JPH03216998A - Electro-luminescent element - Google Patents

Electro-luminescent element

Info

Publication number
JPH03216998A
JPH03216998A JP2009785A JP978590A JPH03216998A JP H03216998 A JPH03216998 A JP H03216998A JP 2009785 A JP2009785 A JP 2009785A JP 978590 A JP978590 A JP 978590A JP H03216998 A JPH03216998 A JP H03216998A
Authority
JP
Japan
Prior art keywords
luminescent
film
electric field
organic compound
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009785A
Other languages
Japanese (ja)
Inventor
Teruyuki Onuma
大沼 照行
Tetsuo Suzuki
哲郎 鈴木
Fumio Kawamura
史生 河村
Masabumi Ota
正文 太田
Hirota Sakon
洋太 左近
Toshihiko Takahashi
俊彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009785A priority Critical patent/JPH03216998A/en
Publication of JPH03216998A publication Critical patent/JPH03216998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To obtain a luminescent performance having a hightened element breakdown voltage and a long stability, by forming in the electric field polymerization method at least one layer out of other organic compound thin films supported between a positive electrode and a negative electrode. CONSTITUTION:Organic compound layers 3a, 3b are supported between a positive electrode 2 and a negative electrode 3. At least one of the layers 3a is formed in the electric field polymerization method. The layer film 3a, obtained in the electric field polymerization method is polymerized, and more dense than a monomer film formed by a vacuum vapor deposition method or by spin coating method and also higher in withstand voltage. The film 3 is difficult to crystalize, as a result it can help prevent element breakdown and improve element durability in use for a part of an electro-luminescent element. In this method, an electro-luminescent element is obtained which can functions at a low voltage, continues a luminescent performance for many hours, and is easy to control the luminescent wave length with excellent durability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界を印加することにより電気エネルギーを直
接光エネルギーに変換でき,従来の白熱灯、蛍光灯ある
いは発光ダイオードとは異なり大面積の面状発光体の実
現を可能による電界発光素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention can directly convert electrical energy into light energy by applying an electric field, and unlike conventional incandescent lamps, fluorescent lamps, or light emitting diodes, it can be used on a large surface area. The present invention relates to an electroluminescent device capable of realizing a shaped light emitting body.

〔従来の技術〕[Conventional technology]

従来、電界電光素子としては無機化合物からなる薄膜を
積層構成したものが知られている。この無機薄膜型電界
発光素子は一般に第2図に示されるようにガラス基板上
に透明電極(ITO)、絶縁層(S13N4)、発光層
(ZnS:Mn)、絶緑層(Sl3N4)、金属電極(
AI2)の各層が順次形成されている。このような無機
薄膜型電界発光素子は発光輝度は高いものの,駆動電圧
は100〜200vと高く、専用の高耐圧駆動ICが必
要である。また発光層用母体材料や活性剤として使用で
きる材料は限定されており、しかも所望の発光波長で輝
度の高い素子が必ずしも得られるわけではない。
2. Description of the Related Art Hitherto, as an electroluminescent device, one having a laminated structure of thin films made of inorganic compounds is known. This inorganic thin film electroluminescent device generally has a transparent electrode (ITO), an insulating layer (S13N4), a light emitting layer (ZnS:Mn), an evergreen layer (Sl3N4), and a metal electrode on a glass substrate, as shown in Figure 2. (
Each layer of AI2) is formed in sequence. Although such an inorganic thin film type electroluminescent element has high luminance, the driving voltage is as high as 100 to 200 V, and a dedicated high-voltage driving IC is required. Furthermore, materials that can be used as the base material for the light-emitting layer and the activator are limited, and it is not always possible to obtain a device with high brightness at a desired emission wavelength.

これに対して、近年有機薄膜を積層した電界発光素子の
作製が試みられるようになった。これらは例えば特開昭
57−51781号公報に開示されている如く、発光体
となるべき有機化合物の薄層を電子及び/または正孔を
選択的に伝導する材料の薄層で扶持し、その両側に電極
を設けた構造を有する。
In response to this, in recent years attempts have been made to produce electroluminescent devices in which organic thin films are laminated. For example, as disclosed in JP-A-57-51781, a thin layer of an organic compound to serve as a light emitter is supported by a thin layer of a material that selectively conducts electrons and/or holes. It has a structure with electrodes on both sides.

このような有機薄膜型電界発光素子においては無機薄膜
型電界発光素子と比べて、発光層用材科の選択の範囲が
広く、種々の発光波長を有するものが見出されている。
In such organic thin film electroluminescent devices, the range of materials for the light emitting layer can be selected from a wider range than in inorganic thin film electroluminescent devices, and devices having various emission wavelengths have been found.

また一般に駆動電圧も5〜60V程度と低く、且つ大面
積比も容易であることから、フルカラーディスプレイを
始めとする各種発光、表示デバイスへの応用が期待され
ている。
In addition, the driving voltage is generally low, about 5 to 60 V, and the large area ratio is easy, so it is expected to be applied to various light emitting and display devices including full color displays.

しかし、上記の例を含む、有機化合物を発光体とする電
界発光素子はその研究も浅く、未だその材料研究やデバ
イス化への研究が充分になされているとは言えず,現状
では更なる輝度の向上、発光波長のコントロール,耐久
性の向上など、多くの課題をかかえているのが実情であ
る。
However, research on electroluminescent devices using organic compounds as light emitters, including the examples mentioned above, is limited, and it cannot be said that sufficient material research and device development have been carried out. The reality is that there are many challenges to be solved, such as improving light emission, controlling emission wavelength, and improving durability.

特に従来の有機薄膜型電界発光素子においてはモノマー
の有機化合物を真空蒸着法等により薄膜化して用いてい
るために,印加電圧に対する素子の絶縁耐圧に問題があ
り、わずかな過大電圧で素子が破壊したり、また有機化
合物層の結晶化の進行により、素子の寿命が制約されて
いた。
In particular, in conventional organic thin-film electroluminescent devices, the monomer organic compound is made into a thin film using vacuum evaporation, etc., so there is a problem with the dielectric strength of the device against applied voltage, and even a slight excessive voltage can destroy the device. Furthermore, the life of the device is limited by the progress of crystallization of the organic compound layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記のような従来技術の欠点を克服し、低電圧
で駆動可能であって、発光性能が長時間に亘って持続す
ると共に発光波長のコントロールが容易であり、しかも
耐久性に優れた電界発光素子を提供することをその課題
とする。
The present invention overcomes the drawbacks of the prior art as described above, and has a structure that can be driven at low voltage, maintains luminous performance for a long time, allows easy control of the luminous wavelength, and has excellent durability. The object is to provide an electroluminescent device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記課題を解決するための発光層の構成
要素について鋭意検討した結果、二つの電極間に挾持さ
れた一層または複数層の有機化合物より構成される電界
発光素子において、前記有機化合物層のうち少なくとも
一層を電界重合膜とすることにより上記課題が解決でき
ることを見い出も、本発明を完成するに至った。
As a result of intensive studies on the constituent elements of the light-emitting layer to solve the above problems, the present inventors found that in an electroluminescent element composed of one or more layers of organic compounds sandwiched between two electrodes, The inventors have also found that the above-mentioned problems can be solved by making at least one of the compound layers an electropolymerized film, and have completed the present invention.

すなわち、本発明によれば陽極および陰極とこれらの間
に挾持された一層または複数層の有機化合物層より構成
される電界発光素子において、有機化合物層のうち少な
くとも一層が電界重合法により形成されることを特徴と
する電界発光素子が提供される。
That is, according to the present invention, in an electroluminescent element composed of an anode, a cathode, and one or more organic compound layers sandwiched between them, at least one of the organic compound layers is formed by electropolymerization. An electroluminescent device is provided.

本発明においては電界発光素子を構成する有機化合物の
薄膜層のうち少なくとも一層を電界重合膜で構成したこ
とを特徴とする。電界重合法は水または適当な有機溶媒
中に電解質と七ノマーとを溶解し、その溶液中に一対の
電極を挿入して電流を流すことにより、電極面にポリマ
ーの薄膜を析出させる方法である。得られる膜は重合化
しているので、真空蒸着法やスピンコーティング法で形
成したモノマーの膜に比べて、極めて緻密であり、絶縁
耐圧も高い、また結晶化もしにくいため、電界発光素子
の一部に用いた場合,素子の絶縁破壊の防止,耐久性の
向上に寄与することができる。
The present invention is characterized in that at least one of the organic compound thin film layers constituting the electroluminescent device is composed of an electropolymerized film. The electrolytic polymerization method is a method in which an electrolyte and heptamer are dissolved in water or a suitable organic solvent, a pair of electrodes are inserted into the solution, and a current is applied to deposit a thin polymer film on the electrode surface. . Since the resulting film is polymerized, it is extremely dense compared to monomer films formed by vacuum evaporation or spin coating, has a higher dielectric strength, and is less likely to crystallize, making it suitable for use in some electroluminescent devices. When used for this purpose, it can contribute to preventing dielectric breakdown and improving durability of the device.

電界重合法により成膜できる材料としてはピロール、チ
オフェン等の複素五員環,アニリン、アミノピレン等の
芳香族アミン、ベンゼン、ピレン、フルオレン等の芳香
族炭化水素、N−ビニル力ルバゾール等のビニル化合物
などが挙げられるが、特に以下に示す化合物は電界発光
素子の構成要素として適した材料であり、 好ましく使用される. I C,H, 一 C2H, 《 C,H, し2n= C2H. 1 CHJ l CH2CH, H,N−◎−0−◎一NH2 02N一〇一S一〇一NH2 HよN−◎−O−◎−NH一◎ H2N−◎一S一◎−NH一◎ ◎−NH一〇一〇一〇−NH−◎ ◎−NH−◎一S−◎−NH一◎ ◎−NH−◎−O−◎一N{O)). ◎−NH−◎−s−Q−N−{o)2 (q枡N−◎−0−◎一N−C))2 具体的な電界重合膜はたとえば以下のようにして作成さ
れる。まずこれらの有機化合物のモノマーを,比誘電率
が高く、電解質を良く溶解する溶媒、たとえばアセトニ
トリル、ペンゾニトリル、プロピレンカーボネート、メ
チルアルコール等のアルコール類,ジメチルホルムアミ
ド、ニトロベンゼン、N−メチルピロリドン、テトラヒ
ド口フラン、ジメチルスルホキシドなどに溶かし、電解
質を適量加える。電解質としては有機溶媒に可溶で、イ
オン解離しやすい有機または無機の塩または複塩、錯塩
、イオン性染料などが用いられる。具体的なものとして
は(n−C4Hs)JCRO4. (C2H5)4NB
F4、(C.}I,)N}IsO.. (n−C.H9
)4N−CH,{トSO,、(C2HS).NPFG.
 LiCQ04. NaAsFイAgBF,.ローズベ
ンガルなどが用いられる。これらの電界質は精製し真空
乾燥して使用するのが望ましい。この場合、重合反応に
おける電解質の濃度は0.Ol〜1.0+soQ/Q、
好ましくは0.05〜0.3moQ/Rの範囲である。
Materials that can be formed into films by the electric field polymerization method include five-membered heterocycles such as pyrrole and thiophene, aromatic amines such as aniline and aminopyrene, aromatic hydrocarbons such as benzene, pyrene, and fluorene, and vinyl compounds such as N-vinyl rubber. In particular, the compounds shown below are materials suitable as constituent elements of electroluminescent devices and are preferably used. I C, H, 1C2H, 《C,H, 2n= C2H. 1 CHJ l CH2CH, H, N-◎-0-◎1NH2 02N101S101NH2 HyoN-◎-O-◎-NH1◎ H2N-◎1S1◎-NH1◎ ◎ -NH101010-NH-◎ ◎-NH-◎1S-◎-NH1◎ ◎-NH-◎-O-◎1N {O)). ◎-NH-◎-s-Q-N-{o)2 (qmasuN-◎-0-◎-N-C))2 A specific electrolytic polymerization film is produced, for example, as follows. First, the monomers of these organic compounds are mixed with a solvent that has a high dielectric constant and dissolves the electrolyte well, such as alcohols such as acetonitrile, penzonitrile, propylene carbonate, and methyl alcohol, dimethylformamide, nitrobenzene, N-methylpyrrolidone, and tetrahydrofuran. , dissolve in dimethyl sulfoxide, etc., and add an appropriate amount of electrolyte. As the electrolyte, organic or inorganic salts or double salts, complex salts, ionic dyes, etc., which are soluble in organic solvents and easily ionically dissociated, are used. Specifically, (n-C4Hs) JCRO4. (C2H5)4NB
F4, (C.}I,)N}IsO. .. (n-C.H9
)4N-CH, {TOSO,, (C2HS). NPFG.
LiCQ04. NaAsF, AgBF, . Rose Bengal etc. are used. It is desirable to use these electrolytes after purification and vacuum drying. In this case, the concentration of electrolyte in the polymerization reaction is 0. Ol~1.0+soQ/Q,
Preferably it is in the range of 0.05 to 0.3 moQ/R.

七ノマーの濃度は使用する溶媒に対する溶解度に左右さ
れるが,一般には1膳tmoQ/Q〜IIIloQ/Q
の範囲である。本発明の電界重合法においてはポリマー
の生成を促進させるために他に添加物として水素受容体
である2,6−ルチジン、ピリジン. 2,4.6−コ
リジンなどを加えることができる。添加物の濃度は任意
であるが、好ましくはモノマーと等モル〜20倍モルの
笥囲である。電界重合反応は二極でも二極でも可能であ
るが、二極で行なった方が、定電位または定電流重合が
行なえるため望ましい。二極法の場合の参照電極は一般
的なものが使用可能であるが,飽和力ロメル電極(SC
E)か、銀/塩化銀が良く使用される。電解電圧はSC
Hに対して1v以上で重合が可能であるが、重合に際し
ては定電位、定電流,サイクリック電位でもさしつかえ
ない。得られた重合膜は脱ドープを行なってカチオン活
性種を除くことにより、透明に近く、電気的に安定化し
た膜にすることができる・ 以下、本発明を図面によって説明する。
The concentration of the heptanomer depends on its solubility in the solvent used, but generally one serving of tmoQ/Q to IIIloQ/Q
is within the range of In the electrolytic polymerization method of the present invention, 2,6-lutidine, pyridine, etc., which are hydrogen acceptors, are added to promote the production of the polymer. 2,4,6-collidine and the like can be added. Although the concentration of the additive is arbitrary, it is preferably from equimolar to 20 times the molar amount of the monomer. Although the electric field polymerization reaction can be carried out using a bipolar system or a bipolar system, it is preferable to perform the electrolytic polymerization reaction using a bipolar system because constant potential or constant current polymerization can be performed. In the case of the bipolar method, a general reference electrode can be used, but a saturation force Romel electrode (SC
E) or silver/silver chloride is often used. Electrolysis voltage is SC
Polymerization is possible at 1 V or more with respect to H, but constant potential, constant current, or cyclic potential may also be used for polymerization. By dedoping the obtained polymer film to remove cationic active species, it is possible to obtain a nearly transparent and electrically stable film.The present invention will be explained below with reference to the drawings.

第1図(a)は本発明の電界発光素子の模式断面図であ
る。1はガラス基板ないしは合成樹脂基板であり、2は
基板上に形成された陽極電極層、4は陰極電極層である
。3aは正孔輸送能を有する電界重合膜でありその膜厚
は100人から2000人が好ましく,より好ましくは
200人から1000人である。3bは電子輸送能及び
発光機能を有する有機化合物の薄膜層であり、その膜厚
は100人から1500人が好ましく、より好ましくは
200人から1000人である。
FIG. 1(a) is a schematic cross-sectional view of the electroluminescent device of the present invention. 1 is a glass substrate or a synthetic resin substrate, 2 is an anode electrode layer formed on the substrate, and 4 is a cathode electrode layer. 3a is an electropolymerized film having a hole transport ability, and its thickness is preferably from 100 to 2,000, more preferably from 200 to 1,000. 3b is a thin film layer of an organic compound having an electron transport ability and a light emitting function, and its thickness is preferably from 100 to 1,500, more preferably from 200 to 1,000.

陽極材料としてはニッケル、金、白金、パラジウムやこ
れらの合金或いは酸化錫(SnO, )、酸化錫インジ
ウム(ITO)、沃化銅などの仕事関数の大きな金属や
それらの合金、化合物、更にはポリ(3一メチルチオフ
ェン)、ポリピロール等の導電性ボリマーなどを用いる
ことができる。一方、陰極材料としては、仕事関数の小
さな金属たとえば銀、錫、鉛、マグネシウム、マンガン
、アルミニウム、或いはこれらの合金が用いられる。陽
極及び陰極として用いる材料のうち少なくとも一方は、
素子の発光波長領域において十分透明であることが望ま
しい。具体的には80%以上の光透過率を有することが
好ましい。
The anode materials include nickel, gold, platinum, palladium, alloys of these, metals with large work functions such as tin oxide (SnO), indium tin oxide (ITO), copper iodide, their alloys and compounds, and even polyester. (3-methylthiophene), a conductive polymer such as polypyrrole, etc. can be used. On the other hand, as the cathode material, a metal with a small work function such as silver, tin, lead, magnesium, manganese, aluminum, or an alloy thereof is used. At least one of the materials used as the anode and the cathode is
It is desirable that the material be sufficiently transparent in the emission wavelength region of the device. Specifically, it is preferable to have a light transmittance of 80% or more.

第1図(b)は本発明の電界発光素子の他の態様を示す
模式断面図である。1,2,3a,3b,4は第1図(
a)と同一である。3cは電子輸送能を有する有機化合
物の薄膜層である。
FIG. 1(b) is a schematic cross-sectional view showing another embodiment of the electroluminescent device of the present invention. 1, 2, 3a, 3b, 4 are shown in Figure 1 (
Same as a). 3c is a thin film layer of an organic compound having electron transport ability.

本発明による電界発光素子はかかる電界重合膜を正孔輸
送層、発光層,電子輸送層、或いは電極等の構成要素と
して使用する。たとえば正孔輸送層として用いる場合に
は以下の手順により素子作成が行なわれる。すなわち基
板上に陽極としてたとえば酸化錫インジウム(ITO)
をスパッタリング,電子ビーム蒸着、スプレー法等によ
り形成する。
The electroluminescent device according to the present invention uses such an electropolymerized film as a component such as a hole transport layer, a light emitting layer, an electron transport layer, or an electrode. For example, when using it as a hole transport layer, the device is manufactured by the following procedure. That is, for example, indium tin oxide (ITO) is placed on the substrate as an anode.
is formed by sputtering, electron beam evaporation, spraying, etc.

所定パターンにエッチングした後,前述したモノマー材
料のうち適当なものを電界質及び添加物とともに溶媒中
に溶解した溶液を作り、陽極側に設置する。参照電極と
してSCE、また陰極として白金を用い,所定時間電流
を流すとITO上に重合膜が析出する.得られた重合膜
は必要に応じて、逆電界を印加して電界質イオンの脱ド
ーブを行なった後、アセトン,メタノールで洗浄し、真
空乾燥する。このようにして形成された正孔輸送層の上
に順に電子輸送性発光層及び陰極を、例えば真空蒸着法
などにより形成すれば、第1図(a)のような電界発光
素子が作成される。
After etching into a predetermined pattern, a solution is prepared by dissolving a suitable one of the monomer materials mentioned above in a solvent together with an electrolyte and additives, and the solution is placed on the anode side. Using SCE as the reference electrode and platinum as the cathode, a polymer film is deposited on the ITO when a current is passed for a predetermined period of time. The obtained polymer film is dedoped from electrolyte ions by applying a reverse electric field as necessary, and then washed with acetone and methanol and dried in vacuum. By sequentially forming an electron-transporting light-emitting layer and a cathode on the hole-transporting layer thus formed by, for example, a vacuum evaporation method, an electroluminescent device as shown in FIG. 1(a) is created. .

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 陽極として厚さ500人のITO薄膜の形成されたガラ
ス基板を七分洗浄した後、下記溶液を用いて陽極上に正
孔輸送層を形成した. アセトニトリル          2〇−2,6−ル
チジン          0.05■oQ/QN,N
’−ジフエニルベンジジン   4,5mmoR/fl
◎−NH一◎−◎一NH−◎ すなわち上記組成よりなる溶液を電解セルに入れ、陽極
側に1丁0付ガラス基板、陰極として白金線、参照電極
としてSCEを使用した. SCHに対してOV−+2
V−+OV.掃引速度50mV/seeの三角波を印加
して重合を行なった。20秒間通電後、ITO付ガラス
基板を取り出し、プロピレンカーボネート/テトラーn
−プチルアンモニウムパーク口レート(0.1mo12
IQ)溶液中テSCHニ対シテ、OV−+−0.8V−
+OV. 1!引速度50■V/seeの三角波を印加
して、脱ドープを行なった。得られた重合膜は厚さ1 
, 200人のほぼ透明に近い、淡黄色をした平滑な膜
であった。アセトン,メタノールで十分洗浄し、真空乾
燥した後、この重合膜の上に下記材料を真空蒸着により
約750人成膜し、電子輸送性発光層とした。
Example 1 A glass substrate on which a 500-thick ITO thin film was formed as an anode was washed for seven minutes, and then a hole transport layer was formed on the anode using the following solution. Acetonitrile 20-2,6-lutidine 0.05■oQ/QN,N
'-Diphenylbenzidine 4,5mmoR/fl
◎-NH1◎-◎1NH-◎ That is, a solution having the above composition was placed in an electrolytic cell, and a glass substrate with a 1-piece 0 was used as the anode, a platinum wire as the cathode, and an SCE as the reference electrode. OV-+2 for SCH
V-+OV. Polymerization was performed by applying a triangular wave at a sweep rate of 50 mV/see. After applying electricity for 20 seconds, take out the glass substrate with ITO and add propylene carbonate/Tetra n.
-Ptylammonium perkate rate (0.1mol12
IQ) Voltage of SCH in solution, OV-+-0.8V-
+OV. 1! Dedoping was carried out by applying a triangular wave with a drawing rate of 50 V/see. The resulting polymer film has a thickness of 1
, 200 It was a smooth, pale yellow film that was almost transparent. After thorough cleaning with acetone and methanol and vacuum drying, about 750 of the following materials were deposited on the polymer film by vacuum evaporation to form an electron-transporting light-emitting layer.

更に陰極としてマグネシウム及び銀を、この上に二元蒸
着して合金膜として形成し、第1図(a)のような構成
の素子を作成した。このようにして得られた発光素子に
外部電源を接続して、陽極側が高電位になるように電圧
を印加したところ、黄緑色の発光が観測された。
Further, as a cathode, magnesium and silver were binary-evaporated onto the cathode to form an alloy film, thereby producing an element having the structure as shown in FIG. 1(a). When an external power source was connected to the thus obtained light emitting device and a voltage was applied so that the anode side had a high potential, yellow-green light emission was observed.

比較例として、同一材料を用いて,すべて真空蒸着法に
より素子を作成した。同様に外部電源を接続し、電圧を
印加したところ、同じように黄緑色の発光を生じたが、
本実施例の素子に比べて、より低い電圧で絶縁破壊を生
じ,また輝度の低下を短時間で生じた。
As a comparative example, devices were fabricated using the same materials by vacuum evaporation. When an external power supply was connected in the same way and voltage was applied, yellow-green light was emitted in the same way, but
Compared to the element of this example, dielectric breakdown occurred at a lower voltage and the brightness decreased in a shorter time.

実施例2 実施例1と同様なITO付ガラス基板の上に、下記溶液
を用いて正孔輸送層を形成した。
Example 2 A hole transport layer was formed on the same ITO-coated glass substrate as in Example 1 using the following solution.

ニトロベンゼン           20+alll
2,6−ルチジン 0.05+soQ/Q 1 C2H, 重合条件と後処理は実施例1と同様に行ない、平滑な電
界重合膜を得た。次に発光層としてヘキサフェニルベン
ゼン 電子輸送層としてペリレン誘導体 をそれぞれ250人、及び750人ずつ、この順に真空
蒸着により形成した。最後にマグネシウム/銀による陰
極を二元蒸着して、第1図(b)のような構成の素子を
作成した。つぎに5実施例1の場合と同様にすべて真空
蒸着法で作成した電界発光素子とその特性比較を行なっ
たところ、いずれの素子においても黄橙色の発光が観測
されたものの,絶縁耐圧及び素子の寿命の点において、
電界重合膜を用いた本実施例の素子の方がすぐれている
ことが確認された。
Nitrobenzene 20+all
2,6-lutidine 0.05+soQ/Q 1 C2H. The polymerization conditions and post-treatment were the same as in Example 1 to obtain a smooth electropolymerized film. Next, 250 perylene derivatives and 750 perylene derivatives were formed as a hexaphenylbenzene electron transporting layer as a light emitting layer, respectively, by vacuum deposition in this order. Finally, a magnesium/silver cathode was dual-evaporated to produce an element having the structure shown in FIG. 1(b). Next, we compared the characteristics of the electroluminescent devices with electroluminescent devices that were all fabricated using the vacuum evaporation method in the same manner as in Example 1. Although yellow-orange light emission was observed in all of the devices, the breakdown voltage and the In terms of longevity,
It was confirmed that the device of this example using an electrolytic polymer film was superior.

なお、以上の例では電界重合法を、正孔輸送層形成のた
めに採用したが、蛍光性モノマーを用いた場合には発光
層を電界重合法で形成することができた。
Note that in the above examples, the electric field polymerization method was employed to form the hole transport layer, but when a fluorescent monomer was used, the light emitting layer could be formed by the electric field polymerization method.

〔発明の効果〕〔Effect of the invention〕

本発明の電界発光素子は、陽極及び陰極により挾持され
た有機化合物薄膜のうち、少なくとも一層を電界重合法
により形成したことから、素子の絶縁耐圧を高め、且つ
長期間にわたって安定した発光特性を得ることができる
.また同一基板上に互いに分離された複数の電極を存在
させた場合には,重合時の電極を適当に選択することに
より、電極ごとに異なる重合膜を形成でき電極により、
発光特性を変えることができる。
In the electroluminescent device of the present invention, at least one layer of the organic compound thin film sandwiched between the anode and the cathode is formed by an electrolytic polymerization method, thereby increasing the dielectric strength of the device and obtaining stable light emission characteristics over a long period of time. be able to. In addition, when multiple electrodes are separated from each other on the same substrate, a different polymer film can be formed for each electrode by appropriately selecting the electrodes during polymerization.
Light emitting characteristics can be changed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(.)及び第1図(b)は各々本発明に係る電界
発光素子の模式断面図、 第2図は従来の電界発光 素子の模式断面図である。
1(.) and 1(b) are schematic cross-sectional views of an electroluminescent device according to the present invention, and FIG. 2 is a schematic cross-sectional view of a conventional electroluminescent device.

Claims (3)

【特許請求の範囲】[Claims] (1) 陽極および陰極とこれらの間に挾持された一層
または複数層の有機化合物層より構成される電界発光素
子において、有機化合物層のうち少なくとも一層が電界
重合法により形成されることを特徴とする電界発光素子
(1) An electroluminescent device comprising an anode, a cathode, and one or more organic compound layers sandwiched between them, characterized in that at least one of the organic compound layers is formed by electropolymerization. electroluminescent device.
(2) 有機化合物層のうち少なくとも一層が電界重合
膜であることを特徴とする請求項(1)の電界発光素子
(2) The electroluminescent device according to claim (1), wherein at least one of the organic compound layers is an electropolymerized film.
(3) 陽極および/または陰極が互いに分離された複
数の副電極よりなり、各々の副電極のうち少なくとも1
つは他の副電極とは異なる電界重合膜が形成されている
ことを特徴とする請求項(1)又は(2)の電界発光素
子。
(3) The anode and/or cathode are composed of a plurality of sub-electrodes separated from each other, and at least one of each sub-electrode is
3. The electroluminescent device according to claim 1, wherein one of the sub-electrodes is formed with an electropolymerized film different from that of the other sub-electrodes.
JP2009785A 1990-01-19 1990-01-19 Electro-luminescent element Pending JPH03216998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009785A JPH03216998A (en) 1990-01-19 1990-01-19 Electro-luminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009785A JPH03216998A (en) 1990-01-19 1990-01-19 Electro-luminescent element

Publications (1)

Publication Number Publication Date
JPH03216998A true JPH03216998A (en) 1991-09-24

Family

ID=11729886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009785A Pending JPH03216998A (en) 1990-01-19 1990-01-19 Electro-luminescent element

Country Status (1)

Country Link
JP (1) JPH03216998A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274693A (en) * 1990-03-26 1991-12-05 Idemitsu Kosan Co Ltd Organic thin film electroluminescence (el) element and manufacture thereof
WO1999048122A1 (en) * 1998-03-13 1999-09-23 The University Of Liverpool Field emission cathode and field emission display
WO2000051404A1 (en) * 1999-02-23 2000-08-31 Nissan Chemical Industries, Ltd. Electroluminescent element
WO2012103663A1 (en) * 2011-01-31 2012-08-09 Universidad De Chile In situ polymerisation process for obtaining an electro-optical apparatus, said polymer and electro-optical apparatus; and uses thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274693A (en) * 1990-03-26 1991-12-05 Idemitsu Kosan Co Ltd Organic thin film electroluminescence (el) element and manufacture thereof
WO1999048122A1 (en) * 1998-03-13 1999-09-23 The University Of Liverpool Field emission cathode and field emission display
WO2000051404A1 (en) * 1999-02-23 2000-08-31 Nissan Chemical Industries, Ltd. Electroluminescent element
US6632545B1 (en) 1999-02-23 2003-10-14 Junji Kido Electroluminescent element
WO2012103663A1 (en) * 2011-01-31 2012-08-09 Universidad De Chile In situ polymerisation process for obtaining an electro-optical apparatus, said polymer and electro-optical apparatus; and uses thereof
US9664930B2 (en) 2011-01-31 2017-05-30 Universidad De Chile In situ polymerisation process for obtaining an electro-optical apparatus, said polymer and electro-optical apparatus; and uses thereof

Similar Documents

Publication Publication Date Title
JP3526877B2 (en) Variable color bipolar / AC light emitting device
JP2913116B2 (en) EL device
TWI388432B (en) Hole injection/transport layer compositions and devices
US6376105B1 (en) Electroluminescent arrangements
US5663573A (en) Bipolar electroluminescent device
JP3748491B2 (en) Organic electroluminescence device
JP3747686B2 (en) Polymer phosphor and polymer light emitting device using the same
JPH03200889A (en) Electroluminescent element
JPH10106748A (en) Organic electroluminescent element having exciplex
KR20110022003A (en) Lighting device
JP2004095546A (en) Organic electroluminescent element
US20080003456A1 (en) Methods for producing electroluminescent devices by screen printing
JP3243311B2 (en) EL device
KR980013537A (en) Electroluminescing arrangements using lamellar electrodes
JP3129200B2 (en) Light emitting element
JPH05109485A (en) Electroluminescence element
JPH0997679A (en) Manufacture of electroluminescent
JPH03216998A (en) Electro-luminescent element
JPH03163188A (en) Electroluminescent element
JPH03163187A (en) Electroluminescent element
JPH03168294A (en) Electric field luminescent element
JPH03205479A (en) Electroluminescent element
JPH04178488A (en) Electric field luminescent element
JPH03163189A (en) Electroluminescent element
KR100252778B1 (en) Fabricating method of organic electroluminescent device