JP2781318B2 - Steam pressure control method for exhaust heat recovery steam generation system - Google Patents

Steam pressure control method for exhaust heat recovery steam generation system

Info

Publication number
JP2781318B2
JP2781318B2 JP4315267A JP31526792A JP2781318B2 JP 2781318 B2 JP2781318 B2 JP 2781318B2 JP 4315267 A JP4315267 A JP 4315267A JP 31526792 A JP31526792 A JP 31526792A JP 2781318 B2 JP2781318 B2 JP 2781318B2
Authority
JP
Japan
Prior art keywords
steam
pressure
flow rate
evaporator
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4315267A
Other languages
Japanese (ja)
Other versions
JPH06159011A (en
Inventor
野 俊 二 河
Original Assignee
溶融炭酸塩型燃料電池発電システム技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 溶融炭酸塩型燃料電池発電システム技術研究組合 filed Critical 溶融炭酸塩型燃料電池発電システム技術研究組合
Priority to JP4315267A priority Critical patent/JP2781318B2/en
Publication of JPH06159011A publication Critical patent/JPH06159011A/en
Application granted granted Critical
Publication of JP2781318B2 publication Critical patent/JP2781318B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • F01K23/105Regulating means specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービン、燃料電
池、各種工業の工場等から排出される高温流体の排熱源
から、水蒸気、熱媒体等の蒸気を発生させる排熱回収蒸
気発生システムにおける圧力制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery steam generation system for generating steam such as steam and heat medium from an exhaust heat source of a high temperature fluid discharged from a gas turbine, a fuel cell, a factory of various industries, and the like. It relates to a pressure control method.

【0002】[0002]

【従来の技術】一般に、上述の如き排熱回収蒸発発生シ
ステムにおいては、排熱源流体の流量をバルブやダンパ
等によって制御したり、或は常に余分な量の蒸気を発生
させ、余分の蒸気を圧力に応じて大気中、凝縮器、再生
熱交換器等の需要先以外に逃がすこと等によって、蒸気
圧力は蒸気の発生負荷または蒸気の需要先の必要量に係
わらず、ほぼ一定値に制御されている。
2. Description of the Related Art Generally, in the above-described system for generating and recovering heat from exhaust heat, the flow rate of the heat source fluid is controlled by a valve, a damper, or the like, or an excessive amount of steam is always generated to generate excess steam. The steam pressure is controlled to a substantially constant value regardless of the steam generation load or the required amount of the steam demand by releasing the air to the air, the condenser, the regenerative heat exchanger, etc., other than the demand destination according to the pressure. ing.

【0003】すなわち、上述の如きシステムにおいて
は、蒸気の需要が急増したときに圧力が下がる方向に変
化しようとするのを、発熱源流体量をバルブやダンパの
急速制御によって増加させ、なんとか圧力低下幅が最小
になるようにし、或は余剰の蒸気の逃がし流量を絞り込
んで蒸気需要側への流量を確保する。また、蒸気の需要
が急減したときに圧力が上昇しようとする場合には、排
熱源流体量をバルブやダンパの急速制御により減少さ
せ、圧力上昇幅を最小に抑え、或は余剰の蒸気の逃がし
流量を増大させ、圧力上昇を抑えることが行われてい
る。
That is, in the system as described above, when the demand for steam suddenly increases, the pressure tends to decrease in such a way that the amount of heat source fluid is increased by rapid control of valves and dampers, and the pressure is reduced. The width should be minimized, or the excess steam escape flow should be narrowed to ensure a flow to the steam demand side. If the pressure is going to increase when the demand for steam is suddenly reduced, the amount of exhaust heat source fluid is reduced by rapid control of valves and dampers to minimize the pressure increase width, or to release excess steam. It has been practiced to increase the flow rate and suppress the pressure rise.

【0004】ところが、排熱源の方のシステムの熱負荷
と排熱回収システム側の蒸気需要とは関連がなく、独立
して変化することが多い。したがって、排熱源流体の流
量が少ないときに、排熱回収システム側の蒸気流量は多
いということも有り得る。そこで、このような場合に
は、排熱回収システム側で補助燃焼器を使用して熱源流
体の流量を確保している。
However, there is no relation between the heat load of the system of the exhaust heat source and the steam demand of the exhaust heat recovery system, and they often change independently. Therefore, when the flow rate of the exhaust heat source fluid is low, the steam flow rate on the exhaust heat recovery system side may be high. Therefore, in such a case, the flow rate of the heat source fluid is secured by using the auxiliary combustor on the exhaust heat recovery system side.

【0005】[0005]

【発明が解決しようとする課題】ところが、一般に余剰
の熱を排熱源から熱回収して余剰蒸気として系統外に捨
てる場合には、水や水処理のための薬品類も同時に捨て
ることになり、経済性及び環境の面から不都合がある。
一方、熱源側の流量を急速制御としても、蒸発量の方は
それ程急速には変化せず、蒸気負荷の変化に対して遅れ
がでることになる。また、補助燃焼器の燃料流量を急速
に増大させることは、NOxや一酸化炭素などの排出量
を一時的ではあるが著しく増大させてしまい、環境に悪
影響を与える等の問題がある。
However, in general, when surplus heat is recovered from a waste heat source and discarded outside the system as surplus steam, water and chemicals for water treatment are also discarded at the same time. There are disadvantages in terms of economy and environment.
On the other hand, even if the flow rate on the heat source side is rapidly controlled, the evaporation amount does not change so rapidly, and a delay occurs with respect to the change in the steam load. Further, rapidly increasing the fuel flow rate of the auxiliary combustor temporarily but significantly increases the emission of NOx, carbon monoxide, and the like, and has a problem that the environment is adversely affected.

【0006】本発明はこのような点に鑑み、経済性が高
く、環境への影響が少く、負荷変化への追従性の高い排
熱回収蒸気発生システムの圧力制御方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to provide a pressure control method for an exhaust heat recovery steam generation system which is highly economical, has little effect on the environment, and has a high follow-up ability to load changes. I do.

【0007】[0007]

【課題を解決するための手段】本発明は、高温排ガス、
温排水等から熱回収して水蒸気、熱媒体蒸気等を発生さ
せる蒸発器を有する排熱回収蒸気発生システムにおい
て、蒸気負荷が小さいときには上記蒸発器における蒸気
圧力設定値を高い方にシフトさせ、蒸気負荷が高いとき
は蒸気圧力設定値を低い方にシフトさせることを特徴と
する。
SUMMARY OF THE INVENTION The present invention provides a hot exhaust gas,
In an exhaust heat recovery steam generation system having an evaporator that generates heat, steam, a heat medium vapor, etc. by recovering heat from hot waste water or the like, when the steam load is small, the steam pressure set value in the evaporator is shifted to a higher value, When the load is high, the steam pressure set value is shifted to a lower value.

【0008】[0008]

【作用】蒸気の圧力設定値を高い方へシフトさせると、
蒸発器の内部に保有される媒体液の飽和温度が高くな
り、蓄熱量が増大される。したがって、一定の熱源流体
流量に対して蒸発量が減少し、小さな蒸気負荷に対応す
ることができる。一方、蒸気の圧力設定値を低い方にシ
フトさせると、蒸発器の内部保有水に蓄積された熱容量
が放出され、圧力の変化に対してほとんど遅れることな
く、減圧沸騰いわゆるフラッシュ蒸発が発生する。した
がって、一定の熱源流体流量に対して蒸発量が増大し、
高い蒸気負荷に対応することができる。
[Function] When the steam pressure set value is shifted to a higher value,
The saturation temperature of the medium liquid held inside the evaporator increases, and the heat storage amount increases. Therefore, the evaporation amount is reduced for a fixed heat source fluid flow rate, and it is possible to cope with a small steam load. On the other hand, when the set pressure value of the steam is shifted to the lower side, the heat capacity accumulated in the water retained in the evaporator is released, and the reduced-pressure boiling, so-called flash evaporation, occurs almost without delay with respect to the change in pressure. Therefore, the evaporation amount increases for a constant heat source fluid flow rate,
High steam load can be accommodated.

【0009】[0009]

【実施例】以下、添付図面を参照して本発明の実施例に
ついて説明する。図1は、排熱回収蒸気発生システムの
概略構成を示す図であり、例えばガスタービン排ガス等
の排熱源流体の補助燃焼器1及び流量制御ダンパ2を経
て蒸発器3に供給されるようにしてある。上記蒸発器3
には、給水タンク4からの給水が給水ポンプ5によって
供給されており、その蒸発器3において蒸気排熱源流体
と熱交換して蒸気を発生し、その発生蒸気が蒸気流量調
節弁6を介して所定の蒸気需要個所に送給される。一
方、給水と熱交換した排熱源流体は煙突7から大気中に
放散される。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing a schematic configuration of an exhaust heat recovery steam generation system. For example, an exhaust heat source fluid such as gas turbine exhaust gas is supplied to an evaporator 3 via an auxiliary combustor 1 and a flow control damper 2. is there. The above evaporator 3
Is supplied with water from a water supply tank 4 by a water supply pump 5, generates heat by exchanging heat with a steam exhaust heat source fluid in the evaporator 3, and generates steam through a steam flow control valve 6. It is delivered to a predetermined steam demand point. On the other hand, the exhaust heat source fluid that has exchanged heat with the feedwater is radiated from the chimney 7 into the atmosphere.

【0010】上記流量制御ダンパ2及び蒸発器3の回路
には、流量制御ダンパ2の上流側と蒸発器3の下流側と
を結ぶバイパス導管8が配設されており、このバイパス
導管8に設けられているバイパスダンパ9の開閉制御に
よって、蒸発器3をバイパスして直接煙突7から排出さ
れる排熱源流体の量を制御し得るようにしてある。ま
た、前記補助燃焼器1には、燃料流量調節弁10及び空
気流量調節弁11を介して補助燃料及び燃焼用空気を供
給し得るようにしてあり、排熱源流体の流量が少ない場
合に、上記補助燃焼器1を使用して熱源流体の流量を確
保し得るようにしてある。
The circuit of the flow control damper 2 and the evaporator 3 is provided with a bypass conduit 8 connecting the upstream side of the flow control damper 2 and the downstream side of the evaporator 3. By controlling the opening and closing of the bypass damper 9, the amount of the exhaust heat source fluid discharged directly from the chimney 7 bypassing the evaporator 3 can be controlled. The auxiliary combustor 1 can be supplied with auxiliary fuel and combustion air via a fuel flow control valve 10 and an air flow control valve 11, and when the flow rate of the exhaust heat source fluid is small, The auxiliary combustor 1 is used to ensure the flow rate of the heat source fluid.

【0011】ところで、蒸発器3には蒸発器圧力センサ
12が設けられ、また蒸気流量調節弁6の下流側には蒸
気流量センサ13が設けられており、この蒸気流量セン
サ13により検出された現在の蒸気流量F及び最大蒸気
流量Fmax 等により蒸気圧力設定値Psが演算され、こ
の蒸気圧力設定値Psと蒸発器圧力センサ12で検出さ
れた蒸発器圧力との偏差信号、及び蒸発器圧力の時間変
化率の関数との和によって、各ダンパ2,9或は調節弁
10等の開度を制御するようにしてある(図2参照)。
The evaporator 3 is provided with an evaporator pressure sensor 12, and a steam flow sensor 13 is provided downstream of the steam flow control valve 6. The steam pressure set value Ps is calculated from the steam flow rate F and the maximum steam flow rate Fmax, etc., and a deviation signal between the steam pressure set value Ps and the evaporator pressure detected by the evaporator pressure sensor 12, and the time of the evaporator pressure The opening of each damper 2, 9 or the control valve 10 is controlled by the sum of the change rate and the function (see FIG. 2).

【0012】本実施例においては、蒸発器3内の圧力設
定値Psが、図3に示すように制御装置の演算部により
最大蒸気流量Fmax と現在の蒸気流量Fの差に比例的に
変化せしめられる。
In the present embodiment, the pressure set value Ps in the evaporator 3 is changed in proportion to the difference between the maximum steam flow rate Fmax and the current steam flow rate F by the arithmetic unit of the control device as shown in FIG. Can be

【0013】すなわち、現在の蒸気流量Fが蒸気流量セ
ンサ13により制御装置の演算部に取り込まれ、取り込
まれた流量信号と、予め設定されている最大流量Fmax
、最高設定圧力Pmax 、最低設定圧力Pmin とを用い
て、次の演算により蒸発器圧力設定値Psが計算され
る。
That is, the current steam flow rate F is fetched by the steam flow rate sensor 13 into the arithmetic unit of the control device, and the fetched flow rate signal and a preset maximum flow rate Fmax
Using the maximum set pressure Pmax and the minimum set pressure Pmin, the evaporator pressure set value Ps is calculated by the following calculation.

【0014】Ps=Pmin +(Pmax −Pmin )(Fma
x −F)/Fmax また、前述のように、圧力の設定値に対する偏差と圧力
の時間変化率の関数の和を最小にするように補助燃料流
量調節弁10、またはダンパ2,9が比例制御等により
調節される。すなわち、操作量は{−f(P−Ps)−
dp/dt・Δt}に比例する。
Ps = Pmin + (Pmax-Pmin) (Fma
x-F) / Fmax Also, as described above, the auxiliary fuel flow control valve 10 or the dampers 2 and 9 perform proportional control so as to minimize the sum of the function of the deviation with respect to the pressure set value and the time rate of change of the pressure. And so on. That is, the operation amount is {−f (P−Ps) −
dp / dt ・ Δt}.

【0015】ここに、P:実際の圧力 t:時間 Δt:装置の時定数 次に、具体的な数値で状態の変化を示す。Here, P: actual pressure t: time Δt: time constant of the device Next, a change in state is shown by specific numerical values.

【0016】ここで、Pmax =20bar, Pmin =15bar, Fmax = 1 kg/s 蒸発器内部保有水の容量G=2ton とするとき、蒸気需要量が急速に最大流量Fmax に変化
したとすると、蒸気流量調節弁6が急速に開方向に制御
される。このようにして蒸気流量調節弁6が開方向に制
御されると、この弁の開動作に応じて蒸発器3内の圧力
が低下し、それに起因してフラッシュ蒸発が生じ、蒸気
流量調節弁6の開放速度にほぼ連動して蒸気流量は最大
流量1kg/sまで変化する。この蒸気流量調節弁6の開
度変化速度は全閉から全開まで通常2秒程度であり、蒸
気流量もこの速度で変化する。
Here, assuming that Pmax = 20 bar, Pmin = 15 bar, Fmax = 1 kg / s, the capacity G of the water retained in the evaporator is G = 2 ton, if the steam demand rapidly changes to the maximum flow rate Fmax, The flow control valve 6 is quickly controlled to open. When the steam flow control valve 6 is controlled in the opening direction in this manner, the pressure in the evaporator 3 decreases in accordance with the opening operation of the valve, and flash evaporation occurs due to the pressure. The steam flow rate changes up to a maximum flow rate of 1 kg / s almost in accordance with the opening speed of the steam. The rate of change of the opening degree of the steam flow control valve 6 is normally about 2 seconds from fully closed to fully opened, and the steam flow rate also changes at this rate.

【0017】一方、圧力の設定値Psは前述のように蒸
気流量に応じて変化するので、蒸気流量が最大蒸気流量
まで変化すると、変化後の設定圧力は最小の15bar
となる。しかし、実際の圧力はフラッシュ蒸発による蒸
気流量の増大で急激には低下せず、徐々に低下してい
く。このような場合、初めは現在の実際の圧力が設定圧
力に対してプラス偏差となっているので、設定値との偏
差が縮小するように、補助燃焼器1の燃料流量調節弁1
0や排熱源流体の流量制御ダンパ2が開方向に制御さ
れ、流量制御ダンパ9が閉方向に制御される。
On the other hand, since the set value Ps of the pressure changes according to the steam flow rate as described above, when the steam flow rate changes to the maximum steam flow rate, the set pressure after the change becomes the minimum 15 bar.
Becomes However, the actual pressure does not decrease rapidly due to the increase in the steam flow rate due to flash evaporation, but gradually decreases. In such a case, since the current actual pressure initially has a positive deviation from the set pressure, the fuel flow control valve 1 of the auxiliary combustor 1 is reduced so that the deviation from the set value is reduced.
0 and the flow control damper 2 for the exhaust heat source fluid are controlled in the opening direction, and the flow control damper 9 is controlled in the closing direction.

【0018】このようにして、蒸発器内の圧力は徐々に
低下し熱源流体流量は徐々に増加する。
Thus, the pressure in the evaporator gradually decreases and the flow rate of the heat source fluid gradually increases.

【0019】こうして実際の圧力が最大設定値Pmax か
ら最小設定値Pmin まで変化する間の内部保有水の飽和
温度の変化は、約15℃、比エンタルピの変化ΔHは約
6.8kj/kgである。この熱量を15barの圧力の蒸
気量Gsに換算すると、蒸発の潜熱Lが約1946kj/
kgであるから、 Gs=ΔH・G/L =68×2000/1946 =69.9 (kg) これを蒸気流量Fmax で割ると、この流量を維持できる
時間が次のように得られる。
Thus, while the actual pressure changes from the maximum set value Pmax to the minimum set value Pmin, the change in the saturation temperature of the internal retained water is about 15 ° C., and the change in specific enthalpy ΔH is about 6.8 kj / kg. . When this heat amount is converted into a steam amount Gs at a pressure of 15 bar, the latent heat L of evaporation is about 1946 kj /
Gs = ΔH · G / L = 68 × 2000/1946 = 69.9 (kg) By dividing this by the steam flow rate Fmax, the time during which this flow rate can be maintained is obtained as follows.

【0020】 T =Gs/Fmax =69.9/1 =69.9 (sec) つまり、本発明の上記実施例によれば、蒸気流量の0%
から100%までの急激な変化に対して熱源流体の追加
がなくても、約70秒の間蒸気を遅れなく発生させるこ
とができる。この間に熱源流体の緩やかな増大によりフ
ラッシュ蒸発流量の減少に代わって本来の加熱による蒸
発流量を増大させることができる。
T = Gs / Fmax = 69.9 / 1 = 69.9 (sec) That is, according to the above embodiment of the present invention, 0% of the steam flow rate
Steam can be generated without delay for about 70 seconds without the addition of a heat source fluid for abrupt changes from to 100%. During this time, the evaporation flow rate due to the original heating can be increased instead of decreasing the flash evaporation flow rate due to the gradual increase in the heat source fluid.

【0021】一方、蒸気流量が100%から0%に急減
少する場合には、急増大するときと同様の原理により、
圧力設定値がPmax に設定される。その後圧力は上昇
し、何も制御を行わなければ、約70秒後に設定圧力ま
で到達する。しかし、実際には熱源流体流量が制御され
るので、変化はもっと緩やかになる。
On the other hand, when the steam flow rate suddenly decreases from 100% to 0%, the same principle as that when the steam flow rate increases suddenly is used.
The pressure set value is set to Pmax. Thereafter, the pressure increases, and reaches the set pressure after about 70 seconds if no control is performed. However, the change is more gradual because the heat source fluid flow is actually controlled.

【0022】しかして、本発明においてはどのような場
合にも余剰の蒸気は発生されず、蒸気として環境中に排
出されることはない。
However, in the present invention, no excess steam is generated in any case, and the steam is not discharged into the environment.

【0023】また、上記実施例においては、圧力設定値
を蒸気流量に対して連続的に変化させることもできる。
この場合には、わずかな蒸気流量の変化では蒸発器圧力
の設定値が変らないが、そのような微小な変化に対して
はわずかな遅れで補助燃料流量や排熱源流体流量の増加
が追従するので問題はない。一方蒸気流量が大きく変化
した場合には、第1の実施例の場合と同様の状態変化を
実現することができる。
Further, in the above embodiment, the pressure set value can be continuously changed with respect to the steam flow rate.
In this case, the set value of the evaporator pressure does not change with a slight change in the steam flow rate, but the increase in the auxiliary fuel flow rate or the exhaust heat source fluid flow rate follows such a small change with a slight delay. So there is no problem. On the other hand, when the steam flow rate changes significantly, the same state change as in the first embodiment can be realized.

【0024】なお、蒸気の需要側の圧力が変化しないよ
うに、蒸発器3と蒸気流量調節弁6の間にアキュムレー
タタンクと圧力調節弁とを設けることもできる。この場
合アキュムレータタンクの設定圧力は蒸発器の圧力設定
値の最小値以下にする。
An accumulator tank and a pressure control valve may be provided between the evaporator 3 and the steam flow control valve 6 so that the pressure on the steam demand side does not change. In this case, the set pressure of the accumulator tank is set to be equal to or less than the minimum value of the pressure set value of the evaporator.

【0025】[0025]

【発明の効果】以上説明したように、本発明においては
蒸気負荷が小さいときは蒸発器における蒸気圧力設定値
を高い方にシフトさせ、蒸気負荷が高いときには蒸気圧
力設定値を低い方にシフトさせるようにしたので、蒸気
流量が急激に増大した場合には圧力設定値が急に低下し
て蒸発器内圧力の低下が容認され、フラッシュ蒸発によ
る蒸気流量で需要増大分をまかなうことができる。した
がって、負荷の変化に対して十分追従することができ
る。また、上述のようにフラッシュ蒸発によって需要増
大分が一時的にまかなわれるので、補助燃料流量の急激
な増大を要求されることがなく、通常運転に近い状態で
燃焼を維持することができ、NOxなどの発生を抑制す
ることができる。
As described above, in the present invention, when the steam load is small, the steam pressure set value in the evaporator is shifted to a higher value, and when the steam load is high, the steam pressure set value is shifted to a lower value. As a result, when the steam flow rate sharply increases, the pressure set value suddenly decreases, and a decrease in the pressure inside the evaporator is accepted, and the increase in demand can be covered by the steam flow rate by flash evaporation. Therefore, it is possible to sufficiently follow a change in load. Further, as described above, the increase in demand is temporarily covered by flash evaporation, so that a rapid increase in the auxiliary fuel flow rate is not required, and combustion can be maintained in a state close to normal operation. Can be suppressed.

【0026】また、蒸気流量が急激に低下した場合に
は、圧力設定値が急に高くなり、蒸発器内の圧力上昇が
容認される。したがって蒸発量が減少され、しかも熱源
からの受熱量の余った分は内部保有液温度の上昇で吸収
することができる。そのため、負荷増大時と同様に負荷
追従性が非常に高いものとすることができる。また、補
助燃焼器の燃焼状態に急激な外乱を与えることがなく、
安定した燃焼を行わせることができる。
When the steam flow rate drops sharply, the pressure set value rises suddenly, and the pressure rise in the evaporator is allowed. Therefore, the amount of evaporation is reduced, and the surplus amount of heat received from the heat source can be absorbed by increasing the temperature of the internally held liquid. Therefore, the load following ability can be made very high as in the case of increasing the load. Also, without giving a sudden disturbance to the combustion state of the auxiliary combustor,
Stable combustion can be performed.

【0027】しかも、圧力制御のために蒸気を環境中に
放出することがないので、環境保全を損うこともなく、
経済性をも優れたものとすることができる。
Further, since steam is not released into the environment for pressure control, environmental protection is not impaired.
The economy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】排熱回収蒸気発生システムの概略系統図。FIG. 1 is a schematic system diagram of an exhaust heat recovery steam generation system.

【図2】本発明の蒸気圧力制御方法を示す制御ブロック
図。
FIG. 2 is a control block diagram showing a steam pressure control method of the present invention.

【図3】本発明の排熱回収蒸気発生システムにおける蒸
気圧力の設定値の決定方法の一例を示すグラフ。
FIG. 3 is a graph showing an example of a method of determining a set value of steam pressure in the exhaust heat recovery steam generation system of the present invention.

【符号の説明】[Explanation of symbols]

1 補助燃焼器 2 流量制御ダンパ 3 蒸発器 4 供給タンク 5 供給ポンプ 6 蒸気流量調節弁 7 煙突 9 バイパスダンパ 10 燃料流量調節弁 DESCRIPTION OF SYMBOLS 1 Auxiliary combustor 2 Flow control damper 3 Evaporator 4 Supply tank 5 Supply pump 6 Steam flow control valve 7 Chimney 9 Bypass damper 10 Fuel flow control valve

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高温排ガス、温排水等から熱回収して蒸気
・熱媒体蒸気等を発生させる蒸発器を有する排熱回収蒸
気発生システムにおける蒸気圧力制御方法において、蒸
気負荷が小さいときには上記蒸発器における蒸気圧力設
定値を高い方にシフトさせ、蒸気負荷が高いときには蒸
気圧力設定値を低い方にシフトさせることを特徴とす
る、蒸気圧力制御方法。
1. A method of controlling steam pressure in an exhaust heat recovery steam generation system having an evaporator for recovering heat from high-temperature exhaust gas, hot waste water and the like to generate steam, heat medium steam, and the like. A steam pressure control method, wherein the steam pressure set value is shifted to a higher value and the steam pressure set value is shifted to a lower value when the steam load is high.
JP4315267A 1992-11-25 1992-11-25 Steam pressure control method for exhaust heat recovery steam generation system Expired - Lifetime JP2781318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4315267A JP2781318B2 (en) 1992-11-25 1992-11-25 Steam pressure control method for exhaust heat recovery steam generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4315267A JP2781318B2 (en) 1992-11-25 1992-11-25 Steam pressure control method for exhaust heat recovery steam generation system

Publications (2)

Publication Number Publication Date
JPH06159011A JPH06159011A (en) 1994-06-07
JP2781318B2 true JP2781318B2 (en) 1998-07-30

Family

ID=18063366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4315267A Expired - Lifetime JP2781318B2 (en) 1992-11-25 1992-11-25 Steam pressure control method for exhaust heat recovery steam generation system

Country Status (1)

Country Link
JP (1) JP2781318B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728811A (en) * 1980-07-29 1982-02-16 Toshiba Corp Power generating device for fluctuating load absorption
JPS57131806A (en) * 1981-02-09 1982-08-14 Hitachi Ltd Waste heat recycling power generating plant
JPH02126003U (en) * 1989-03-27 1990-10-17

Also Published As

Publication number Publication date
JPH06159011A (en) 1994-06-07

Similar Documents

Publication Publication Date Title
JPS6218724B2 (en)
JP2781318B2 (en) Steam pressure control method for exhaust heat recovery steam generation system
JP2595046B2 (en) Steam temperature control system for reheat type combined plant
JPH0658163B2 (en) Steam temperature control device and control method for thermal power generation boiler
JPS61145305A (en) Control device for turbine plant using hot water
JPS6023701A (en) Low boiling-point medium generating plant
JP7334634B2 (en) Engine exhaust heat recovery system
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPH0275802A (en) Waste heat recovery boiler
JPH1181919A (en) White smoke of exhaust gas preventing method in binary cycle gas turbine device
JP2002323203A (en) Vapor temperature control method and device for once- through boiler
JP2894118B2 (en) Boiler steam temperature control method
JP2511400B2 (en) Steam temperature control method for once-through boiler
JPH03199892A (en) Control of amount of supply gas for waste heat boiler
JPH1181918A (en) White smoke of exhaust gas preventing method in gas turbine device and exhaust gas system in gas turbine device
JPS6237210B2 (en)
JP2542165B2 (en) Optimal temperature controller for cogeneration system
JPS6135441B2 (en)
JPH09145004A (en) Emergency shutdown control of device pressurized fluidized bed boiler
JPH0261402A (en) Water level control device for deaerator
JPS6365207A (en) Boiler steam temperature controller
JPH09195718A (en) Main steam temperature control device
JPS62237012A (en) Heated steam pressure controller of heater for steam turbine
JPH0735303A (en) Once-through boiler controlling method
JPH0275806A (en) Boiler

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110515

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110515

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 15