JP2767773B2 - Manufacturing method of magnetic shield - Google Patents

Manufacturing method of magnetic shield

Info

Publication number
JP2767773B2
JP2767773B2 JP1137185A JP13718589A JP2767773B2 JP 2767773 B2 JP2767773 B2 JP 2767773B2 JP 1137185 A JP1137185 A JP 1137185A JP 13718589 A JP13718589 A JP 13718589A JP 2767773 B2 JP2767773 B2 JP 2767773B2
Authority
JP
Japan
Prior art keywords
magnetic shield
metal
shield
superconductor
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1137185A
Other languages
Japanese (ja)
Other versions
JPH033300A (en
Inventor
浩正 下嶋
惠三 塚本
千丈 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEMENTO KK
Original Assignee
NIPPON SEMENTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEMENTO KK filed Critical NIPPON SEMENTO KK
Priority to JP1137185A priority Critical patent/JP2767773B2/en
Publication of JPH033300A publication Critical patent/JPH033300A/en
Application granted granted Critical
Publication of JP2767773B2 publication Critical patent/JP2767773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁気シールドの製造方法に関し、特に、微
少磁気測定において、外部から混入する磁気ノイズを排
除するための磁気シールドの製造方法に関するものであ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetic shield, and more particularly to a method for manufacturing a magnetic shield for eliminating externally mixed magnetic noise in micromagnetic measurement. It is.

[従来の技術] 微弱な磁気測定は、地磁気や他の測定器からの漏洩磁
気の影響を受け易く、これらの影響は測定ノイズとなっ
て微弱磁気の測定を不正確にしている。このノイズを排
除するため、漏洩磁気の遮断或は測定機器の磁気遮蔽の
ために磁気シールドが用いられるが、この磁気シールド
として、高透磁率、低保磁力の軟質磁性材料を必要形状
に成形して用いられている。
[Background Art] Weak magnetic measurements are susceptible to the effects of geomagnetism and leakage magnetism from other measuring instruments, and these effects become measurement noise and make the measurement of weak magnetism inaccurate. In order to eliminate this noise, a magnetic shield is used to block the leakage magnetism or to shield the magnetic field of the measuring equipment.The magnetic shield is made of a soft magnetic material with high magnetic permeability and low coercive force in the required shape. Used.

[発明が解決しようとする課題] しかしながら、上記の軟質磁性材料による成形物は磁
気シールドの継ぎ目等から漏れ磁界が生じるおそれがあ
り、これを防止するためシールド材料の体積を大きくと
り、シールド効果を高める方法がとられ、その結果、シ
ールドが大きく、かつ、重量が増加するという問題が避
けられなかった。
[Problems to be Solved by the Invention] However, the molded article made of the above soft magnetic material may cause a leakage magnetic field from the joint of the magnetic shield or the like. To prevent this, a large volume of the shielding material is required to increase the shielding effect. A method of increasing the size was adopted, and as a result, the problem that the shield was large and the weight increased was inevitable.

[課題を解決するための手段] 本発明者は上記の問題を解決すべく研究を重ねた結
果、酸化物系高温超伝導体の完全反磁性特性を利用し
て、このような超伝導体を構成する金属を含む溶液を塗
布して焼成することにより、小型でシールド特性の大き
い磁気シールドを製造する方法を見出した。
[Means for Solving the Problems] As a result of repeated studies to solve the above problems, the present inventor has made use of the perfect diamagnetic property of the oxide-based high-temperature superconductor to form such a superconductor. The present inventors have found a method of manufacturing a magnetic shield having a small size and a large shield characteristic by applying a solution containing a constituent metal and firing the solution.

すなわち、本発明は、有機溶媒に可溶で、焼成するこ
とにより液体窒素温度以上で超伝導体となる金属の有機
化合物を有機溶媒に溶解し、その溶解した溶液を、磁気
シールドを形成すべき形状の金属に塗布し、乾燥して仮
焼し、その塗布、乾燥、仮焼を数回以上繰返した後、該
金属と共に焼成し、継ぎ目のない一体型磁気シールドを
得ることを特徴とする磁気シールドの製造方法を提供す
るものである。
That is, the present invention dissolves in a solvent an organic compound of a metal that is soluble in an organic solvent and becomes a superconductor at a temperature of liquid nitrogen or higher by firing, and the dissolved solution is to form a magnetic shield. Coating, drying and calcining a metal in a shape, repeating the application, drying and calcination several times or more, and firing with the metal to obtain a seamless integrated magnetic shield. A method for manufacturing a shield is provided.

本発明で得られた磁気シールドは液体窒素で冷却しな
がら使用する。
The magnetic shield obtained in the present invention is used while cooling with liquid nitrogen.

(酸化物超伝導体組成) 本発明で用いられる酸化物超伝導体の組成は、液体窒
素以上で超伝導を示すものが用いられ、例えばBa2YCu3O
y(焼成温度 900〜950℃)、Bi2Sr2Ca2Cu3O(焼成温度
800〜900℃)、Tl2Ba2Ca2Cu3Oy(焼成温度 900〜100
0℃)、Bi2-xPbxSr2Ca2Cu3Oy(焼成温度 800〜900℃)
等が挙げられる。
(Oxide Superconductor Composition) As the composition of the oxide superconductor used in the present invention, a composition exhibiting superconductivity above liquid nitrogen is used. For example, Ba 2 YCu 3 O
y (sintering temperature 900-950 ° C), Bi 2 Sr 2 Ca 2 Cu 3 O (sintering temperature
800-900 ° C), Tl 2 Ba 2 Ca 2 Cu 3 O y (firing temperature 900-100
0 ℃), Bi 2-x Pb x Sr 2 Ca 2 Cu 3 O y (firing temperature 800-900 ℃)
And the like.

(金属有機化合物) 本発明で酸化物超伝導体を構成する各金属は、溶媒に
可溶な有機化合物の形のものを原料として用いる。その
ような金属有機化合物は、有機溶媒に可溶であり、焼成
によって金属酸化物になるものであれば任意のものが使
用でき、例えばナフテン酸塩、オクチル酸塩、ステアリ
ル酸塩等の脂肪酸塩やアセチルアセトナート、アルコキ
シドなどを挙げることができる。
(Metal Organic Compound) In the present invention, each metal constituting the oxide superconductor is used as a raw material in the form of an organic compound soluble in a solvent. Such a metal organic compound is soluble in an organic solvent, and any one can be used as long as it becomes a metal oxide by firing, for example, a fatty acid salt such as naphthenate, octylate, and stearylate. And acetylacetonate and alkoxide.

(溶媒) 上記の金属有機化合物を溶解する溶媒としては、トル
エン、キシレン、ミネラルスピリット、ブタノール等が
用いられ、溶解する金属化合物に応じて、単独又は混合
して用いられる。
(Solvent) As a solvent for dissolving the metal organic compound, toluene, xylene, mineral spirit, butanol, or the like is used. Depending on the metal compound to be dissolved, it is used alone or as a mixture.

(溶液) 溶解方法については特に限定されない。各金属成分量
が組成割合になるように各金属化合物を混合し溶媒に溶
解させてもよいし、特定金属化合物について特定溶媒に
溶解し、溶液で混合してもよい。溶液濃度も特に限定さ
れないが、目的酸化物超伝導体のモル数を基準として1
×10-3〜1×10-4モル/g程度の濃度が選ばれる。
(Solution) The dissolution method is not particularly limited. Each metal compound may be mixed and dissolved in a solvent so that the amount of each metal component becomes the composition ratio, or the specific metal compound may be dissolved in a specific solvent and mixed with a solution. The concentration of the solution is not particularly limited, but may be 1 based on the number of moles of the target oxide superconductor.
A concentration of about × 10 −3 to 1 × 10 −4 mol / g is selected.

この溶液には塗布に際しての接着性、延展性を与える
ために必要に応じて加熱したとき分解除去される分散
剤、展着剤、増粘剤等を添加することもできる。
A dispersing agent, a spreading agent, a thickener, and the like, which are decomposed and removed when heated, can be added to the solution as needed to impart adhesiveness and spreadability upon application.

(金属容器) 金属容器の形状は、円筒形や立方体等の目的とするシ
ールドの形状に作られたものが用いられる。この金属容
器の材質は、塗布された金属化合物と共に焼成温度で処
理されるので、酸化物超伝導体への焼成温度より高い融
点を有するものであればよく、特に銅、銀等が適してい
る。また、その厚さは形状維持が可能であればよく、最
終磁気シールド体の形状に合わせて通常の板材等を加工
して作ることができる。小さいシールド体の場合には箔
を用いてもよい。
(Metal container) As the shape of the metal container, one made in a target shield shape such as a cylindrical shape or a cube is used. Since the material of the metal container is processed at the sintering temperature together with the applied metal compound, any material having a melting point higher than the sintering temperature for the oxide superconductor may be used, and copper, silver, etc. are particularly suitable. . Further, the thickness may be any shape as long as the shape can be maintained, and it can be formed by processing a normal plate material or the like according to the shape of the final magnetic shield. In the case of a small shield, a foil may be used.

(塗布、乾燥) 焼成後、超伝導体となる組成を有する前記金属有機化
合物溶液は、金属容器に塗布される。塗布は、刷毛塗
り、スプレー、浸漬等通常の方法で行われる。塗布は必
要に応じて重ね塗りを行なう。塗布膜は100℃で乾燥し
た後、塗布膜中の有機成分の分解除去のため約500℃で
仮焼される。仮焼後に再度溶液塗布を行ない、次いで乾
燥、仮焼の工程を繰り返すことは、塗膜を焼成して得ら
れる酸化物超伝導体の密度を高め、クラックの発生を防
止して、漏れ磁界の発生を防止する上で有効である。
(Applying and Drying) After firing, the metal organic compound solution having a composition to be a superconductor is applied to a metal container. The coating is performed by a usual method such as brushing, spraying, dipping, and the like. Coating is performed as needed. After the coating film is dried at 100 ° C., it is calcined at about 500 ° C. to decompose and remove organic components in the coating film. Re-coating the solution after calcination and then repeating the drying and calcination steps increase the density of the oxide superconductor obtained by firing the coating, prevent cracks from occurring, and reduce the leakage magnetic field. It is effective in preventing occurrence.

塗膜の厚さ、ひいては超伝導体膜の厚さは、厚いほど
よいが、通常、酸化物被膜として10〜50μmの厚みがあ
れば目的のシールド効果を達成することができる。
The thickness of the coating film and, consequently, the thickness of the superconductor film are preferably as large as possible, but usually the desired shielding effect can be achieved if the oxide film has a thickness of 10 to 50 μm.

(焼成) 500℃での仮焼により有機成分が分解除去された塗膜
は、次いでそれぞれの超伝導体組成に適した焼成温度
で、酸素分圧の存在下に必要時間焼成され、金属容器の
表面に酸化物超伝導体の焼結体被膜を形成し、金属容器
と共に継ぎ目のない一体型磁気シールドとして、液体窒
素中で冷却された状態で使用る。
(Firing) The coating film from which organic components have been decomposed and removed by calcination at 500 ° C. is then fired at a firing temperature suitable for each superconductor composition in the presence of an oxygen partial pressure for a necessary time, and the metal container is fired. A sintered body coating of an oxide superconductor is formed on the surface, and used as a seamless integrated magnetic shield together with a metal container while being cooled in liquid nitrogen.

[実施例] 実施例 ナフテン酸Bi、ナフテン酸Pb、ナフテン酸Sr、ナフテ
ン酸Ca及びナフテン酸Cu(いずれも日本化学産業(株)
製)を、金属原子比が Bi:Pb:Sr:Ca:Cu=1.4:0.6:2.0:2.0:3.0 となるようにトルエン中に配合して混合溶解せしめ超伝
導体組成の混合溶液を得た。その濃度は超伝導体組成を
1分子と考えて1.5×10-4モル/gであった。
[Example] Example Naphthenic acid Bi, naphthenic acid Pb, naphthenic acid Sr, naphthenic acid Ca, and naphthenic acid Cu (all of Nippon Chemical Industry Co., Ltd.)
Was mixed and dissolved in toluene so that the metal atomic ratio was Bi: Pb: Sr: Ca: Cu = 1.4: 0.6: 2.0: 2.0: 3.0 to obtain a mixed solution having a superconductor composition. . Its concentration was 1.5 × 10 -4 mol / g, considering the superconductor composition as one molecule.

この混合溶液を、予め厚さ1mmの銀板で作った直径100
mmφ高さ100mmのシールド支持体の内側面にスプレーに
より均一に塗布した。次いで約100℃で乾燥した後、500
℃で10分間熱処理を行なった。再度シールド支持体の内
面に溶液のスプレー塗布を行ない、スプレー塗布−乾燥
−仮焼の操作を15回繰り返した。
This mixed solution was prepared in advance using a 1 mm thick silver plate with a diameter of 100 mm.
The inner surface of a shield support having a height of 100 mm mm was uniformly applied by spraying. Then after drying at about 100 ℃, 500
Heat treatment was performed at 10 ° C. for 10 minutes. The solution was again spray-coated on the inner surface of the shield support, and the spray-drying-calcination operation was repeated 15 times.

得られた仮焼体を830℃の電気炉内で、空気中24時間
焼成し、一体型磁気シールドを得た。
The obtained calcined body was fired in an electric furnace at 830 ° C. for 24 hours in the air to obtain an integrated magnetic shield.

この磁気シールドを、肉厚1mmのステンレス製外径110
mmφ、内径90mmφ、高さ120mmの容器の二重壁間に収容
し、更に液体窒素を充填して磁気シールドを冷却した。
This magnetic shield is made of 1mm thick stainless steel outer diameter 110
The magnetic shield was cooled by being housed between double walls of a container having a diameter of 90 mmφ, an inner diameter of 90 mmφ, and a height of 120 mm, and further filled with liquid nitrogen.

この状態で、ステンレス容器の外部から常伝導コイル
により直流磁場を加え、ステンレス容器内部の磁場強度
をホール素子プローブを用いたガウスメータで測定し
た。外部磁場として1000ガウスを加えたとき、内部磁場
は1ガウス以下であってほとんど検出されなかった。
In this state, a DC magnetic field was applied from the outside of the stainless steel container using a normal conduction coil, and the magnetic field strength inside the stainless steel container was measured with a Gauss meter using a Hall element probe. When 1000 gauss was applied as the external magnetic field, the internal magnetic field was less than 1 gauss and was hardly detected.

[発明の効果] 本発明の方法によれば、形状保持体としての金属容器
の表面に、必要な厚さの超伝導体焼結体が形成され、液
体窒素温度下で反磁性に基づくマイスナー効果を利用し
た継ぎ目のない一体に構成された磁気シールド体を製造
することができる。
[Effects of the Invention] According to the method of the present invention, a superconductor sintered body of a required thickness is formed on the surface of a metal container as a shape holder, and the Meissner effect based on diamagnetism is obtained at liquid nitrogen temperature. , A magnetic shield body having a seamless and integral structure can be manufactured.

また、金属容器は磁気シールド体の支持体として使用
しているに過ぎないから、磁気シールド体としては金属
部材を少なくでき、かつ、必要な任意の形状にすること
ができるので、小型、軽量で、漏れ磁界のないシールド
効果の優れたシールド体を得ることができる。
In addition, since the metal container is only used as a support for the magnetic shield, the number of metal members can be reduced as the magnetic shield, and the magnetic shield can have any desired shape. Thus, it is possible to obtain a shield body having no shield magnetic field and having an excellent shield effect.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機溶媒に可溶で、焼成することにより液
体窒素温度以上で超伝導体となる金属の有機化合物を有
機溶媒に溶解し、その溶解した溶液を、磁気シールドを
形成すべき形状の金属に塗布し、乾燥して仮焼し、その
塗布、乾燥、仮焼を数回以上繰返した後、該金属と共に
焼成し、継ぎ目のない一体型磁気シールドを得ることを
特徴とする磁気シールドの製造方法。
An organic compound of a metal, which is soluble in an organic solvent and becomes a superconductor at a temperature of liquid nitrogen or higher by firing, is dissolved in the organic solvent, and the dissolved solution is formed into a shape for forming a magnetic shield. A magnetic shield characterized by obtaining a seamless integrated magnetic shield by repeating the application, drying and calcination several times or more and then firing with the metal to obtain a seamless integrated magnetic shield. Manufacturing method.
JP1137185A 1989-05-30 1989-05-30 Manufacturing method of magnetic shield Expired - Lifetime JP2767773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1137185A JP2767773B2 (en) 1989-05-30 1989-05-30 Manufacturing method of magnetic shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1137185A JP2767773B2 (en) 1989-05-30 1989-05-30 Manufacturing method of magnetic shield

Publications (2)

Publication Number Publication Date
JPH033300A JPH033300A (en) 1991-01-09
JP2767773B2 true JP2767773B2 (en) 1998-06-18

Family

ID=15192789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1137185A Expired - Lifetime JP2767773B2 (en) 1989-05-30 1989-05-30 Manufacturing method of magnetic shield

Country Status (1)

Country Link
JP (1) JP2767773B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2642641B2 (en) * 1987-09-21 1997-08-20 株式会社フジクラ Superconductor

Also Published As

Publication number Publication date
JPH033300A (en) 1991-01-09

Similar Documents

Publication Publication Date Title
JP2767773B2 (en) Manufacturing method of magnetic shield
JPH01126284A (en) Stabilized ceramics superconductive at high temperature
JP3512825B2 (en) Method for producing metal-oxide superconductor composite material
US5328892A (en) Oxide superconductor composition and a process for the production thereof
JPS63276820A (en) Manufacture of oxide superconductor
JPS63258098A (en) Superconducting electromagnetic shield
JP3005660B2 (en) Manufacturing method of magnetic shield
JPH02302379A (en) Cylindrical unit structure of oxide superconductor
KR930002579B1 (en) Manufacturing method of thick film super conductor
JPH0661682A (en) Supperconducting magnetic shield
JPS63274017A (en) Superconductive wire material
JPH01103965A (en) Method for bonding superconductive materials
JPH01257159A (en) Oxide superconducting material
JPH0562533U (en) Oxide superconductor composite
JP2554235B2 (en) Tl-based oxide superconducting wire and method for producing the same
JP2698689B2 (en) Oxide superconducting material and manufacturing method thereof
JPH0595198A (en) Improving method for shielding effect of magnetic shielding body
JPH01140622A (en) Device having superconducting film
JPH01126208A (en) Production of superconducting thin film
EP0397151A2 (en) Oxide superconductor and process for preparing thereof
JPH0574232A (en) Degradation preventing method for oxide superconductor
JPH013052A (en) superconductor
JPH01145366A (en) Oxide-based superconducting ceramics
JPH0529787A (en) Magnetic shield
JPS63242924A (en) Preparation of superconducting material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term