を示す概略
構成図である。
FIG. 4 is a schematic configuration diagram showing an example of an aspherical surface eccentricity measuring machine according to claim 3.

【図5】請求項4の非球面偏心測定機で測定対象として
いる非球面レンズの一例を示す要部断面図である。
FIG. 5 is a sectional view of an essential part showing an example of an aspherical lens which is an object to be measured by the aspherical surface eccentricity measuring device of claim 4;

【図6】請求項4の非球面偏心測定機の構成・動作例を
示す図であって、(a)は非球面偏心測定機の概略構成
図、(b)は(a)の測定機により得られた被検非球面
レンズ表面の光軸を通る断面形状を示す図である。
6A and 6B are diagrams showing a configuration and an operation example of the aspherical surface eccentricity measuring machine according to claim 4, wherein FIG. 6A is a schematic configuration diagram of the aspherical surface eccentricity measuring machine, and FIG. It is a figure which shows the cross-sectional shape which passes along the optical axis of the obtained aspherical lens surface under test.

【図7】請求項5の非球面偏心測定機で測定対象として
いる非球面レンズの一例を示す断面図である。
FIG. 7 is a cross-sectional view showing an example of an aspherical lens to be measured by the aspherical surface eccentricity measuring machine according to claim 5;

【図8】請求項6の非球面偏心測定機の一例を示す概略
構成図である。
FIG. 8 is a schematic configuration diagram showing an example of an aspherical surface eccentricity measuring machine according to claim 6;

【符号の説明】[Explanation of symbols]

1:被検非球面レンズ 2:レンズ受け 3:走査型形状測定機 4,5,8:測定断面形状 6:スピンドル(回転機構) 7:変位計(電気マイクロ、光マイクロ等) 9:光源 10:ビームスプリッタ 11:コリメータレンズ 12:対物レンズ 13:チャート 14:CCDカメラ A:被検非球面レンズの表面側レンズ面 B:被検非球面レンズの裏面側レンズ面 a−b:被検非球面レンズの表面側コバ面 c−d:被検非球面レンズの裏面側コバ面 rA :レンズ面Aの光軸 rB :レンズ面Bの光軸1: Aspherical lens to be inspected 2: Lens receiver 3: Scanning shape measuring instrument 4, 5, 8: Measurement sectional shape 6: Spindle (rotating mechanism) 7: Displacement meter (electrical micro, optical micro, etc.) 9: Light source 10 : Beam splitter 11: Collimator lens 12: Objective lens 13: Chart 14: CCD camera A: Surface side lens surface of aspherical lens to be tested B: Backside lens surface of aspherical lens to be tested ab: Aspherical surface to be tested Front-side edge surface of lens cd: Back-side edge surface of aspherical lens to be tested r A : Optical axis of lens surface A r B : Optical axis of lens surface B

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】コバ面を持った被検非球面レンズの裏面の
コバ面を水平に保持する手段と、被検非球面レンズの表
面を走査して形状を得る手段と、得られた形状から表面
のコバ面の傾斜角を得る手段を備えたことを特徴とする
非球面偏心測定機。
1. A means for horizontally holding an edge surface of a back surface of an aspherical lens to be inspected having an edge surface; a means for obtaining a shape by scanning the surface of the aspherical lens to be inspected; An aspherical surface eccentricity measuring machine comprising means for obtaining the inclination angle of the edge surface.
【請求項2】コバ面を持った被検非球面レンズの裏面の
コバ面を水平に保持する手段と、被検非球面レンズの表
面を光軸を通るように走査して形状を得る手段と、レン
ズ面の非球面形状から、その面の傾斜角を得る手段を備
えたことを特徴とする非球面偏心測定機。
2. A means for horizontally holding the edge surface of the back surface of the aspherical lens to be inspected having the edge surface, and a means for obtaining a shape by scanning the surface of the aspherical lens to be inspected so as to pass through the optical axis. An aspherical surface eccentricity measuring device comprising means for obtaining the inclination angle of the lens surface from the aspherical surface shape.
【請求項3】コバ面を持った被検非球面レンズの裏面の
コバ面を水平に保持する手段と、前記保持部の中心軸を
回転軸とし、その保持部と一体となった回転機構と、被
検非球面レンズを回転させながら任意の点での表面のコ
バ面の変位を得る手段と、その変位から被検非球面レン
ズ表面のコバ面の傾斜角を得る手段を備えたことを特徴
とする非球面偏心測定機。
3. A means for horizontally holding an edge surface of a back surface of an aspherical lens to be tested having an edge surface, and a rotating mechanism which has a central axis of the holding portion as a rotation axis and is integrated with the holding portion. A means for obtaining the displacement of the edge surface of the surface at an arbitrary point while rotating the aspherical lens to be inspected, and a means for obtaining the inclination angle of the edge surface of the aspherical lens surface to be inspected from the displacement. And aspherical eccentricity measuring machine.
【請求項4】コバ面を持った被検非球面レンズをそのコ
バ面で保持する手段と、被検非球面レンズの表面を光軸
を通るように走査して形状を得る手段と、得られた断面
形状のうち、コバ面の部分の傾斜角を得る手段と、レン
ズ面の非球面形状から、その光軸の傾斜角を得る手段
と、得られた2つの傾斜角を比較する手段を備えたこと
を特徴とする非球面偏心測定機。
4. A means for holding an inspected aspherical lens having an edge surface by the edge surface, and a means for obtaining a shape by scanning the surface of the inspected aspherical lens so as to pass through the optical axis. Of the sectional shape, a means for obtaining the inclination angle of the edge surface portion, a means for obtaining the inclination angle of the optical axis from the aspherical shape of the lens surface, and a means for comparing the two obtained inclination angles are provided. An aspherical surface eccentricity measuring machine characterized by that.
【請求項5】請求項1もしくは請求項3記載の手段によ
り、被検非球面レンズの表面と裏面のコバ面の相対的な
傾斜角を得る手段と、請求項4記載の手段により、被検
非球面レンズの表面、裏面それぞれのコバ面を基準とし
たレンズ面の傾斜角を得る手段を備えたことを特徴とす
る非球面偏心測定機。
5. A means for obtaining a relative inclination angle between an edge surface of a front surface and a back surface of an aspherical lens to be tested by the means according to claim 1 or 3, and a means to be tested by the means according to claim 4. An aspherical surface eccentricity measuring device comprising means for obtaining a tilt angle of a lens surface with reference to respective edge surfaces of the aspherical lens.
【請求項6】コバ面を持った被検非球面レンズの裏面の
コバ面を水平に保持する手段と、前記保持部と一体とな
った回転機構と、被検非球面レンズの外筒軸を前記回転
機構の回転軸と一致させる手段と、被検非球面レンズの
近軸付近からの反射光を得るためのオートコリメート機
構と、その反射光を検知し、前記回転軸からのズレ量を
検出する手段を備えたことを特徴とする非球面偏心測定
機。
6. A means for horizontally holding an edge surface of a back surface of an aspherical lens to be inspected having an edge surface, a rotation mechanism integrated with the holding portion, and an outer cylinder shaft of the aspherical lens to be inspected. A means for matching the rotation axis of the rotation mechanism, an auto-collimation mechanism for obtaining reflected light from the paraxial vicinity of the aspherical lens under test, and detecting the reflected light to detect the amount of deviation from the rotation axis. An aspherical surface eccentricity measuring machine comprising:
JP20972794A 1994-09-02 1994-09-02 Non-spherical surface eccentricity measuring machine Pending JPH0875597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20972794A JPH0875597A (en) 1994-09-02 1994-09-02 Non-spherical surface eccentricity measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20972794A JPH0875597A (en) 1994-09-02 1994-09-02 Non-spherical surface eccentricity measuring machine

Publications (1)

Publication Number Publication Date
JPH0875597A true JPH0875597A (en) 1996-03-22

Family

ID=16577646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20972794A Pending JPH0875597A (en) 1994-09-02 1994-09-02 Non-spherical surface eccentricity measuring machine

Country Status (1)

Country Link
JP (1) JPH0875597A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003112A (en) * 2004-06-15 2006-01-05 Fuji Photo Film Co Ltd Apparatus and method for measuring eccentricity, metal mold for lens, and imaging module
JP2007047131A (en) * 2005-08-12 2007-02-22 Hoya Corp Method, device and program for measuring aspheric lens, manufacturing method of aspheric lens, and aspheric lens
JP2007085914A (en) * 2005-09-22 2007-04-05 Hoya Corp Method, device, and program of measuring aspheric lens, method of manufacturing aspheric lens, and aspheric lens
JP2007127473A (en) * 2005-11-02 2007-05-24 Hoya Corp Measuring method, device, and program of aspheric lens, manufacturing method of aspheric lens, and aspheric lens
JP2008533439A (en) * 2005-02-01 2008-08-21 テイラー・ホブソン・リミテッド measurement tool
JP2010019832A (en) * 2008-06-10 2010-01-28 Fujinon Corp Eccentricity amount measuring method
US7848186B2 (en) 2006-05-22 2010-12-07 Sanyo Electric Co., Ltd. Objective lens and method of manufacturing optical pickup apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003112A (en) * 2004-06-15 2006-01-05 Fuji Photo Film Co Ltd Apparatus and method for measuring eccentricity, metal mold for lens, and imaging module
JP2008533439A (en) * 2005-02-01 2008-08-21 テイラー・ホブソン・リミテッド measurement tool
JP2007047131A (en) * 2005-08-12 2007-02-22 Hoya Corp Method, device and program for measuring aspheric lens, manufacturing method of aspheric lens, and aspheric lens
JP2007085914A (en) * 2005-09-22 2007-04-05 Hoya Corp Method, device, and program of measuring aspheric lens, method of manufacturing aspheric lens, and aspheric lens
JP2007127473A (en) * 2005-11-02 2007-05-24 Hoya Corp Measuring method, device, and program of aspheric lens, manufacturing method of aspheric lens, and aspheric lens
US7848186B2 (en) 2006-05-22 2010-12-07 Sanyo Electric Co., Ltd. Objective lens and method of manufacturing optical pickup apparatus
JP2010019832A (en) * 2008-06-10 2010-01-28 Fujinon Corp Eccentricity amount measuring method

Similar Documents

Publication Publication Date Title
JP5902448B2 (en) Measurement of the center of curvature of the optical surface of a multi-lens optical system
JPH102714A (en) Method and device for measurement
JP5208075B2 (en) Lightwave interference measuring device
CN108981593B (en) Laser triangulation lens center thickness measuring device and measuring method thereof
JPH0875597A (en) Non-spherical surface eccentricity measuring machine
TWI396837B (en) Method for determination of eccentricity
JP3127003B2 (en) Aspherical lens eccentricity measurement method
JP2012002548A (en) Light wave interference measurement device
JP2735104B2 (en) Aspherical lens eccentricity measuring apparatus and measuring method
JP3345149B2 (en) Aspherical lens eccentricity measuring device and centering device
JP3372322B2 (en) Aspherical lens eccentricity measuring apparatus and aspherical lens eccentricity measuring method
KR101379677B1 (en) Eccentricity measurement for aspheric lens using the interferometer producing spherical wave
JPH04268433A (en) Measuring apparatus for aspherical lens eccentricity
JPS5833104A (en) Device for measuring assembling accuracy
JPH08166209A (en) Polygon mirror evaluating device
JP2505042B2 (en) Lens eccentricity measuring device
JP2007017431A (en) Eccentricity amount measuring method
JPH0812126B2 (en) Aspherical lens eccentricity measuring device
JPH09280819A (en) System for measuring accuracy of rotation
JP2003106934A (en) Device and method for measuring optical path length, device and method for measuring thickness, and device and method for measuring inclined component of refractive index distribution
JPS63285440A (en) Lens eccentricity measuring apparatus
JP2001147175A (en) Eccentricity measuring device for aspherical lens
JPH1114498A (en) Optical system, measuring method, and device
JPH09210845A (en) Method and apparatus for measurement of decentering of aspheric lens
JP3618995B2 (en) Eccentricity measuring method and eccentricity measuring device