JP2774351B2 - Organic thin-film electroluminescence device and method of manufacturing the same - Google Patents

Organic thin-film electroluminescence device and method of manufacturing the same

Info

Publication number
JP2774351B2
JP2774351B2 JP2073484A JP7348490A JP2774351B2 JP 2774351 B2 JP2774351 B2 JP 2774351B2 JP 2073484 A JP2073484 A JP 2073484A JP 7348490 A JP7348490 A JP 7348490A JP 2774351 B2 JP2774351 B2 JP 2774351B2
Authority
JP
Japan
Prior art keywords
emitting layer
light
layer
function
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2073484A
Other languages
Japanese (ja)
Other versions
JPH03274693A (en
Inventor
地潮 細川
久洋 東
正 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2073484A priority Critical patent/JP2774351B2/en
Priority to US07/669,754 priority patent/US5443921A/en
Priority to EP91104486A priority patent/EP0449125B1/en
Priority to DE69105571T priority patent/DE69105571T2/en
Publication of JPH03274693A publication Critical patent/JPH03274693A/en
Priority to US08/451,533 priority patent/US5705284A/en
Application granted granted Critical
Publication of JP2774351B2 publication Critical patent/JP2774351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機薄膜エレクトロルミネッセンス素子及び
その製造方法に関し、詳しくは耐熱性及び長寿命を有す
る有機薄膜エレクトロルミネッセンス素子及びパターニ
ングをフォトエッチングにより行うことのできる有機薄
膜エレクトロルミネッセンス素子の製造方法に関する。
The present invention relates to an organic thin-film electroluminescence device and a method for manufacturing the same, and more particularly, to an organic thin-film electroluminescence device having heat resistance and long life and patterning by photoetching. The present invention relates to a method for manufacturing an organic thin-film electroluminescence device that can be used.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

エレクトロルミネッセンス素子(以下、EL素子という
ことがある。)は、自己発光のため視認性が高く、また
完全固体素子であるため耐衝撃性に優れるという特徴を
有しており、現在、無機,有機化合物を発光層に用いた
様々なEL素子が提案され、実用化が試みられている。こ
のうち、有機薄膜EL素子は、印加電圧を大幅に低下させ
ることができるため、各種材料が開発されつつある。
Electroluminescent elements (hereinafter, sometimes referred to as EL elements) are characterized by high visibility due to self-emission and excellent impact resistance because they are completely solid elements. Various EL devices using a compound for a light emitting layer have been proposed and put to practical use. Among these, various materials are being developed for the organic thin film EL element because the applied voltage can be greatly reduced.

例えば、特開昭59−194393号公報に記載の陽極/トリ
フェニルアミン誘導体/発光層/陰極からなる有機EL素
子は、低電圧印加,多色表示,高輝度,高効率であって
優れたものである。しかし、発光層に例えば、8−ヒド
ロキシキノリンのアルミニウム錯体を用いた素子は、50
cd/m2の輝度で駆動すると、その寿命は数百時間程度で
あり、実用化の障壁となっている。
For example, an organic EL device comprising an anode / triphenylamine derivative / light-emitting layer / cathode described in JP-A-59-194393 is excellent in low voltage application, multicolor display, high brightness, high efficiency and high efficiency. It is. However, for example, a device using an aluminum complex of 8-hydroxyquinoline in the light-emitting layer is 50 devices.
When driven at a luminance of cd / m 2 , the lifetime is about several hundred hours, which is a barrier to practical use.

この原因の一つが熱劣化であり、上記8−ヒドロキシ
キノリン−アルミニウム錯体は比較的耐熱性を有する化
合物であるが、熱劣化を避けることはできなかった。
One of the causes is thermal degradation. The 8-hydroxyquinoline-aluminum complex is a compound having relatively high heat resistance, but thermal degradation could not be avoided.

また、近年、発光層に有機低分子の蒸着膜を用いた各
種素子が作製されており、例えば、陽極/スチリルアミ
ン発光層/電子注入層/陰極からなるEL素子などが知ら
れているAppl.Phys.Lett55(1989)1489。しかし、これ
らの有機低分子の蒸着膜に用いられる有機低分子は、30
0℃以下の低融点のものが多く、また非晶質膜において
も100℃までのガラス転移温度であり、いずれも耐熱性
に問題があるため熱劣化は避けれないものとなってい
た。
In recent years, various devices using a low-molecular organic vapor-deposited film for a light-emitting layer have been manufactured. For example, an EL device composed of an anode, a styrylamine light-emitting layer, an electron injection layer, and a cathode is known as Appl. Phys. Lett 55 (1989) 1489. However, the low-molecular organic compounds used for these low-molecular-weight evaporated films are 30
Many have a low melting point of 0 ° C. or less, and the amorphous film has a glass transition temperature of up to 100 ° C. Since all have a problem in heat resistance, thermal deterioration cannot be avoided.

上記熱劣化の挙動は、詳細にはまだ検討されていない
が、素子のジュール熱による発熱のために生じる発光層
の結晶化,溶融,ピンホールの拡大,層の剥離等が原因
と考えられる。
Although the behavior of the thermal degradation has not been studied in detail, it is considered that the cause is crystallization, melting, enlargement of pinholes, peeling of the layer, etc. of the light emitting layer caused by heat generated by Joule heat of the device.

さらに、有機低分子による発光層は溶媒に可溶なもの
が多く、不溶であっても、溶媒によるハクリにより劣化
するため、フォトエッチングを行うことができなかっ
た。したがってパターン化が困難であり、ディスプレイ
等をEL素子化する際の障害となっている。
Furthermore, the light-emitting layer made of organic low molecules is often soluble in a solvent, and even if it is insoluble, it cannot be subjected to photoetching because it is deteriorated by peeling off with the solvent. Therefore, patterning is difficult, which is an obstacle when a display or the like is converted into an EL element.

また、ポリビニルカルバゾールをスピンコート法によ
り薄膜化した素子においてエレクトロルミネッセンスを
示したとの報告(Polymer,24(1983)755)がある。こ
の素子の発光輝度や膜厚は、それぞれ1cd/m2以下,数μ
mと予想される。
In addition, there is a report (Polymer, 24 (1983) 755) that an element obtained by thinning polyvinyl carbazole by a spin coating method exhibited electroluminescence. The light emission luminance and film thickness of this device are 1 cd / m 2 or less and several μm, respectively.
m.

〔課題を解決するための手段〕[Means for solving the problem]

そこで本発明者らは、上記従来技術の欠点を解消し、
構成が簡単で耐熱性に優れ、しかも高効率の発光を得る
ことができるEL素子の開発、及びパターニングの容易な
EL素子の製造方法を開発すべく鋭意研究を重ねた。
Therefore, the present inventors have solved the above disadvantages of the prior art,
The development of an EL device that has a simple structure, excellent heat resistance, and can obtain highly efficient light emission, and is easy to pattern
We worked diligently to develop a manufacturing method for EL devices.

その結果、エレクトロルミネッセンスの発光層機能を
有するモノマーを蒸着し、次にこれを重合させるという
蒸着法を発展させた蒸着重合法により重合し、この重合
体を発光層として用いることにより、発光効率を損なう
ことなく耐熱性に優れたEL素子を得られ、しかも重合を
特定の工程で行うことにより、フォトエッチングによる
パターニングを行えることを見出した。本発明はかかる
知見に基いて完成したものである。
As a result, a monomer having a function of an electroluminescent light emitting layer is vapor-deposited, and then polymerized by a vapor deposition polymerization method developed from a vapor deposition method of polymerizing the monomer, and the luminous efficiency is increased by using this polymer as a light-emitting layer. It has been found that an EL element having excellent heat resistance can be obtained without impairment, and that patterning by photoetching can be performed by performing polymerization in a specific process. The present invention has been completed based on such findings.

ここで、本発明のEL素子における発光層は、以下の三
つの機能を併せ持つものである。この三つをあわせ発光
層機能と呼ぶ。即ち、 注入機能 電界印加時に、陽極又は正孔注入輸送層より正孔を注
入することができ、陰極又は電子注入輸送層より電子を
注入することができる機能 輸送機能 注入した電荷(電子と正孔)を電界の力で移動させる
機能 発光機能 電子と正孔の再結合の場を提供し、これを発光につな
げる機能 但し、正孔の注入されやすさと電子の注入されやすさ
に違いがあってもよく、また正孔と電子の移動度で表わ
される輸送能に大小があってもよいが、どちらか一方の
電荷を移動することが好ましい。
Here, the light emitting layer in the EL device of the present invention has the following three functions. These three are collectively called a light emitting layer function. Injection function When an electric field is applied, holes can be injected from the anode or the hole injection / transport layer, and electrons can be injected from the cathode or the electron injection / transport layer. Transport function Injected charges (electrons and holes) ) The function of moving the) by the force of an electric field. Light-emitting function Provides a field for recombination of electrons and holes, and connects it to light emission. However, there is a difference between the ease of hole injection and the ease of electron injection. Although the transport ability represented by the mobility of holes and electrons may be large or small, it is preferable to transfer either one of the charges.

さらに電荷注入機能もしくは電荷輸送機能の少なくと
も一方を保有するモノマーを蒸着重合法により重合し、
重合体を電荷注入層または電荷輸送層として用いること
により、耐熱性にすぐれたEL素子が得られることも見い
出した。
Further, a monomer having at least one of a charge injection function and a charge transport function is polymerized by a vapor deposition polymerization method,
It has also been found that by using a polymer as a charge injection layer or a charge transport layer, an EL element having excellent heat resistance can be obtained.

すなわち本発明は、発光層材料もしくは電荷注入層材
料(電荷輸送層材料)としてエレクトロルミネッセンス
の発光層機能,電荷輸送機能及び電荷注入機能の少なく
とも一つを有する蒸着法により形成された膜厚0.5μm
以下で、かつガラス転移温度200℃以上の耐熱性重合体
薄膜を用いたことを特徴とする薄膜エレクトロルミネッ
センス素子を提供するとともに、基板上に電極を形成
する工程,電荷輸送層を形成する工程,発光層を形
成する工程及び対向電極を形成する工程を、単一もし
くは複数回工程としてもつ有機薄膜エレクトロルミネッ
センス素子の構造工程中に、エレクトロルミネッセンス
に必要な電荷注入機能,電荷輸送機能もしくは発光層機
能の少なくとも一つを保有する発光層又は電荷輸送層作
製工程として、ガラス転移温度200℃以上の耐熱性重合
体形成性モノマー源を蒸着し、次いで該モノマーを重合
して、該発光層又は電荷輸送層を形成する工程が含まれ
ることを特徴とする薄膜エレクトロルミネッセンス素子
の製造方法を提供するものである。
That is, the present invention provides a light emitting layer material or a charge injection layer material (charge transport layer material) having a thickness of 0.5 μm formed by a vapor deposition method having at least one of a light emitting layer function, a charge transport function and a charge injection function of electroluminescence.
A thin film electroluminescent element comprising a heat-resistant polymer thin film having a glass transition temperature of 200 ° C. or higher, a step of forming an electrode on a substrate, a step of forming a charge transport layer, A charge injection function, a charge transport function, or a light emitting layer function required for electroluminescence during a structural step of an organic thin film electroluminescent element having a step of forming a light emitting layer and a step of forming a counter electrode as single or multiple steps. As a step of preparing a light-emitting layer or a charge transport layer having at least one of the following, a heat-resistant polymer-forming monomer source having a glass transition temperature of 200 ° C. or higher is vapor-deposited, and then the monomer is polymerized to form the light-emitting layer or the charge transport layer. A method for producing a thin film electroluminescent element, comprising a step of forming a layer. .

まず本発明の有機薄膜EL素子の発光層又は電荷輸送層
となる重合体薄膜は、各種のものを用いることが可能で
あるが、たとえば耐熱性重合体形成性モノマー源とし
て、一般式、 〔式中,Xは芳香族を含む有機基を示す。〕 で表わされる酸二無水物と、一般式 H2N−Y−NH2 ……〔II〕 〔式中,YはEL能力(電荷注入機能,電荷輸送機能,発光
層機能の少なくとも一つ)を有する有機基を示す。〕 で表わされるジアミノ化合物とを蒸着重合法により反応
させて、ポリアミック酸(ポリイミド前駆体)を経て合
成される一般式 〔式中,X,Yは前記と同じであり、nは重合度を示す整数
である。〕 で表わされるポリイミドを用いることが好ましい。
First, the polymer thin film serving as the light emitting layer or the charge transport layer of the organic thin film EL device of the present invention can be any of various types, for example, as a heat-resistant polymer-forming monomer source, a general formula, [In the formula, X represents an organic group containing an aromatic compound. And an acid dianhydride represented by the general formula: H 2 N—Y—NH 2 ... [II] [wherein, Y is an EL ability (at least one of a charge injection function, a charge transport function, and a light emitting layer function) An organic group having the formula: A general formula synthesized through a polyamic acid (polyimide precursor) by reacting a diamino compound represented by [Wherein, X and Y are the same as above, and n is an integer indicating the degree of polymerization. ] Is preferably used.

ここで上記一般式〔I〕で示される酸二無水物中のX
は前述の通りである。具体的には 等を挙げることができるが、ポリイミド原料として開発
されている各種酸無水物を利用することができる。
Here, X in the acid dianhydride represented by the above general formula [I]
Is as described above. In particular And the like, and various acid anhydrides developed as polyimide raw materials can be used.

一方、重合体薄膜を発光層として用いるときは、上記
一般式〔II〕で示される化合物中のYは、前述の如くEL
の発光層機能を保有する各種有機基、特に有機低分子化
合物残基である。この有機低分子化合物残基としては様
々なものが挙げられるが、例えば、アントラセン,ペリ
レン,ピレン等の多環芳香族化合物の残基、特開昭59−
194393号公報に記載されている蛍光増白剤、特開昭63−
295695号公報に記載されている金属キレート化オキサノ
イド化合物、特願昭63−313932明細書,特開平1−2547
94号公報,特願平1−029681明細書,特願平1−068388
明細書,特願平1−068387明細書に記載されているスチ
ルベン系化合物、特願平1−9995明細書に記載されてい
るクマリン系化合物、特願平1−075936に記載されてい
るジスチリルピラジン化合物、Jph.J.Appl.Phys.27(19
88)L713などに開示されているナフタルイミド系の蛍光
性化合物など、公知のEL発光層機能をもつ有機低分子化
合物の残基を挙げることができる。重合体薄膜を電荷輸
送層(電荷注入層または電荷注入輸送層といい区別しな
い。)として用いるときは、一般式(II)の化合物中Y
は、正孔注入輸送機能又は電子注入輸送機能を保有する
有機低分子化合物よりなる残基である。例えば、より詳
細には後述するが、正孔注入輸送機能を保有するフタロ
シアニン,ポリフィリン,トリフェニルアミン誘導体よ
りなる残基、電子注入輸送機能を保有するオキサジアゾ
ール誘導体等よりなる残基である。
On the other hand, when a polymer thin film is used as the light-emitting layer, Y in the compound represented by the general formula [II] is an EL as described above.
And various organic groups having the function of the light-emitting layer, in particular, organic low-molecular-weight compound residues. Various organic low-molecular-weight compound residues can be mentioned, for example, polycyclic aromatic compound residues such as anthracene, perylene and pyrene;
No. 194393, a fluorescent whitening agent disclosed in
No. 295695, metal chelated oxanoid compounds described in Japanese Patent Application No. 63-313932, JP-A-1-2547.
No. 94, Japanese Patent Application No. 1-029681, Japanese Patent Application No. 1-068388
Stilbene compounds described in the specification, Japanese Patent Application No. 1-0068387, coumarin compounds described in the specification of Japanese Patent Application No. 1-9999, and distyryl described in Japanese Patent Application No. 1-075936. Pyrazine compounds, Jph. J. Appl. Phys. 27 (19
88) Residues of known organic low molecular weight compounds having an EL light emitting layer function, such as a naphthalimide-based fluorescent compound disclosed in L713 and the like. When the polymer thin film is used as a charge transporting layer (which is not distinguished from a charge injecting layer or a charge injecting and transporting layer), Y in the compound of general formula (II)
Is a residue composed of an organic low-molecular compound having a hole injection / transport function or an electron injection / transport function. For example, as will be described in more detail later, it is a residue composed of a phthalocyanine, porphyrin or triphenylamine derivative having a hole injecting / transporting function, or a residue composed of an oxadiazole derivative having an electron injecting / transporting function.

本発明では、上記の如く一般式〔I〕及び一般式〔I
I〕の化合物を蒸着重合法により重合して得られる一般
式〔III〕の有機EL能を保有する高耐熱ポリイミドを発
光層又は電荷輸送層として用いることが好ましい。
In the present invention, as described above, the general formula [I] and the general formula [I
It is preferable to use a highly heat-resistant polyimide having an organic EL function of the general formula [III] obtained by polymerizing the compound of the formula [I] by vapor deposition polymerization as the light emitting layer or the charge transport layer.

上記蒸着重合法によりポリイミドの合成は、公知の多
種方法により行うことができ、例えば真空28(1985)43
7,J.Vac.Sci.Tecnol.,A4(1986)369,J.Vac.Sci.Tecno
l.,A5(1987)2253等にて開示されている方法により行
うことができる。
The synthesis of polyimide by the above vapor deposition polymerization method can be performed by various known methods, for example, vacuum 28 (1985) 43
7, J.Vac.Sci.Tecnol., A4 (1986) 369, J.Vac.Sci.Tecno
l., A5 (1987) 2253, etc.

具体的には、一般式〔I〕で示される酸二無水物モノ
マーと一般式〔II〕で示されるジアミノ体モノマーを、
各々蒸着源を加熱することにより真空槽内で二元蒸着を
行い、基板上にポリアミック酸を得、さらにこれを不活
性気体中で加熱し、脱水閉環することにより一般式〔II
I〕で示されるポリイミドを得ることができる。
Specifically, an acid dianhydride monomer represented by the general formula (I) and a diamino monomer represented by the general formula (II) are
A binary vapor deposition is performed in a vacuum chamber by heating each vapor deposition source to obtain a polyamic acid on a substrate, which is further heated in an inert gas and dehydrated to form a ring of the general formula [II
The polyimide represented by I] can be obtained.

上記蒸着の条件は、例えばボート加熱温度50〜400
℃,真空度10-5〜10-3Pa,蒸着速度0.1〜500Å/秒、好
ましくは1〜10Å/秒、基板温度−50〜+300℃、好ま
しくは0〜50℃の範囲で、膜厚5nm〜0.5μmとなるよう
に選定すればよい。蒸着源の加熱は、蒸着ボートに通電
するなどの直接加熱またはハロゲンランプ管などによる
間接加熱など適宜な手段で行うことができる。また蒸着
温度は用いるモノマーの種類により異なるが、酸二無水
物モノマーとジアミノ体モノマーを1:1の割合で蒸発さ
せるように設定するのが好ましい。このとき、いずれか
一方のモノマーが過剰に蒸着すると得られるポリイミド
の中にモノマーが残存するため好ましくない。したがっ
て温度が設定温度になるように蒸着源加熱をフィードバ
ックコントロールすることが好ましい。なお、上述した
条件は、化合物の種類及び分子堆積膜の目的とする結晶
構造,会合構造等により異なり、一義的に定めることは
できないが、ボートの加熱温度を化合物が分解しない温
度にとどめることが好ましい。
The conditions for the vapor deposition are, for example, a boat heating temperature of 50 to 400.
5 ° C., vacuum degree 10 −5 to 10 −3 Pa, deposition rate 0.1 to 500 ° / sec, preferably 1 to 10 ° / sec, substrate temperature −50 to + 300 ° C., preferably 0 to 50 ° C., and a film thickness of 5 nm. The thickness may be selected so as to be 0.5 μm. The heating of the deposition source can be performed by appropriate means such as direct heating such as energizing a deposition boat or indirect heating by a halogen lamp tube or the like. The deposition temperature varies depending on the type of the monomer used, but is preferably set so that the acid dianhydride monomer and the diamino monomer are evaporated at a ratio of 1: 1. At this time, if any one of the monomers is excessively vapor-deposited, the monomer remains in polyimide obtained, which is not preferable. Therefore, it is preferable to feedback control the heating of the evaporation source so that the temperature becomes the set temperature. The above-mentioned conditions differ depending on the type of the compound and the target crystal structure, association structure, etc. of the molecular deposition film, and cannot be uniquely determined. preferable.

また上記脱水閉環処理は、加熱温度を100〜400℃、特
に200℃程度として20分以上行うことが好ましい。処理
時間が短すぎたり、加熱熱温度が低すぎると重合が完全
に進まずポリアミック酸が残留することがあり、高すぎ
ると、例えば500℃付近では生成したポリイミドの分解
を生じる。なお後述のフォトエッチングによるパターニ
ングを行う場合には、100℃程度で、10分以上重合させ
ることが好ましい。この脱水閉環処理の際の雰囲気に用
いる不活性気体としては、水分を含まない乾燥ガスを用
いることが好ましく、例えば窒素,アルゴン,ヘリウム
等を用いることができる。
The dehydration ring closure treatment is preferably performed at a heating temperature of 100 to 400 ° C., particularly about 200 ° C., for 20 minutes or more. If the treatment time is too short or the heating temperature is too low, the polymerization may not proceed completely and the polyamic acid may remain. If it is too high, for example, the generated polyimide may be decomposed at around 500 ° C. In the case of performing patterning by photoetching described later, it is preferable to polymerize at about 100 ° C. for 10 minutes or more. As the inert gas used in the atmosphere during the dehydration ring closing treatment, it is preferable to use a dry gas containing no water, for example, nitrogen, argon, helium, or the like.

重合により得る発光層もしくは電荷輸送層薄膜の膜厚
は0.5μm以下(0.1μm以下も可能)とすることが重要
であり好ましい。膜厚が0.5μm以上になると発光輝度
が著しく低下し、発光輝度が10cd/m2以下になり、明所
においては視覚で確認できなくなる場合が多い。
It is important and preferable that the thickness of the light emitting layer or the charge transport layer thin film obtained by polymerization is 0.5 μm or less (0.1 μm or less is possible). When the film thickness is 0.5 μm or more, the light emission luminance is remarkably reduced, and the light emission luminance becomes 10 cd / m 2 or less, and in many cases, it cannot be visually confirmed in a bright place.

このようにして蒸着重合法で作製した発光層又は電荷
輸送層は、極めて薄膜性に優れ、ピンホールもなく、さ
らに発光層の場合には必要な前述の注入,輸送,発光の
3機能を満足しており、また、電荷輸送層の場合には必
要な電荷注入輸送機能を満足している。
The light emitting layer or the charge transporting layer produced by the vapor deposition polymerization method in this manner is extremely excellent in thin film properties, has no pinholes, and satisfies the above-mentioned three functions of injection, transporting and light emission in the case of a light emitting layer. In the case of the charge transport layer, the charge transport layer satisfies the required charge injection / transport function.

なお、上記ポリイミド以外の蒸着重合可能な耐熱性樹
脂発光層としては、ポリアミド,ポリアミドイミド,ポ
リウレア,ポリアゾメチンを挙げることができる。(日
本化学会 第54回春季年会講演予稿集II,1547(1987),
Polymer,Preprints,Japan,Vol.136,1475(1987),同Vo
l.36,3021(1987)参照)。
In addition, examples of the heat-resistant resin light-emitting layer that can be vapor-deposited and polymerized other than the polyimide include polyamide, polyamideimide, polyurea, and polyazomethine. (Preprints of the 54th Annual Meeting of the Chemical Society of Japan, II, 1547 (1987),
Polymer, Preprints, Japan, Vol. 136, 1475 (1987), Vo
l. 36, 3021 (1987)).

例えばポリアミドの場合は、一般式 等の化合物モノマーを用いればよい。ここでZは 等である。またポリウレアの場合は、一般式 O=C=N−Z−N=C=O等の化合物モノマーを用
いればよい(Zは上記と同じ。) 前述の如く有機EL素子の劣化原因の一つは熱劣化であ
り、例えば素子のジュール熱による発光層の剥離、溶
融、ピンホールの拡大、素子の結晶化が起こり発光層の
膜厚が不均一となるなどが考えられるが、本発明では、
分解点温度が300℃以上、好ましくは500℃以上、ガラス
転移温度が200℃以上、好ましくは300℃〜400℃の高耐
熱性の高分子、例えば前記蒸着重合により得られるポリ
イミドを用いることにより熱劣化挙動を抑えることがで
き、有機EL素子の熱劣化の防止を図ることができる。
For example, in the case of polyamide, the general formula And the like. Where Z is And so on. In the case of polyurea, a compound monomer of the general formula O = C = NZ−N = C = O or the like may be used (Z is the same as described above). Thermal degradation, for example, peeling of the light emitting layer due to Joule heat of the element, melting, enlargement of the pinhole, crystallization of the element occurs and the film thickness of the light emitting layer is considered to be nonuniform, but in the present invention,
Decomposition temperature is 300 ° C. or higher, preferably 500 ° C. or higher, glass transition temperature is 200 ° C. or higher, preferably 300 ° C. to 400 ° C. High heat-resistant polymer, for example, by using a polyimide obtained by vapor deposition polymerization, Deterioration behavior can be suppressed, and thermal deterioration of the organic EL element can be prevented.

次に有機薄膜EL素子の作製法を順を追って説明する。 Next, a method of manufacturing an organic thin film EL device will be described step by step.

まず基板として、透明性を有するものが好ましく、一
般にガラス,透明プラスチック,石英等が充当される。
この基板をイソプロピルアルコールを使用して超音波洗
浄後、好ましくはUVオゾンにより洗浄する。
First, a substrate having transparency is preferable, and glass, transparent plastic, quartz, or the like is generally applied.
The substrate is ultrasonically cleaned using isopropyl alcohol, and preferably cleaned with UV ozone.

次に上記基板上に蒸着法またはスパッタ法により所定
の電極を作製する。この電極(陽極,陰極)としては、
金,アルミニウム,インジウムなどの金属,合金,混合
物あるいはインジウムチンオキサイド(酸化インジウム
酸化錫の混合酸化物;ITO),SnO2,ZnO等の透明材料を用
いることが好ましい。なお陽極には、仕事関数の大きい
金属または電気伝導性化合物が好適であり、また陰極に
は、仕事関数の小さい金属または電気伝導性化合物が好
適である。これらの電極は、少なくとも一方が透明ある
いは半透明であることが好ましい。電極の膜厚は一般に
10nm〜1μm、特に200nm以下が、発光の透過率を高め
る上で好ましい。
Next, predetermined electrodes are formed on the substrate by a vapor deposition method or a sputtering method. This electrode (anode, cathode)
It is preferable to use a metal such as gold, aluminum, and indium, an alloy, a mixture, or a transparent material such as indium tin oxide (a mixed oxide of indium tin oxide; ITO), SnO 2 , and ZnO. A metal with a high work function or an electrically conductive compound is suitable for the anode, and a metal or an electrically conductive compound with a small work function is suitable for the cathode. Preferably, at least one of these electrodes is transparent or translucent. The electrode thickness is generally
A thickness of 10 nm to 1 μm, particularly 200 nm or less, is preferable for increasing the transmittance of light emission.

次に前述の蒸着重合法により所定の発光層薄膜を作製
し、さらに該発光層上に対向電極を前記電極と同様にし
て形成することより、基本的構成のEL素子を得ることが
できる。
Next, a predetermined light emitting layer thin film is prepared by the above-described vapor deposition polymerization method, and a counter electrode is formed on the light emitting layer in the same manner as the above electrode, whereby an EL element having a basic configuration can be obtained.

そして本発明では、前記重合処理を完全に行わず、そ
の中間過程でパターニング処理を行うことにより所望の
パターンを発光層に形成することができる。
In the present invention, a desired pattern can be formed on the light-emitting layer by performing a patterning process in an intermediate step without completely performing the polymerization process.

このパターニング処理としては、例えば前記ポリイミ
ド発光層の場合は次の各工程により行うことができる。
For example, in the case of the polyimide light emitting layer, the patterning process can be performed by the following steps.

(1)プリベーク:乾燥窒素ガス中で熱を加え、若干の
未反応モノマー等を反応させてポリアミック酸にし、適
度に硬化させる。このときの温度は100〜150℃とするべ
きであり、それ以上にするとポリイミド化し、エッチン
グが困難になる。
(1) Prebaking: heat is applied in dry nitrogen gas to cause some unreacted monomers and the like to react to form a polyamic acid, which is appropriately cured. The temperature at this time should be 100 to 150 ° C. If it is higher than that, it becomes polyimide and etching becomes difficult.

(2)ポジレジスト塗布:フォトレジストポジ型をスピ
ンナーなどを用いてポリアミック酸膜上に塗布する。ポ
ジレジストの膜厚は0.5〜2μmとすることが好まし
い。
(2) Positive resist coating: A positive photoresist is coated on the polyamic acid film using a spinner or the like. The thickness of the positive resist is preferably 0.5 to 2 μm.

(3)レジストプリベーク:フォトレジスト膜を乾燥窒
素ガス中、温度100℃程度で約30分間加熱する。
(3) Resist pre-bake: The photoresist film is heated in dry nitrogen gas at about 100 ° C. for about 30 minutes.

(4)露光:所定のパターンを有するフォトマスクをか
けて紫外線露光を行う。露光条件はフォトレジスト膜に
適した露光強度,時間を選択して行うことができる。
(4) Exposure: UV exposure is performed using a photomask having a predetermined pattern. Exposure conditions can be selected by selecting an exposure intensity and time suitable for the photoresist film.

(5)現像・マッチング:現像液にて露光した部分を除
去し、さらにポリアミック酸をエッチングする。現像液
にはヒドラジン系エッチャントと水の混合物を用いるこ
とが好ましい。このとき、エッチング液を適当に選択す
れば、ほとんどがポリイミド化した膜もエッチングする
ことが可能である。
(5) Development / matching: The exposed portion is removed with a developer, and the polyamic acid is further etched. It is preferable to use a mixture of hydrazine-based etchant and water as the developer. At this time, if an etching solution is appropriately selected, it is possible to etch even a mostly polyimide film.

(6)リンス乾燥:残存している現像エッチング液を水
などですすいで除去し、不活性気体、たとえば乾燥窒素
ガス,アルゴンガスなどを吹きつけて乾燥する。
(6) Rinse drying: The remaining developing etchant is rinsed off with water or the like, and dried by blowing an inert gas, for example, a dry nitrogen gas or an argon gas.

(7)フォトレジスト剥離:フォトレジストをイソブチ
ルアセテート等の溶媒で剥離し、イソプロピルアルコー
ルでリンスする。
(7) Photoresist stripping: The photoresist is stripped with a solvent such as isobutyl acetate and rinsed with isopropyl alcohol.

(8)キュアー:前述した条件にて加熱し、ポリアミッ
ク酸を脱水閉環してポリイミドとする。
(8) Cure: heating under the conditions described above, and dehydrating and ring closing the polyamic acid to form a polyimide.

このように蒸着重合の重合過程の途中で重合を止め、
フォトエッチングすることにより様々なパターンを発光
層に形成することが可能である。
In this way, during the polymerization process of vapor deposition polymerization, the polymerization is stopped,
Various patterns can be formed in the light-emitting layer by photoetching.

またEL素子の積層構造として、前記構成、即ち電極/
発光層/電極の構成の内、発光層と電極との間に電荷注
入層(正孔注入輸送層または電子注入輸送層)を加える
ことができるが、従来の有機低分子層よりなる電荷注入
層を用いるときは、発光層を作製した後に電荷注入層を
作製し、電極/発光層/電荷注入層/電極の構成のEL素
子を作製することが好ましい。逆に通常の有機低分子の
蒸着による電荷注入層を形成してから発光層を形成する
と、該発光層形成時の重合処理の際、特にキュアーの際
に電荷注入層が溶融したり結晶化したりして薄膜でなく
なることが多い。ただし、高融点であるフタロシアニ
ン,ポリフィリン系の電荷注入層は加熱に耐えることが
できるので、上記構成の素子は作製可能である。またト
リ−フェニルアミン系の化合物でも、特開昭63−220251
号公報に記載されている化合物は三百数十℃の高融点,1
35℃にも及ぶ高ガラス転移温度をもつので発光層形成前
に形成することが可能である。さらに本発明の方法によ
る重合体薄膜を電荷輸送層(電荷注入層)として用いれ
ば、発光層形成時に膜性が乱れることはない。
In addition, as a laminated structure of the EL element, the above-described configuration, that is, the electrode /
In the structure of the light emitting layer / electrode, a charge injection layer (a hole injection transport layer or an electron injection transport layer) can be added between the light emitting layer and the electrode. When is used, it is preferable to form a charge injection layer after forming a light emitting layer, and to manufacture an EL element having a structure of electrode / light emitting layer / charge injection layer / electrode. Conversely, if the light-emitting layer is formed after the formation of the charge injection layer by ordinary vapor deposition of low-molecular organic compounds, the charge injection layer may melt or crystallize during polymerization during the formation of the light-emitting layer, particularly during curing. Often, it is no longer a thin film. However, the phthalocyanine- and porphyrin-based charge injection layer having a high melting point can withstand heating, so that the element having the above structure can be manufactured. Also, tri-phenylamine compounds are disclosed in JP-A-63-220251.
The compound described in the publication has a high melting point of more than three hundred
Since it has a high glass transition temperature as high as 35 ° C., it can be formed before forming the light emitting layer. Furthermore, when the polymer thin film according to the method of the present invention is used as a charge transport layer (charge injection layer), the film properties are not disturbed when the light emitting layer is formed.

また、上記に述べた有機低分子層を電荷注入層に用い
る場合以外、例えば無機半導体を電荷注入層として用い
る場合(特開平2−139893号公報,同2−196475号公
報,同2−207488号公報,同1−312873号公報,同1−
312874号公報)は、上記の素子作製順序の制限はなくな
る。すなわち、これらの公報に示されたような結晶もし
くは非晶のSi,SiCやCdS,ZnOなどの無機半導体層の耐熱
性は、有機低分子に比べ非常に高い。従って、これらの
無機半導体を電荷注入層として作製した後に、本発明で
示した発光層を作製しても、該発光層形成時の重合処理
の際にも電荷注入層が溶融したり結晶化することは少な
い。
In addition to the case where the organic low-molecular layer is used for the charge injection layer, for example, the case where an inorganic semiconductor is used for the charge injection layer (JP-A-2-139893, JP-A-2-196475, JP-A-2-207488) Gazette, JP-A-1-312873, JP-A-1-312873
Japanese Patent No. 312874) eliminates the above-described restriction on the element manufacturing order. That is, the heat resistance of an inorganic semiconductor layer such as crystalline or amorphous Si, SiC, CdS, ZnO or the like as disclosed in these publications is much higher than that of an organic small molecule. Therefore, even after producing these inorganic semiconductors as the charge injection layer, even if the light emitting layer shown in the present invention is produced, the charge injection layer is melted or crystallized even during the polymerization treatment at the time of forming the light emitting layer. There are few things.

本発明のEL素子では、上記正孔注入輸送層や電子注入
輸送層を設けることにより、発光性能が一段と向上す
る。ここで、正孔注入輸送層(正孔注入層又は正孔輸送
層であり、2つは区別されていない。)は、正孔伝達化
合物(正孔注入材料)よりなり、陽極より注入された正
孔を、発光層に伝達する機能(即ち正孔注入機能及び正
孔輸送機能)を持つ。この層をEL素子の陽極と発光層間
に挟むことにより低電圧でより多くの正孔が発光層に注
入され、素子の輝度は向上する。
In the EL device of the present invention, by providing the hole injection / transport layer or the electron injection / transport layer, the light emitting performance is further improved. Here, the hole injecting / transporting layer (a hole injecting layer or a hole transporting layer, and the two are not distinguished) is made of a hole transporting compound (hole injecting material) and injected from the anode. It has a function of transmitting holes to the light emitting layer (that is, a hole injection function and a hole transport function). By sandwiching this layer between the anode of the EL element and the light emitting layer, more holes are injected into the light emitting layer at a low voltage, and the luminance of the element is improved.

ここで用いられる正孔注入輸送層の正孔伝達化合物
は、電場を与えられた二個の電極間に配置されて陽極か
ら正孔が注入された場合、正孔を適切に発光層へ伝達す
ることができる化合物である。正孔注入輸送層を陽極と
発光層との間に挟むことにより、より低い電界で多くの
正孔が発光層に注入される。さらに、陰極や電子注入輸
送層から発光層に注入された電子は、発光層と正孔層の
界面に存在する電子の障壁により、この発光層内の界面
付近に蓄積され発光効率が向上する。ここで好ましい正
孔伝達化合物は104〜106ボルト/cmの電場を与えられた
電極間に層が配置された場合、少なくとも10-6cm2/ボル
ト・秒の正孔移動度をもつ。従って好ましい例として
は、光導電材料において正孔の電荷輸送材として用いら
れている各種化合物があげられる。
The hole transport compound of the hole injection transport layer used here is disposed between two electrodes to which an electric field is applied, and when holes are injected from the anode, the holes are appropriately transmitted to the light emitting layer. Is a compound that can be By interposing the hole injection transport layer between the anode and the light emitting layer, many holes are injected into the light emitting layer with a lower electric field. Further, electrons injected from the cathode or the electron injection / transport layer into the light emitting layer are accumulated near the interface in the light emitting layer due to the electron barrier existing at the interface between the light emitting layer and the hole layer, and the light emission efficiency is improved. Presently preferred hole transport compound when a layer is placed between the electrodes given an electric field of 10 4 to 10 6 volts / cm, having a hole mobility of at least 10 -6 cm 2 / volt sec. Therefore, preferred examples include various compounds used as a hole charge transporting material in a photoconductive material.

このような電荷輸送材として以下のような例があげら
れる。
Examples of such charge transport materials include the following.

米国特許第3112197号明細書に記載されているトリア
ゾール誘導体、 米国特許第3189447号明細書に記載されているオキサ
ジアゾール誘導体、 特公昭37−16096号公報等に記載されているイミダゾ
ール誘導体、 米国特許第3615402号,同3820989号,同3542544号明
細書や特公昭45−555号,同51−10983号公報さらには特
開昭51−93224号,同55−17105号,同56−4148号,同55
−108667号,同55−156953号,同56−36656号公報等に
記載されているポリアリールアルカン誘導体、 米国特許第3180729号,同4278746号明細書や特開昭55
−88064号,同55−88065号,同49−105537号,同55−51
086号,同56−80051号,同56−88141号,同57−45545
号,同54−112637号,同55−74546号公報等に記載され
ているピラゾリン誘導体およびピラゾロン誘導体、 米国特許第3615404号明細書や特公昭51−10105号,同
46−3712号,同47−25336号公報さらには特開昭54−534
35号,同54−110536号,同54−1199925号公報等に記載
されているフェニレンジアミン誘導体、 米国特許第3567450号,同3180703号,同3240597号,
同3658520号,同4232103号,同4175961号,同4012376号
明細書や特公昭49−35702号,同39−27577号公報さらに
は特開昭55−144250号,同56−119132号,同56−22437
号公報、西独特許第1110518号明細書等に記載されてい
るアリールアミン誘導体、 米国特許第3526501号明細書等に記載されているアミ
ノ置換カルコン誘導体、 米国特許第3257203号明細書等に記載されているオキ
サゾール誘導体、 特開昭56−46234号公報等に記載されているスチリル
アントラセン誘導体、 特開昭54−110837号公報等に記載されているフルオレ
ノン誘導体、 米国特許第371462号明細書や特開昭54−59143号,同5
5−52063号,同55−52064号,同55−46760号,同55−85
495号,同57−11350号,同57−148749号公報等に記載さ
れているヒドラゾン誘導体、 特開昭61−210363号,同61−228451号,同61−14642
号,同61−72255号,同62−47646号,同62−36674号,
同62−10652号,同62−30255号,同60−93445号、同60
−94462号,同60−174749号,同60−175052号公報等に
記載されているスチルベン誘導体などを列挙することが
できる。
U.S. Pat.No. 3,112,197, triazole derivative, U.S. Pat. Nos. 3615402, 3820989, 3542544 and JP-B-45-555, 51-10983, and JP-A-51-93224, 55-17105, 56-4148, 55
Polyarylalkane derivatives described in JP-A-108667, JP-A-55-156953, JP-A-56-36656 and the like; U.S. Patent Nos. 3,180,729 and 4,278,746;
-88064, 55-88065, 49-105537, 55-51
Nos. 086, 56-80051, 56-88141, 57-45545
Pyrazoline derivatives and pyrazolone derivatives described in U.S. Pat. Nos. 6,115,105, 54-112637, 55-74546, and the like.
46-3712, 47-25336 and JP-A-54-534.
Phenylenediamine derivatives described in JP-A-35-54, JP-A-54-110536, JP-A-5-199925 and the like; U.S. Patent Nos. 3,567,450, 3,180,703, 3,240,597;
Nos. 3,658,520, 4,322,103, 4,117,961 and 4,012,376, and JP-B-49-35702, JP-A-39-27577, and JP-A-55-144250, JP-A-56-119132, and JP-A-56-119. 22437
JP-A No. 1110518, an arylamine derivative described in U.S. Pat.No. 3,235,501, an amino-substituted chalcone derivative described in U.S. Pat. Oxazole derivatives, styryl anthracene derivatives described in JP-A-56-46234, etc., fluorenone derivatives described in JP-A-54-110837, etc., U.S. Pat. 54-59143, 5
5-52063, 55-52064, 55-46760, 55-85
Hydrazone derivatives described in JP-A-495-57, JP-A-57-11350, JP-A-57-148749, etc., and JP-A-61-210363, JP-A-61-228451, JP-A-61-14642.
Nos. 61-72255, 62-47646, 62-36674,
No. 62-10652, No. 62-30255, No. 60-93445, No. 60
Stilbene derivatives and the like described in JP-A-94462, JP-A-60-174749, JP-A-60-175052 and the like can be listed.

さらに特に好ましい例としては、特開昭63−295695号
公報に開示されているホール輸送層としての化合物(芳
香族三級アミン)や正孔注入帯としての化合物(ポリフ
ィリン化合物)をあげることができる。
More particularly preferred examples include a compound (aromatic tertiary amine) as a hole transport layer and a compound (porphyrin compound) as a hole injection zone disclosed in JP-A-63-295695. .

さらに特に正孔伝達化合物として好ましい例は、特開
昭53−27033号公報,同54−58445号公報,同54−149634
号公報,同54−64299号公報,同55−79450号公報,同55
−144250号公報,同56−119132号公報,同61−295558号
公報,同61−98353号公報及び米国特許第4127412号明細
書等に開示されているものである。それらの例を示せば
次の如くである。
Further preferred examples of the hole transport compound are described in JP-A-53-27033, JP-A-54-58445, and JP-A-54-149634.
JP-A-54-64299, JP-A-55-79450, and 55
No. 144250, No. 56-119132, No. 61-295558, No. 61-98353, and U.S. Pat. No. 4,127,412. Examples of these are as follows.

これらの正孔伝達化合物から正孔注入輸送層を形成す
るが、この正孔注入輸送層は一層からなってもよく、あ
るいは上記一層と別種の化合物を用いた正孔注入輸送層
を積層してもよい。前述のように本発明の一つは、正孔
注入輸送性を保有する低分子化合物を一般式(III)の
残基Yとして用いるならば、重合体薄膜は正孔注入輸送
層になりえるという点である、 一方、電子注入輸送層(電子注入層)は電子を伝達す
る機能(電子注入機能,電子輸送機能といい区別しな
い。)化合物よりなる。電子注入輸送層を形成する電子
伝達化合物(電子注入材料)の好ましい例には、 などのニトロ置換フルオレノン誘導体、 特開昭57−149259号,同58−55450号,同63−104061
号公報等に記載されているアントラキノジメタン誘導
体、 Polymer Preprints,Japan Vol.37,No.3(1988),p.68
1等に記載されている などのジフェニルキノン誘導体、 などのチオピランジオキシド誘導体、 J.J.APPl.Phys.,27,L269(1988)等に記載されている で表わされる化合物、 特開昭60−69657号,同61−143764号,同61−148159
号公報等に記載されているフレオレニリデンメタン誘導
体、 特開昭61−225151号,同61−233750号公報等に記載さ
れているアントラキノジメタン誘導体及びアントロン誘
導体、 で表わされるオキサジアゾール誘導体を挙げることがで
きる。
A hole injecting and transporting layer is formed from these hole transporting compounds, and the hole injecting and transporting layer may be composed of a single layer or a layer in which a hole injecting and transporting layer using a different kind of compound is stacked. Is also good. As described above, one of the aspects of the present invention is that a polymer thin film can be a hole injecting and transporting layer if a low molecular compound having hole injecting and transporting properties is used as the residue Y of the general formula (III). On the other hand, the electron injecting and transporting layer (electron injecting layer) is composed of a compound that has a function of transmitting electrons (the electron injecting function and the electron transporting function are not distinguished). Preferred examples of the electron transfer compound (electron injection material) for forming the electron injection transport layer include: Nitro-substituted fluorenone derivatives such as JP-A-57-149259, JP-A-58-55450 and JP-A-63-104061.
No. 3 (1988), p.68, anthraquinodimethane derivatives described in Japanese Unexamined Patent Publication No.
Listed in 1 etc. Diphenylquinone derivatives such as, Thiopyran dioxide derivatives such as those described in JJAPPl. Phys., 27, L269 (1988), etc. Compounds represented by the following formulas: JP-A-60-69657, JP-A-61-143764, JP-A-61-148159
And the anthraquinodimethane derivatives and anthrone derivatives described in JP-A-61-225151 and JP-A-61-233750. The oxadiazole derivative represented by these can be mentioned.

前述のように本発明の一つは、電子注入機能をもつ低
分子化合物を残基Yとして用いるならば、重合体薄膜は
電子注入輸送層になり得るということである。
As described above, one of the aspects of the present invention is that if a low molecular compound having an electron injecting function is used as the residue Y, the polymer thin film can serve as an electron injecting and transporting layer.

本発明のEL素子は、印加電圧が交流の場合(交流駆
動)には、陽極側にプラスの電圧が印加されているバイ
アス状態の時のみ発光が観測される。また、印加電圧が
直流の場合(直流駆動)には、陽極側にプラスの電圧を
印加することにより常に発光が観測される。
In the EL element of the present invention, when the applied voltage is AC (AC drive), light emission is observed only in a bias state in which a positive voltage is applied to the anode side. When the applied voltage is direct current (direct current drive), light emission is always observed by applying a positive voltage to the anode side.

〔実施例〕〔Example〕

次に本発明を実施例により更に詳しく説明する。 Next, the present invention will be described in more detail with reference to examples.

実施例1 (EL発光層機能を有するモノマーの合成) 上記式で表される化合物を公知の文献Polymer Prepri
nts.Japan 37(1988)770及びPolymer Preprints.Japan
38(1989)447に従い合成し、ベンゼンより再結晶し精
製した。この化合物の融点は301〜305℃であった。
Example 1 (Synthesis of monomer having EL light emitting layer function) The compound represented by the above formula is converted to a known literature Polymer Prepri
nts.Japan 37 (1988) 770 and Polymer Preprints.Japan
38 (1989) 447, recrystallized from benzene and purified. The melting point of this compound was 301-305 ° C.

(発光層の蒸着重合) 上記モノマー500mgを真空蒸着装置の一方の蒸着源に
入れ、更に市販(アルドリッチ社製)のピロメリット酸
二無水物(下式)を他方の蒸着源に入れた。
(Vaporization polymerization of light emitting layer) 500 mg of the above monomer was placed in one deposition source of a vacuum deposition apparatus, and a commercially available (manufactured by Aldrich) pyromellitic dianhydride (the following formula) was placed in the other deposition source.

また基板としては、1000ÅのITO付き白板ガラス(HOY
A社製)のイソプロピルアルコールにて洗浄し、乾燥窒
素ガスにて吹きつけ乾燥し、さらにUVオゾン洗浄を行っ
た。
In addition, as a substrate, a white sheet glass (HOY
(Company A), washed with isopropyl alcohol, blown dry with dry nitrogen gas, and further washed with UV ozone.

この基板を室温に保持し、前記蒸着源をハロゲンラン
プにより同時に加熱し、それぞれ4Å/秒で蒸発するよ
うに制御した。この蒸着速度が一定になるように留意し
ながら、基板上の蒸着膜が水晶振動子式膜厚計で600Å
を示したところで蒸着を止めた。
The substrate was kept at room temperature, and the evaporation sources were simultaneously heated by a halogen lamp, and each was controlled to evaporate at 4 ° / sec. While keeping the deposition rate constant, the deposited film on the substrate was
When the mark was displayed, the deposition was stopped.

次いで、真空槽から取り出した試料を乾燥窒素雰囲気
のオーブンにて200℃で40分間加熱(キュアー)し、蒸
着重合を完了した。
Next, the sample taken out of the vacuum chamber was heated (cured) at 200 ° C. for 40 minutes in an oven in a dry nitrogen atmosphere to complete vapor deposition polymerization.

(ポリイミドが生成されることの確認) 基板をNaCl単結晶として上記同様に操作を行い、膜厚
が2μmの蒸着重合膜を形成した。
(Confirmation of Polyimide Formation) The same operation as above was performed using a NaCl single crystal as a substrate to form a vapor-deposited polymer film having a thickness of 2 μm.

この試料を用いてIRスペクトルを測定したところ、17
80cm-1,1720cm-1,1380cm-1にイミド結合による吸収ピー
クが存在した。このピークはキュアー後に出現し、キュ
アーによりポリイミドが生成していることを証明してい
る。またキュアー前に存在した酸無水物のピーク(1790
cm-1,1850cm-1付近のもの)は残存モノマーを示唆して
いたが、キュアー後には消失していた。さらにこの膜の
耐熱性を確認するためにNaCl基板を水で溶解して除去し
た後、DSC(示差熱分析計)及びTGA(熱重量分析計)に
て測定を行った。その結果、DSCによりガラス転移点は3
40℃,TGAにより分解温度は480℃と高耐熱性であること
が確認できた。
When an IR spectrum was measured using this sample, 17
80cm -1, 1720cm -1, absorption peaks due to imide bond was present in 1380 cm -1. This peak appears after curing, proving that polyimide has been formed by curing. Also, the peak of the acid anhydride present before curing (1790
cm -1, 1850 cm -1 vicinity ones) has been suggested a residual monomer had disappeared after curing. Further, in order to confirm the heat resistance of this film, the NaCl substrate was dissolved and removed with water, and then measured by DSC (differential thermal analyzer) and TGA (thermogravimetric analyzer). As a result, the glass transition point was 3 according to DSC.
By TGA, the decomposition temperature was 480 ° C, confirming high heat resistance.

(EL素子の作製、発光の確認) 前記ガラス基板上に作製した発光層上に、Mg:In電極
を蒸着した。Mgの蒸着速度は30Å/秒,Inの蒸着速度は
3〜4Å/秒にそれぞれ設定した。
(Preparation of EL element and confirmation of light emission) An Mg: In electrode was deposited on the light emitting layer formed on the glass substrate. The deposition rate of Mg was set at 30 ° / sec, and the deposition rate of In was set at 3-4 ° / sec.

次に、ITO電極を正に、Mg:In電極を負にして直流9Vを
印加したところ、EL素子が生じた。
Next, when a direct current of 9 V was applied with the ITO electrode being positive and the Mg: In electrode being negative, an EL element was produced.

実施例2 (正孔注入層材料の合成) 特開昭63−220251の合成例IVに従いガラス転移点が高
く、融点も323℃であるトリフェニルアミン化合物(下
式)を合成した。
Example 2 (Synthesis of hole injection layer material) A triphenylamine compound having a high glass transition point and a melting point of 323 ° C (the following formula) was synthesized according to Synthesis Example IV of JP-A-63-220251.

次いで、FDマススペクトルにより、m/e=1322
(M)の白色固体をシリカゲルにより精製後単離し
た。融点は323〜324.5℃であった。
Next, according to the FD mass spectrum, m / e = 1322
The (M * ) white solid was isolated after purification on silica gel. Melting point was 323-324.5 ° C.

(EL素子の作製、発光の確認) 上記トリフェニルアミン化合物500mgをモリブデン製
の蒸着ボートの中に入れ、これを通電して実施例1と同
様な基板に700Å蒸着した。さらに実施例1と同様にし
てポリイミド発光層を650Å形成した。但し薄膜である
トリフェニルアミン誘導体よりなる正孔注入層の膜状態
をこわさないようにキュアーを150℃で10時間行った。
さらに実施例1と同様にMg:In電極を形成し素子を作製
した。
(Preparation of EL Device and Confirmation of Light Emission) 500 mg of the above triphenylamine compound was placed in a molybdenum vapor deposition boat, and this was energized to vapor-deposit 700 ° on the same substrate as in Example 1. Further, in the same manner as in Example 1, a polyimide light emitting layer was formed at 650 °. However, curing was performed at 150 ° C. for 10 hours so as not to break the film state of the hole injection layer made of a triphenylamine derivative, which is a thin film.
Further, an Mg: In electrode was formed in the same manner as in Example 1 to produce an element.

実施例1と同様に素子に通電し、青味緑色発光輝度20
0cd/m2に到達できることを確認した。このときの電流密
度は15mA/cm2、印加電圧は5Vであり、発光効率は0.84lm
/Wであった。この素子を乾燥アルゴン中で、初期輝度を
100cd/m2として寿命テストを行った。約2700時間発光し
た後に初期輝度の1/2となり従来技術を大きく上回る寿
命を示した。
The element was energized in the same manner as in Example 1 to obtain a bluish green emission luminance of 20%.
It has been confirmed that 0 cd / m 2 can be reached. At this time, the current density was 15 mA / cm 2 , the applied voltage was 5 V, and the luminous efficiency was 0.84 lm.
/ W. The device was dried in dry argon to
A life test was performed at 100 cd / m 2 . After emitting light for about 2700 hours, the initial luminance was reduced to half of that of the conventional technology, and the life was greatly exceeded.

実施例3 (正孔注入輸送層の形成) (トリフェニルアミン誘導体の合成) 上記式のジアミノトリフェニルアミン誘導体を常法に
従い合成した。まず、3,3′−ジニトロトリフェニルア
ミンを文献Bull.Soc.Jpn.59(1986)803に従い合成し
た。なお、この化合物はアニリンとp−フルオロニトロ
ベンゼンよりウルマンコンデンセーション法によっても
合成できる。この化合物の融点は145〜146℃であった。
Example 3 (Formation of hole injection transport layer) (Synthesis of triphenylamine derivative) The diaminotriphenylamine derivative of the above formula was synthesized according to a conventional method. First, 3,3'-dinitrotriphenylamine was synthesized according to the document Bull. Soc. Jpn. 59 (1986) 803. This compound can also be synthesized from aniline and p-fluoronitrobenzene by Ullman condensation. The melting point of this compound was 145-146 ° C.

次いで、この化合物を塩酸鉄を用いる公知の還元法に
より還元して、3,3′−ジアミノトリフェニルアミンを
得た。
Next, this compound was reduced by a known reduction method using iron hydrochloride to obtain 3,3'-diaminotriphenylamine.

(電荷輸送層(正孔注入層)の重合形成) 上記の合成にて得たモノマー(3,3′−ジアミノトリ
フェニルアミン)500gを、真空蒸着装置の一方の蒸着源
に入れた。更に市販のテレフタル酸クロリド2gを他方の
蒸着源に入れた。
(Polymerization Formation of Charge Transport Layer (Hole Injection Layer)) 500 g of the monomer (3,3'-diaminotriphenylamine) obtained in the above synthesis was placed in one of the evaporation sources of a vacuum evaporation apparatus. Further, 2 g of commercially available terephthalic acid chloride was placed in the other evaporation source.

実施例1と同様に洗浄した1000ÅのITO白ガラス基板
を室温に保温し、真空槽を10-6Torrまでの真空に排気し
た。前記蒸着源のうちテレフタル酸クロリドの方をハロ
ゲンランプにより加熱し、真空圧が10-4Torrになること
を確認した。このとき前記トリフェニルアミン誘導体
(3,3′−ジアミノトリフェニルアミン)の入った蒸着
源を4Å/秒の蒸着速度になるまで加熱した。基板上の
水晶振動子式膜厚計が700Åを示したところで蒸着重合
をやめた。
A 1000 ° ITO white glass substrate washed in the same manner as in Example 1 was kept at room temperature, and the vacuum chamber was evacuated to a vacuum of 10 -6 Torr. Of the evaporation sources, terephthalic acid chloride was heated by a halogen lamp, and it was confirmed that the vacuum pressure became 10 -4 Torr. At this time, the deposition source containing the triphenylamine derivative (3,3'-diaminotriphenylamine) was heated until the deposition rate reached 4 ° / sec. The vapor deposition polymerization was stopped when the crystal oscillator thickness gauge on the substrate showed 700 °.

以上により形成された重合体薄膜を剥離し、KBrペレ
ット法にてアミド基による吸収ピークを確認した(1650
cm-1付近)。これによりトリフェニルアミンが構造内に
入ったポリアミド薄膜が生成された。
The polymer thin film formed as described above was peeled off, and an absorption peak due to an amide group was confirmed by a KBr pellet method (1650).
cm -1 ). This produced a polyamide thin film with triphenylamine in the structure.

実施例4 (EL素子の作製) 実施例3と同様にし、正孔注入輸送層であるポリアミ
ド薄膜を作製した。次に真空蒸着法にてAl(Ox)(O
x:オキシン)錯体層を形成した(膜厚600Å)。
Example 4 (Production of EL element) In the same manner as in Example 3, a polyamide thin film as a hole injection / transport layer was produced. Next, Al (Ox) 3 (O
An x: oxin) complex layer was formed (film thickness: 600 °).

更にMg:Cu電極を蒸着法にて形成した。ITOを正極、M
g:Cu電極を負極にし、直流電圧8Vを印加したところ、50
mA/cm2の電流が流れ、輝度1300cd/m2の緑色発光(黄
味)を得た。
Further, an Mg: Cu electrode was formed by an evaporation method. ITO as positive electrode, M
g: When the Cu electrode was used as a negative electrode and a DC voltage of 8 V was applied, 50
A current of mA / cm 2 flowed, and green light emission (yellow) with a luminance of 1300 cd / m 2 was obtained.

以上、実施例3,4により電荷輸送層を蒸着重合法によ
り形成できることを確認した。
As described above, Examples 3 and 4 confirmed that the charge transport layer could be formed by vapor deposition polymerization.

〔発明の効果〕〔The invention's effect〕

叙上の如く、本発明の有機EL素子は、従来のEL素子に
比べて高耐熱の発光層により形成することができるの
で、熱劣化を抑制して長寿命化を図ることができる。ま
た、本発明の方法によれば従来困難とされていた発光層
のパターニングを行うことが可能となり、フォトエッチ
ングにより様々なパターンの発光層を有するEL素子を作
製できる。
As described above, since the organic EL device of the present invention can be formed with a light-emitting layer having higher heat resistance than a conventional EL device, it is possible to suppress thermal deterioration and extend the life. Further, according to the method of the present invention, it is possible to perform patterning of the light emitting layer, which has been conventionally difficult, and it is possible to manufacture EL elements having light emitting layers of various patterns by photoetching.

したがって、ディスプレイのEL素子化など、各種機器
の表示用のEL素子として安価で安定した製品を提供する
ことが可能である。
Therefore, it is possible to provide an inexpensive and stable product as an EL element for display of various devices, such as an EL element for a display.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−216998(JP,A) 特開 平3−20992(JP,A) 特開 平1−243393(JP,A) 特開 平2−267889(JP,A) 特開 平2−78187(JP,A) (58)調査した分野(Int.Cl.6,DB名) H05B 33/10 H05B 33/14 H05B 33/22──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-216998 (JP, A) JP-A-3-20992 (JP, A) JP-A-1-243393 (JP, A) JP-A-2- 267889 (JP, A) JP-A-2-78187 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H05B 33/10 H05B 33/14 H05B 33/22

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】発光層材料もしくは電荷注入層材料として
エレクトロルミネッセンスの発光層機能,電荷輸送機能
及び電荷注入機能の少なくとも一つを有し、蒸着法によ
り形成された膜厚0.5μm以下で、かつガラス転移温度2
00℃以上の耐熱性重合体薄膜を用いたことを特徴とする
薄膜エレクトロルミネッセンス素子。
1. A light emitting layer material or a charge injection layer material having at least one of an electroluminescence light emitting layer function, a charge transport function and a charge injection function, having a thickness of 0.5 μm or less formed by a vapor deposition method, and Glass transition temperature 2
A thin-film electroluminescent device using a heat-resistant polymer thin film at a temperature of 00 ° C. or higher.
【請求項2】発光層機能を有する重合体薄膜の発光輝度
が、10cd/m2以上である請求項1記載の薄膜エレクトロ
ルミネッセンス素子。
2. The thin-film electroluminescence device according to claim 1, wherein the light-emitting luminance of the polymer thin film having a light-emitting layer function is 10 cd / m 2 or more.
【請求項3】重合体薄膜がポリイミドからなるものであ
る請求項1又は2記載の薄膜エレクトロルミネッセンス
素子。
3. The thin-film electroluminescent device according to claim 1, wherein the polymer thin film is made of polyimide.
【請求項4】基板上に電極を形成する工程,電荷輸
送層を形成する工程,発光層を形成する工程及び対
向電極を形成する工程を、単一もしくは複数回工程とし
てもつ有機薄膜エレクトロルミネッセンス素子の製造工
程中に、エレクトロルミネッセンスに必要な電荷注入機
能,電荷輸送機能もしくは発光層機能の少なくとも一つ
を保有する発光層又は電荷輸送層作製工程として、ガラ
ス転移温度200℃以上の耐熱性重合体形成性モノマー源
を蒸着し、次いで該モノマーを重合して、該発光層又は
電荷輸送層を形成する工程が含まれることを特徴とする
薄膜エレクトロルミネッセンス素子の製造方法。
4. An organic thin-film electroluminescence device having a step of forming an electrode on a substrate, a step of forming a charge transport layer, a step of forming a light emitting layer, and a step of forming a counter electrode as a single step or a plurality of steps. During the manufacturing process, a heat-resistant polymer having a glass transition temperature of 200 ° C. or higher is used as a light-emitting layer or a charge-transport layer having at least one of a charge injection function, a charge transport function, and a light-emitting layer function required for electroluminescence. A method for producing a thin-film electroluminescent device, comprising a step of forming a light-emitting layer or a charge transport layer by vapor-depositing a formable monomer source and then polymerizing the monomer.
【請求項5】エレクトロルミネッセンスの発光層機能を
有する耐熱性重合体形成性モノマー源を蒸着し、次いで
該モノマーを重合して発光層とした後に、該発光層をパ
ターニング加工する工程を含む請求項4記載の薄膜エレ
クトロルミネッセンス素子の製造方法。
5. A step of depositing a heat-resistant polymer-forming monomer source having a function of an electroluminescent light-emitting layer, and then patterning the light-emitting layer after polymerizing the monomer to form a light-emitting layer. 5. The method for manufacturing a thin-film electroluminescence device according to 4.
【請求項6】エレクトロルミネッセンスの発光層機能を
有する耐熱性重合体形成性モノマー源を蒸着し、該モノ
マーをフォトエッチング可能な程度に重合しつつ形成し
た重合層をフォトエッチングによりパターニング加工
し、次いで重合を完結させてパターニング加工された発
光層とする工程を含む請求項4記載の薄膜エレクトロル
ミネッセンス素子の製造方法。
6. A heat-resistant polymer-forming monomer source having an electroluminescent light-emitting layer function is deposited, and the polymerized layer formed while polymerizing the monomer to an extent capable of photoetching is patterned by photoetching. 5. The method for manufacturing a thin film electroluminescent device according to claim 4, further comprising a step of completing polymerization to form a patterned light emitting layer.
JP2073484A 1990-03-26 1990-03-26 Organic thin-film electroluminescence device and method of manufacturing the same Expired - Lifetime JP2774351B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2073484A JP2774351B2 (en) 1990-03-26 1990-03-26 Organic thin-film electroluminescence device and method of manufacturing the same
US07/669,754 US5443921A (en) 1990-03-26 1991-03-15 Thin film electroluminescence device and process for production thereof
EP91104486A EP0449125B1 (en) 1990-03-26 1991-03-22 Thin film electroluminescence device and process for production thereof
DE69105571T DE69105571T2 (en) 1990-03-26 1991-03-22 Electroluminescent thin film device and method for producing the same.
US08/451,533 US5705284A (en) 1990-03-26 1995-05-26 Thin film electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2073484A JP2774351B2 (en) 1990-03-26 1990-03-26 Organic thin-film electroluminescence device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03274693A JPH03274693A (en) 1991-12-05
JP2774351B2 true JP2774351B2 (en) 1998-07-09

Family

ID=13519600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2073484A Expired - Lifetime JP2774351B2 (en) 1990-03-26 1990-03-26 Organic thin-film electroluminescence device and method of manufacturing the same

Country Status (4)

Country Link
US (2) US5443921A (en)
EP (1) EP0449125B1 (en)
JP (1) JP2774351B2 (en)
DE (1) DE69105571T2 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408109A (en) 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
JPH0711244A (en) * 1993-06-24 1995-01-13 Mitsui Petrochem Ind Ltd Thin film element emitting light in electric field and method for producing same
JPH0711249A (en) * 1993-04-28 1995-01-13 Mitsui Petrochem Ind Ltd Thin film electroluminescent element and its production
CA2122328C (en) * 1993-04-28 1999-01-19 Hideyuki Murata Thin-film electroluminescent device
US5854868A (en) * 1994-06-22 1998-12-29 Fujitsu Limited Optical device and light waveguide integrated circuit
EP1315006A1 (en) * 1994-06-22 2003-05-28 Fujitsu Limited Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board
EP0698649A1 (en) * 1994-08-26 1996-02-28 Basf Aktiengesellschaft Use of thermoplastically processible long time stable electroluminescent materials
US5504183A (en) * 1994-09-12 1996-04-02 Motorola Organometallic fluorescent complex polymers for light emitting applications
US5665857A (en) * 1994-09-12 1997-09-09 Motorola Conjugated polymer with built-in fluorescent centers and method of manufacture
US6143433A (en) * 1994-09-14 2000-11-07 Mitsui Chemicals, Inc. Organic electroluminescent device and process for producing the same
DE19500912A1 (en) * 1995-01-13 1996-07-18 Basf Ag Electroluminescent arrangement
DE19502541A1 (en) * 1995-01-27 1996-08-08 Bosch Gmbh Robert Electroluminescent system
CA2263150C (en) * 1996-08-12 2005-06-21 The Trustees Of Princeton University Non-polymeric flexible organic light emitting device
KR0176076B1 (en) * 1996-08-28 1999-02-01 양승택 An organic compound polymer emit light element
US5985417A (en) * 1996-09-03 1999-11-16 Motorola, Inc. Polymer stabilized molecular whole transporting materials for organic electroluminescence displays
US5747183A (en) * 1996-11-04 1998-05-05 Motorola, Inc. Organic electroluminescent light emitting material and device using same
US5817431A (en) * 1996-12-23 1998-10-06 Motorola, Inc. Electron injecting materials for organic electroluminescent devices and devices using same
US5958573A (en) * 1997-02-10 1999-09-28 Quantum Energy Technologies Electroluminescent device having a structured particle electron conductor
US6013383A (en) * 1997-02-18 2000-01-11 Motorola, Inc. Organic electroluminescence device with improved hole transporting material
US6497969B2 (en) 1997-09-05 2002-12-24 Nessdisplay Co., Ltd. Electroluminescent device having an organic layer including polyimide
JPH11199864A (en) 1997-10-10 1999-07-27 Koto Gijutsu Kenkyuin Kenkyu Kumiai Production of electroluminescence device
JP3266573B2 (en) * 1998-04-08 2002-03-18 出光興産株式会社 Organic electroluminescence device
DE69841627D1 (en) * 1998-12-15 2010-06-02 Max Planck Inst Fuer Polymerfo Functional material-containing polyimide layer, device using it, and method of making this device
US6355756B1 (en) * 1999-05-18 2002-03-12 International Business Machines Corporation Dual purpose electroactive copolymers, preparation thereof, and use in opto-electronic devices
KR100644168B1 (en) * 1999-11-24 2006-11-13 고등기술연구원연구조합 Organic electroluminescent device containing electro-active organic complex thin layers
US6617186B2 (en) * 2000-09-25 2003-09-09 Dai Nippon Printing Co., Ltd. Method for producing electroluminescent element
JP2005032735A (en) * 2000-09-25 2005-02-03 Dainippon Printing Co Ltd Electroluminescent element
TW498702B (en) * 2000-11-28 2002-08-11 Hannstar Display Corp Polarized electro-luminescence device and manufacturing method for the same
KR100390727B1 (en) * 2001-01-11 2003-07-10 (주)네스디스플레이 Organic electroluminescent device comprising crosslinked polyimide layer as inter organic layer
US6882100B2 (en) * 2001-04-30 2005-04-19 Hewlett-Packard Development Company, L.P. Dielectric light device
US6649433B2 (en) * 2001-06-26 2003-11-18 Sigma Technologies International, Inc. Self-healing flexible photonic composites for light sources
WO2003022955A1 (en) * 2001-09-11 2003-03-20 Nessdisplay Co., Ltd. Organic electroluminescent device having a polyimide hole transport layer
AU2003235373A1 (en) * 2002-05-22 2003-12-02 Fuji Electric Holdings Co., Ltd. Organic el luminescence device
JP2004281247A (en) * 2003-03-17 2004-10-07 Pioneer Electronic Corp Organic electroluminescent display panel and its manufacturing method
GB0321781D0 (en) 2003-09-17 2003-10-15 Toppan Printing Company Ltd Electroluminescent device
US20050187364A1 (en) * 2004-02-19 2005-08-25 Norman Herron Polymers having pendant triarylmethane groups and electronic devices made with such polymers
JP4366226B2 (en) * 2004-03-30 2009-11-18 東北パイオニア株式会社 Organic EL panel manufacturing method, organic EL panel film forming apparatus
JP2005320393A (en) * 2004-05-07 2005-11-17 Rikogaku Shinkokai Fluorescent material
TWI268121B (en) 2005-04-21 2006-12-01 Au Optronics Corp Light emission material and organic electroluminescent device using the same
JP2007073814A (en) * 2005-09-08 2007-03-22 Idemitsu Kosan Co Ltd Organic electroluminescence element using polyarylamine
US9056285B2 (en) 2012-11-28 2015-06-16 Central Glass Company, Limited Gas separation membrane
US9050566B2 (en) 2012-11-28 2015-06-09 Central Glass Company, Limited Gas separation membrane
US9793483B2 (en) 2012-11-28 2017-10-17 Central Glass Company, Limited Hexafluoroisopropanol group-containing diamine, polyimide and polyamide using same, cyclized product thereof, and method for producing same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) * 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US4513023A (en) * 1983-02-23 1985-04-23 Union Carbide Corporation Method of constructing thin electroluminescent lamp assemblies
US4539507A (en) * 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US4730146A (en) * 1986-10-21 1988-03-08 W. H. Brady Co. Folded electroluminescent lamp assembly
CA1299157C (en) * 1986-12-19 1992-04-21 Akira Tanaka Illuminating apparatus
US4720432A (en) * 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US5121029A (en) * 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
JPH01243393A (en) * 1988-03-24 1989-09-28 Nec Corp Organic thin-film luminescent device and manufacture thereof
US5015748A (en) * 1988-10-01 1991-05-14 Idemitsu Kosan Co., Ltd. Novel ferrocene derivatives, surfactants containing same and a process for producing organic thin films
US5122247A (en) * 1988-12-17 1992-06-16 Idemitsu Kosan Co., Ltd. Process for producing thin films
FR2643180B1 (en) * 1989-02-10 1991-05-10 France Etat MONOCHROME MEMORY DISPLAY DEVICE OF THE PHOTOCONDUCTIVE-ELECTROLUMINESCENT TYPE
US5126214A (en) * 1989-03-15 1992-06-30 Idemitsu Kosan Co., Ltd. Electroluminescent element
US5130603A (en) * 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JPH02250892A (en) * 1989-03-24 1990-10-08 Idemitsu Kosan Co Ltd New ferrocene derivative, surfactant containing the same and production of organic thin film
JPH02305886A (en) * 1989-05-19 1990-12-19 Nec Corp Organic thin-film el element
JPH0320992A (en) * 1989-06-16 1991-01-29 Seiko Epson Corp Light emitting element
US5142343A (en) * 1989-08-18 1992-08-25 Idemitsu Kosan Co., Ltd. Organic electroluminescence device with oligomers
JPH03216998A (en) * 1990-01-19 1991-09-24 Ricoh Co Ltd Electro-luminescent element
US5364654A (en) * 1990-06-14 1994-11-15 Idemitsu Kosan Co., Ltd. Process for production of a thin film electrode and an electroluminescence device

Also Published As

Publication number Publication date
EP0449125A2 (en) 1991-10-02
DE69105571T2 (en) 1995-04-13
US5705284A (en) 1998-01-06
EP0449125B1 (en) 1994-12-07
DE69105571D1 (en) 1995-01-19
US5443921A (en) 1995-08-22
JPH03274693A (en) 1991-12-05
EP0449125A3 (en) 1992-03-11

Similar Documents

Publication Publication Date Title
JP2774351B2 (en) Organic thin-film electroluminescence device and method of manufacturing the same
JP2651233B2 (en) Thin-film organic EL device
JP3109896B2 (en) Organic electroluminescence device
JP3093796B2 (en) Charge injection auxiliary material and organic electroluminescence device containing the same
JP2846571B2 (en) Organic electroluminescence device
JP2793383B2 (en) Organic electroluminescence device
US8168327B2 (en) Imide derivative, material for organic electroluminescent device and organic electroluminescent device using the same
EP1850405A1 (en) Ink for forming organic el coating film and method for production thereof
US20080100206A1 (en) Organic Electroluminescent Device
JPH02247278A (en) Electroluminescence element
JPH06145146A (en) Oxinate derivative
JPH061973A (en) Organic electroluminescent element
JP2007514654A (en) Crosslinkable substituted fluorene compounds
JPH07157473A (en) Triazine derivative, its production and electric field luminescent element using the same
JPH03250583A (en) Electroluminescence element and its manufacture
JP2846503B2 (en) Device thin film electrode, electroluminescent device having the same, and methods of manufacturing the same
JPH07188340A (en) Copolymer, its production and electroluminescent element using the same
JPH0726255A (en) Organic el element
JPH02252793A (en) Organic electroluminescent element
JP3109895B2 (en) Organic electroluminescence device
JPH06298758A (en) Coumarin derivative
JPH04298596A (en) Organic electroluminescent element
JPH0333183A (en) Organic thin-film electroluminescent element
JP2003303689A (en) Electroluminescent element using triazine derivative
JPH06330034A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100424

Year of fee payment: 12

EXPY Cancellation because of completion of term